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Abstract.—Stochastic models of character trait evolution have become a cornerstone of evolutionary biology in an array of
contexts. While probabilistic models have been used extensively for statistical inference, they have largely been ignored for
the purpose of measuring distances between phylogeny-aware models. Recent contributions to the problem of phylogenetic
distance computation have highlighted the importance of explicitly considering evolutionary model parameters and their
impacts on molecular sequence data when quantifying dissimilarity between trees. By comparing two phylogenies in terms of
their induced probability distributions that are functions of many model parameters, these distances can be more informative
than traditional approaches that rely strictly on differences in topology or branch lengths alone. Currently, however, these
approaches are designed for comparing models of nucleotide substitution and gene tree distributions, and thus, are unable
to address other classes of traits and associated models that may be of interest to evolutionary biologists. Here, we expand
the principles of probabilistic phylogenetic distances to compute tree distances under models of continuous trait evolution
along a phylogeny. By explicitly considering both the degree of relatedness among species and the evolutionary processes
that collectively give rise to character traits, these distances provide a foundation for comparing models and their predictions,
and for quantifying the impacts of assuming one phylogenetic background over another while studying the evolution of a
particular trait. We demonstrate the properties of these approaches using theory, simulations, and several empirical data
sets that highlight potential uses of probabilistic distances in many scenarios. We also introduce an open-source R package
named PRDATR for easy application by the scientific community for computing phylogenetic distances under models of
character trait evolution.[Brownian motion; comparative methods; phylogeny; quantitative traits.]

Probabilistic models of character trait evolution
have become invaluable tools across many fields of
evolutionary biology. Indeed, stochastic evolutionary
models are the heart of comparative methods (e.g.,
Felsenstein 1985), and an incredibly diverse body
of literature now exists that includes numerous
applications of such models for phylogenetic
reconstruction (e.g., Liò and Goldman 1998), ancestral
state reconstruction (e.g., Schluter et al. 1997), and
evolutionary rate estimation (e.g., Martins 1994), as
well as for studies of coevolution (e.g., Ronquist
1997), adaptation (e.g., Revell et al. 2010), lineage
diversification (e.g., O’Meara and Beaulieu 2016), and
correlated trait evolution (e.g., Bawa et al. 2018). At
a fundamental level, these models are designed to
parameterize the probability distributions of character
traits conditioned upon a particular phylogenetic tree
and set of evolutionary parameters, which themselves
are designed to capture pertinent processes that
influence traits over time. Thus, probabilistic models
of trait evolution provide a vehicle for interpreting
biodiversity in light of both the processes and the
phylogenetic history of organisms that collectively
shape biological variation observed in nature.

Given such widespread adoption of probabilistic
models for studying evolution, it is somewhat surprising
that these same models have been relatively ignored
for the purpose of measuring distances between
trees conditioning on such phylogeny-aware models.

Tree comparisons are a routine yet essential part of
phylogenetic analysis that can be useful for elucidating
methodological shortcomings and statistical biases in
tree reconstruction methods (e.g., Reddy et al. 2017), as
well as for the more general study of macroevolutionary
(e.g., Watanabe and Slice 2014) and microevolutionary
processes (e.g., Yahara et al. 2014). There is now a wealth
of frameworks for computing tree distances, including
the Robinson–Foulds metric (Robinson and Foulds 1979),
the Billera–Holmes–Vogtmann (BHV) or geodesic metric
(Billera et al. 2001), and the path-length-difference metric
(Penny et al. 1993), among others (Estabrook et al. 1985;
Lin et al. 2012; Kuhner and Yamato 2015; Colijn and
Plazzotta 2018). Though widely employed throughout
the literature, these more traditional approaches are
primarily concerned with measuring differences in
the branching structure (i.e., topology) and/or branch
lengths of trees, and they do not explicitly consider
any particular evolutionary process that may act on
genotypic or phenotypic variation.

From a modeling perspective, however, phylogenies
are more than just topology and set of branch lengths:
they define the degree of covariation in character
traits expected among lineages, and thus, provide a
fundamental framework for studying trait evolutionary
processes, which has broad relevance for many fields
and applications (e.g., O’Meara 2012; Nunn 2011; Pennell
and Harmon 2013). Coupled with a model of evolution,
trees can therefore be identified as points on a space
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of distributions over characters traits, which have
been referred to as “phylogenetic oranges” (Moulton
and Steel 2004; Kim 2000). While the likelihood-based
model selection is often conducted before or alongside
parameter estimation for both continuous (e.g., Eastman
et al. 2011; Uyeda and Harmon 2014) and discrete traits
(e.g., Huelsenbeck et al. 2004; Drummond and Suchard
2010), postinference comparison of fitted trees is typically
conducted without reference to the models themselves
using the Robinson–Foulds or BHV metric, for example.
Importantly, most of these classical measures of
phylogenetic distance ignore this information, such
that new approaches that more effectively incorporate
aspects of the evolutionary process alongside knowledge
of organismal relationships hold promise for conducting
comparisons of trees at finer resolutions.

Recently, two probabilistic frameworks have been
proposed for computing phylogenetic distances—one
for comparing trees in terms of their underlying
probability distributions over nucleotide site patterns
for genetic sequence data (Garba et al. 2018), and
another for quantifying distances between gene tree
distributions under the multispecies coalescent model
(Adams and Castoe 2019b). From this model-based
perspective, the distance between two trees is measured
as the distance between their induced probability
distributions, which are functions of all relevant
parameters specified in the evolutionary models (e.g.,
substitution rates, base equilibrium frequencies, and
random mating) in addition to properties of the gene
tree or species tree (i.e., topology and branch lengths).
For example, the distances of Garba et al. (2018) assume
generalized time-reversible (Tavaré 1986) substitution
models to compare two trees in terms of their underlying
probability distributions, and thus, these distances
can detect underlying differences in substitution
parameters, topology, and/or branch lengths that
influence nucleotide site pattern probabilities. Similarly,
the species tree distances proposed by Adams and
Castoe (2019b) employ coalescent theory to measure the
distance between two multispecies coalescent models
(i.e., two species trees) in terms of their gene tree
probability distributions, which are influenced by
demographic parameters such as effective population
sizes, divergence times, and species topologies. A key
advantage of using a probabilistic approach to tree
distance is that it provides a natural means for assessing
model identifiability, which is required for inference to
be possible. Two models that induce identical probability
distributions will yield a corresponding distance of
zero, such that even an infinite amount of data will be
unable to distinguish between the two (Zhu and Degnan
2017). Recently, probabilistic distances have also been
leveraged to define new spaces to model phylogenies
(Garba et al. 2021). Collectively, these new approaches
represent a targeted effort to more effectively leverage
a longstanding model-based perspective that has been
used extensively for decades to both study evolutionary
process and estimate trees but not necessarily to compare

them with one another in terms of their probability
distributions over traits.

A critical limitation of these newly proposed,
probabilistic-based distance approaches is that, in their
current form, they are not readily applicable to the
many other types of traits and models that may be
important in evolutionary studies. In particular, these
probabilistic-based distances of phylogenetic trees do
not currently consider continuous traits and associated
models. However, these previous approaches do suggest
a promising opportunity for comparing phylogeny-
aware models of continuous trait evolution in a similar
manner. In this study, we expand the framework of
probabilistic phylogenetic distances to incorporate these
traits and associated models in an effort to provide more
meaningful measures of tree distance. These distances
seek to compare two phylogeny-aware evolutionary
models in terms of their underlying probability
distributions over continuous character traits, rather
than on their topology and/or branch lengths alone. We
demonstrate these probabilistic phylogenetic distances
using theory, simulations, and empirical analyses,
which collectively highlight the value of this approach
for investigating continuous trait models and their
predictions under an array of conditions. We examine the
application of these measures across a range of diverse
phylogenetic frameworks with different tree topologies
and sizes (i.e., numbers of taxa), which provide insight
into both their theoretical properties and empirical
applications.

METHODS

Background: Probabilistic Phylogenetic Distances and
Continuous Trait Models of Evolution

Though originally described in the context of
nucleotide sequence data and models, it is relatively
straightforward to extend the framework of Guerrero
and Hahn (2018) for the purpose of measuring distances
between other types of traits and models. We first
note that the distance equations of Guerrero and Hahn
(2018) can be used with only minimal modification
for the purpose of comparing discrete trait models
because they are based on standard four-state models of
nucleotide substitution. These principles can therefore
be adopted for computing distances under similar k-
state (k ∈{2,3,...}) discrete trait models by incorporating
an appropriate k-state Markov model, such as the
Cavender–Farris–Neyman (Neyman 1971; Farris 1973;
Cavender 1978) for binary traits, the Mk model (Pagel
1994; Lewis 2001) for k =2 or more models, or even 20-
state models of amino acid substitution (e.g., Dayhoff
et al. 1978). However, these distances are based on
assumptions underlying discrete trait evolution and
therefore cannot be applied for continuous traits in their
current form.

We therefore primarily focus on deriving and applying
probabilistic phylogenetic distances under models of
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TABLE 1. Summary of the six models used to demonstrate the properties of probabilistic phylogenetic distances under models of continuous
trait evolution

Model
Model Abbreviation parameters Interpretation

Brownian motion BM �2∗ Evolutionary rate
Ornstein–Uhlenbeck OU �2,�∗ Pull toward optimum
Early burst EB �2,a∗ Rate acceleration (positive) or deceleration (negative)
Pagel’s lambda L �2,�∗ Tree is star-like when �=0
Pagel’s kappa K �2,�∗ Raise branches to the power �

Pagel’s delta D �2,�∗ Raise node depths to the power �

Asterisk (*) denotes the particular scaled parameters used in simulation analyses.

continuous trait evolution that are not currently
considered by these approaches. A multitude of different
models have been proposed for studying the evolution
of continuous traits along a phylogeny, with many of
them developed as extensions to the familiar Brownian
motion (BM) model (Cavalli-Sforza and Edwards 1967;
Felsenstein 1973), which includes an evolutionary rate
parameter �2 measuring the rate of character trait
change through time and the mean character trait
value � that typically represents the ancestral state of
the root node (in Felsenstein 1973, the likelihood is
computed using contrasts, such that the root state is
not used). BM describes the process of continuous trait
change occurring along branches of a phylogeny, with
differences in trait values being drawn from a normal
distribution with a mean equal to the ancestral state and
variance proportional to �2 and time.

To demonstrate the properties of probabilistic
distances under continuous trait models, we primarily
focus on six models that are commonly used in
evolutionary studies—though we note that many related
models and combinations or variations of models can
likely be used to compute distances in a similar manner.
The six focal models considered in this study include the
standard constant-rate BM model, the stationary-peak,
or single optimum, Ornstein–Uhlenbeck model (OU;
Lande 1976; Hansen 1997), and the early-burst model
(EB; Blomberg et al. 2003; Harmon et al. 2010), as well
as Pagel’s lambda (L), delta (D), and kappa (K) models
(Pagel 1999a,b). These models differ in their numbers
and types of parameters, which are designed to capture
the effects of particular evolutionary processes (Table 1).
For example, the EB model incorporates a parameter
� that determines whether the evolutionary rate �2 =
�2

0eat increases (�>0) or decreases (�<0) exponentially
through time t from an initial value �2

0, whereas the OU
model includes a parameter � that is proportional to the
strength of attraction toward an optimum trait value �.
The OU model can also be described in terms of the
“phylogenetic half-life” t1/2 = ln(2/�), which measures
the mean length of time required for the trait value
to move halfway toward the optimum (Hansen 1997).
Therefore, the trait value moves toward its optimum
faster for larger values of �. It is also worth noting
that, unlike the BM model, the OU model has a
stationary mean. For the L model, the �∈[0,1] parameter

transforms the tree to become more star-like when � is
close to zero (i.e., species are statistically independent)
and branch lengths are unaltered when �=1. The K
model represents a punctuated model of trait change that
raises all branch lengths in the phylogeny to the power of
�≥0. Evolution is directly proportional to branch lengths
when �=1, while evolution is independent of branch
lengths when �=0 (i.e., branches have the same length
of 1.0). When �>1, traits evolve proportionally faster
on longer branches compared to shorter branches, and
conversely, evolution occurs proportionally slower for
longer branches when �∈ (0,1). The parameter �≥0 of
the D model is designed to capture rate variation through
time by raising all node heights in a tree to the power of
�. When �>1, evolution has been fast in the recent past,
and conversely, recent evolution has slowed down when
�∈ (0,1). Finally, all branch lengths collapse to zero when
�=0.

Deriving Probabilistic Phylogenetic Distances under
Macroevolutionary Models of Continuous Trait Evolution
Parameters in these models (i.e., BM, OU, EB, L, K,

and D) directly influence the probability distribution
of traits, and therefore, we wish to incorporate
this information when quantifying distances between
models. For example, consider a phylogenetic model

of continuous character evolution ϕBM =
{

T, 	, �2, �

}

,
which implements a BM model according to ann species
tree with topology T and set of branch lengths 	, an
evolutionary rate parameter �2, and a n-length vector
containing the mean trait value for each tip �
= (�,�,...,�)
(i.e., the expected trait value is the same as the ancestral
state for each tip). A continuous trait � that evolves
according to this model will yield a vector �� of length
n containing the trait values observed for each of then
species, and we state that the distribution of �� follows
model ϕBM (i.e., ��∼ϕBM), such that the probability

density function of �� given ϕBM is P
(
��|ϕBM

)
.

Due to the hierarchically structured nature of
phylogenetic trees, �� is distributed as multivariate
normal (MVN) specified according to the parameters
of ϕBM (e.g., Rohlf 2001; Revell and Harmon 2008).
The topology T and branch lengths 	 define the
varianc–covariance matrix, which is scaled by the rate
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parameter dH, and the ancestral state � provides the
expected trait value for each tip. We can therefore denote
the probability distribution of �� as ��∼N(�
,�), where
�
 is an n-dimensional vector containing the mean trait
value (i.e., ancestral state) at each tip, and � is the n×
n-dimensional phylogenetic varianc–covariance matrix,
which is a function of T, 	, and �2, and defines the
covariance of trait values within and between species.
Thus, it is straightforward to translate the probability
distribution of �� under any of the six focal models
examined in this study ϕBM, ϕOU, ϕEB, ϕL, ϕK, and ϕD)
by rescaling � according to the model parameters. For
example, we could derive the probability distribution of
��under a single optimum OU-based phylogenetic model
ϕOU ={T,	, �2, �, �} by transforming the variance–
covariance matrix � according to both �2 and �.

In practice, we would like to be able to compare two
evolutionary models, such as ϕBM

1 ={T1,1, �2
1, �
1} and

ϕOU
2 ={T2,	2, �2

2, �2, �2}, or alternatively, a BM-based
model ϕBM

1 and an EB-based model ϕEB
2 , or another

pair of models. Thus, we are interested in measuring
distances between two models ϕ1 and ϕ2 in terms of their
probability distributions over ��, rather than between
only their topologies (i.e., T1 vs. T2) and/or branch
lengths (i.e., 1 vs. 2). The probabilistic distance between
two phylogenetic models of continuous trait evolution
can be denoted as

d
(
ϕ1,ϕ2

)=d
(
N

(�
1, �1
)
, N

(�
2, �2
))

, (1)

where �
 are the mean trait vectors and �i are the
transformed varianc–covariance matrices that have been
rescaled according to the evolutionary parameters of the
two modelsϕi, i∈{1,2}. For example, the �i for a given
modelϕi can be obtained using the vcv function provided
in the R package GEIGER (Pennell et al. 2014) or the
PCMVar function from the R package PCMBASE Mitov
et al. 2019). A conceptual framework for computing these
model distances is provided in Figure 1. In this study,
we propose three probability distances that are based on
the same distances that have previously been used for
phylogenetic model distances (i.e., Garba et al. 2018): the
Hellinger distance (dH), the Kullbac–Leibler divergence
(dKL), and the Jense–Shannon distance (d2

JS):

dH
(
ϕ1,ϕ2

)=dH
(
N

(�
1, �1
)
, N

(�
2,�2
))

=1−2n/2 |�1|1/4 |�2|1/4

|�1 +�2|1/2

exp
{
−1

4
(�
1 − �
2

)T (�1 +�2)−1(�
1 − �
2
)}

(2) (Pardo 2005)

dKL
(
ϕ1,ϕ2

)=dKL
(
N

(�
1, �1
)
, N

(�
2,�2
))

= 1
2

(
tr(�−1

2 �1)+(�
2 − �
1)T�−1
2 (�
2 − �
1)

−n+ln
( |�2|

|�1|
))

(3) (Duchi 2007)

dJS
(
ϕ1,ϕ2

)=dJS
(
N

(�
1, �1
)
, N

(�
2,�2
))

= 1
2

dKL

(
ϕ1,

ϕ1 +ϕ2
2

)
+ 1

2
dKL

(
ϕ2,

ϕ1 +ϕ2
2

)
,

(4) (Lin 1991)

where |A| and tr(A) are respectively the determinant
and trace of matrix A, �xT is the transpose of vector �x,
n is the number of tips on the tree, and ϕ1+ϕ2

2 denotes
a mixture of the two models ϕ1 and ϕ2. The Jense–
Shannon divergence is a metric with an upper bound
of

√
log(2) (Garba et al. 2018), and we also note that

no closed-form solution exists for the Jense–Shannon
divergence between two MVN distributions because
the mixture of two Gaussian distributions with distinct
components is not Gaussian itself (i.e., the distributions
will not be of the same Gaussian famil; Nielsen 2019),
but the Jensen–Shannon distance may be approximated
using simulations (e.g., Abou-Moustafa and Ferrie 2012;
Garba et al. 2018). The Kullbac–Leibler divergence is
notable for its role in model selection, as it forms the
theoretical basis for the Akaike information criterion
(AIC), which is designed to approximate the Kullback–
Leibler distance between the true generating model
and a fitted model (Akaike 1973). In our example
demonstrations, we primarily focus on computing
the Hellinger distance (Eq. 2), which is a bounded
metric with a maximum value of one (two models are
completely divergent) and a minimum of zero (two
models induce identical probability distributions and
are mathematically indistinguishable). The Hellinger
distance is a metric that satisfies the triangle inequality
and has symmetry, with a distance of zero between two
models indicating identical distributions. In contrast, the
Kullback–Leibler divergence is not a metric because it is
asymmetric (Johnson and Sinanoviæ 2001).

Models of multiple trait coevolution can also be
incorporated into these distances by including an
evolutionary rate matrix that specifies the rate for each
trait and the covariance between each pair of traits.
For example, bivariate BM models can be implemented

by including the evolutionary rate matrix R=
(

�2
1 �

� �2
2

)
,

where � represents the evolutionary covariance between
the two traits and �2

i , i∈{1,2}, specifies a rate for
each trait, and by setting �
 as a 2n-dimensional vector
containing the expected tip value (i.e., ancestral states)
for both traits at each tip in the tree. With � representing
an unscaled phylogenetic varianc–covariance matrix
(i.e., branch lengths are not already scaled by R), we can
use the Kronecker product V=R⊗� of the evolutionary
rate matrix R and � to compute dH, dKL, and d2

JS with the
following equations:

dH
(
ϕ1,ϕ2

)=dH
(
N

(�
1,V1 =R1 ⊗�1
)
,
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FIGURE 1. Conceptual schematic depicting an example set of distance computations for a simple phylogenetic model with n=2 taxa (top left).
Coupled with a particular model (i.e., BM, OU, or EB), this phylogenetic tree model provides a variance–covariance matrix that is scaled by model
parameters. In this example, the first model ϕ1 (lower left) represents a standard BM model with �2 =1, and there are three alternative models
possible for ϕ2: BM(�2 =1), OU(�2 =1,�=1), or EB(�2 =1,a=1). For each model under this phylogenetic scenario, the probability distribution of
trait values �� sampled at the tips can be formulated as a bivariate (i.e., n=2) normal distribution, which is depicted by each respective model as
a heatmap overlaid by a contour plot, with darker colors representing higher probabilities. Distances are computed by comparing these bivariate
normal distributions with one another (arrows from ϕ1 to each ϕ2 indicate pairs of model distances to be computed).

N
(�
2,V2 =R2 ⊗ �2

))

=1−2n/2 |V1|1/4 |V2|1/4

|V1 +V2|1/2

exp
{
−1

4
(�
1 − �
)T (V1 +V2)−1(�
1 − �
)}

(5)

dKL
(
ϕ1,ϕ2

)=dKL
(
N

(�
1,V1 =R1 ⊗�1
)
,

N
(�
2,V2 =R2 ⊗ �2

))

= 1
2

(
tr(V−1

2 V1)+(�
2 − �
1)TV−1
2 (�
2 − �
1)

−2n+ln
( |V2|

|V1|
))

(6)

dJS
(
ϕ1,ϕ2

)=dJS
(
N

(�
1,V1 =R1 ⊗�1
)
,

N
(�
2,V2 =R2 ⊗ �2

))

= 1
2

dKL

(
ϕ1,

ϕ1 +ϕ2
2

)
+ 1

2
dKL

(
ϕ2,

ϕ1 +ϕ2
2

)

(7)

All features of both the tree and evolutionary
model are likely to influence trait distributions, and
therefore probabilistic distances. That is, perturbations
to any model components are likely to be captured
by probabilistic distances, including differences in
evolutionary parameters (i.e., Table 1) and ancestral
states, as well as the tree topology and branch
lengths, which collectively determine the phylogenetic
covariance structure. The effect of differences in
mean trait values can be illustrated in an example
of two univariate normal models ϕ1 :N(
=0,�2 =1)
and ϕ2 :N

(

=2,�2 =1

)
, which can also be viewed
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as BM processes acting on a single species that
diverged from an ancestor one unit length of time
in the past (i.e., branch length v=1) with mean
trait values of either 
=0 or 
=2, respectively
(Supplementary Fig. S1a available on Dryad at
https://dx.doi.org/10.5061/dryad.m0cfxpp36). Using
Equation (2), the Hellinger distance between these two
distributions is 0.39. If we increase the expectation to


=5, then we obtain a third model ϕ3 :N
(

=5,�2 =1

)
that is a Hellinger distance of 0.95 from model ϕ1.

The particular timing and structure of
phylogenetic relationships also influences trait
distributions and therefore probabilistic distances
by determining elements of the covariance
matrices �, which can be demonstrated in another
example with two multivariate normal models
ϕ1 :MVN

(�
=0,�1 =vcv["(A :1,(B :2/3,(C :1/3,D :1/3) :
1/3) :1/3)"]) and ϕ2 :MVN

(�
=0,�2 =vcv["((A :1/2,

B :1/2) :1/2,(C :1/2,D :1/2) :1/2)"]). Here, 0 is a vector
of length four containing only zeros (i.e., mean trait
values assumed to be zero, and under BM indicates
ancestral state of zero), and vcv[·] indicates a function
used to extract the phylogenetic covariance matrix
according to the two different trees specified in quoted
newick format. In this case, the covariance matrix �1
reflects a “balanced” tree shape for model ϕ1, while an
“unbalanced” tree is used for ϕ2. Given clear differences
in both tree shape and branch lengths, we expect
different trait distributions, and these differences are
reflected by measuring a Hellinger distance of 0.65
between these two models (Supplementary Fig. S1b
available on Dryad).

Probabilistic distances are also influenced by tree
size (i.e., number of taxa), which can be illustrated
by computing distances between small versus large
star phylogenies (Supplementary Fig. S1c available on
Dryad). In this case, the Hellinger distance between
a pair of three-tip star phylogenies is smaller (dH =
0.08; left example in Supplementary Fig. S1c available
on Dryad) than when computed between two larger
four-tip star phylogenies dH =0.11; right example in
Supplementary Fig. S1c available on Dryad), which
each includes an additional element of the varianc–
covariance matrix that must be considered. By adding
this fourth species, we have expanded the dimension of
the probability distribution, requiring that the density be
more spread out than in the setting with fewer species.

Computing Probabilistic Distances Under Evolutionary
Models for Both Bifurcating Trees and Phylogenetic Networks

We demonstrated the properties of these distances
under a range of evolutionary scenarios that modulate
the magnitude of important model parameters defined
by each of the six models (BM, OU, EB, L, K, and
D; Table 1). We first used an example phylogeny and
a randomly generated set of branch lengths (	 are
sampled according to an exponential distribution with

a rate of one) for eight taxa (Fig. 2a) that were first
employed by Felsenstein (1985) to illustrate the variance–
covariance structure of phylogenetic trees and the
comparative method (i.e., Fig. 8 in Felsenstein 1985). In
this demonstration, we sought to leverage probabilistic
distances to capture and quantify differences in
evolutionary model parameters that influence the
probability distribution over �̄, and thus the tree
topologies and branch lengths were identical for both
ϕ1 and ϕ2 (i.e., T1 =T2 and 1 =2) in our bifurcating
tree examples depicted in Figure 2. For legibility, we
drop the T and 	 notation from ϕ except where
noted.

For each phylogenetic model comparison, we
computed dH

(
ϕ1,ϕ2

)
between pairs of models for

which ϕ1 represented a BM-based model (ϕ1 =ϕBM
1 ),

and the second model ϕ2 ∈{ϕBM
2 ,ϕOU

2 ,ϕEB
2 ,ϕL

2 ,ϕK
2 ,ϕD

2 }
was varied according to one of the six models. To
explore the properties of the distances under different
baseline evolutionary rate scenarios, we varied the
rate parameter between either �2

1 =1 or �2
1 =2 for ϕ1,

while fixing �2
2 =1 for the second model ϕ2, and we set

the ancestral root state as �1 =�2 =0 in these example
demonstrations. For each variant of ϕ2, we selected a
single parameter to be scaled by a factor �∈[0,5] (scaled
parameters shown in Table 1).

Phylogenetic networks pose a number of unique
challenges to evolutionary inference, including
identifiability issues for certain types of models
(Zhu and Degnan 2017). For phenotypic data, many
network-based models treat the trait value of a
reticulation point as a weighted mean of its respective
parental lineages (Bastide et al. 2018). To understand the
dynamics of evolutionary model distances under more
complex tree structures, we also computed probabilistic
distances for a pair of hybridization networks (Fig. 3a)
and additionally, between a network and a strictly
bifurcating tree (Fig. 3c). The network topology was
simulated using the SimulateNetwork function provided
in the R package BMHYD (Jhwueng and O’Meara 2015)
using a birth–death model (Nee et al. 1994) and a single
unidirectional pulse migration of proportion m=1/2,
with birth rate of 1 and death rate of 1/2; this network
was also pruned to generate a second bifurcating
topology by removing the migration edge (Fig. 3c). For
the first model ϕ1, we applied a standard BM model
with �2

1 =1, and for the second model ϕ2, we then scaled
either the rate �2

2 =��2
1 or the migration proportion

m2 =�m by a factor of �∈[0,2], which allowed us to
investigate the impacts of scaling these two parameters
when comparing model distances.

We evaluated the effects of particular fixed trees shape
while increasing the number of sampled species n when
computing probabilistic distances. For each number
of sampled species n∈{4,8,16,32,64,128,512,1024,2048},
we simulated three different trees using a fixed shape
(“balanced,” “left unbalanced,” or “star”; example
topologies shown in Fig. 4), and we computed

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://dx.doi.org/10.5061/dryad.m0cfxpp36
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
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a) b)

c)

FIGURE 2. Probabilistic phylogenetic distances under models of discrete trait evolution computed across a range of scaling values. a) Symmetric
topology phylogenetic tree with n=8 taxa that continuous trait evolutionary models are condition on. b) Hellinger distances (dH) computed
using the tree in (a) for BM, OU, EB, L, K, and D continuous trait models, with the first model representing a standard BM model with �2 =1,
and the respective parameters of the second model scaled by �. See Table 1 for description of each model and scaled parameters. c) Hellinger
distances computed using the tree in (a) for BM, OU, EB, L, K and D models, with the first model representing a standard BM model with �2 =2,
and the respective parameters of the second model scaled by �.

pairwise Hellinger distances (dH) between a BM
model ϕBM

1 and either the OU model with �∈
{0.01,0.02,...,0.10,0.20,...,1,2,...,10}, the EB model
with a∈{0.01,0.02,...,0.10,0.20,...,1,2,...,10}, or the D
model with �∈{0.01,0.02,...,0.10,0.20,...,1,2,...,10}; we
applied a rate �2 =1.0 for all four models (BM, OU,
EB, and D). We repeated this analysis twice using
two different models of branch lengths on trees where
lineage splits are evenly distributed from the time
of sampling to the root: 1) all internal branches and
the shortest external branches are of equal length
and scaled to give a total tree height of 1.0 and
2) all internal branches and the shorted external
branches are of equal length and scaled to give a
total tree length of 3.0. Additionally, we evaluated the
effects of increasing the number of sampled species
n when computing probabilistic distances under three
different models (BM, OU, and EB) by simulating
phylogenetic trees using a pure-birth model (Yule 1925)
for n∈{4,8,16,32,64,128,256,512,1024,2048} taxa. For
each value of n, we simulated 100 random Yule trees
with a birth rate of 10 using the pbtree function from the
R package PHYTOOLS (Revell 2012), and we computed

all
(

100
2

)
=4950 pairwise distances between these sets

of 100 trees using either a BM model with varying �2 ∈
{1,10,100}, an OU model with varying �∈{1,10,100}, or
an EB model with varying a∈{1,10,100} to all simulated
trees. We repeated this analysis for the same model
parameters (i.e., 1, 10, and 100 for the �2, �, and a
parameters) and tree sizes (i.e., n∈{4,8,...,1024} tips)
for trees simulated under the Aldous’ Branching model,
which is defined by a symmetric split distribution:
q
(
n,i

)= n
2h

(
n−1

) × 1
i
(
n−1

) , where h(n) is the nth harmonic

number (Aldous 1995). Trees simulated under this model
were generated using the rtreeshape function provided in
the R package APTREESHAPE (Bortolussi et al. 2006).

Investigating the Interplay between Probabilistic Distances
and Likelihood Ratio Test Significance

We conducted an array of simulations to investigate
the interplay between probabilistic model distances
and the significance of the likelihood ratio test used
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a) b)

c) d)

FIGURE 3. Hellinger distance (dH) and Kullback–Leibler divergence (dKL) between a pair of hybridization networks (a) shown in (b), or between
a bifurcating tree and a hybridization network (c) shown in (d), which were computed across a range of values for either the evolutionary rate
parameter �2 (i.e., dH(�2�)) or the migration proportion m (i.e., dH(m�)) for two BM models.

for model selection. First, we simulated a random n=
100 tip phylogeny based on a pure-birth Yule process
(Yule 1925) with a birth rate of 10 (Supplementary
Fig. S6a available on Dryad). Next, we simulated data
sets under an OU model with �2 =1 and �∈[0,1].
For each value of � in this range, we simulated 100
replicate data sets with this model ϕOU(�2 =1,�), and
for each replicate, we fit two alternative models to the
simulated data: 1) a BM model and 2) an OU model.
Model parameters were estimated using maximum
likelihood with the fitContinuous function provided in
GEIGER (Harmon et al. 2007). We used the results of
these two fitted models to compute a likelihood ratio
test with significance assessed assuming a chi-squared
distribution with one degree of freedom. Because all
observations were simulated under an OU model, fitting
a BM model in this case represents a scenario of model-
misspecification, and we used these simulations to
characterize the relationship between the significance
of the likelihood ratio test between two models and
the probabilistic distance between them. We repeated
this same analysis for a larger tree with n=1000 tips
(Supplementary Fig. S7a available on Dryad).

We also expanded these simulations to investigate
the impacts of tree shape, tree size, and evolutionary

parameters on the significance of the likelihood ratio
test alongside probabilistic distances. We simulated data
sets under an OU model using three different tree sizes
(n=128, 512, and 1024 tips) and three different tree
shapes (“balanced,” “left unbalanced,” and randomly
generated Yule tree with birth rate �=1; example tree
shapes shown at the top of Fig. 5) using branch lengths
scaled to give a total tree height of 1.0. For the “balanced”
and “left unbalanced” shapes, lineage splits are evenly
distributed from the time of sampling to the root of
the tree, and all internal branches or shortest external
branches are of equal length. For each tree size and
shape, we simulated character trait data sets using an
OU model that varied in the parameter �∈ [0,1] and
computed both the likelihood ratio test and Hellinger
distance between an OU and BM model that have each
been fit to the simulated data set using the fitContinuous
function of GEIGER.

Leveraging Probabilistic Distances to Compute Distances
between Fitted Evolutionary Models

For our first empirical demonstration, we applied
probabilistic distances to compare the fit of each of
the six evolutionary models investigated in this study

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
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a) b) c)

d) e) f)

g) h) i)

FIGURE 4. The synergistic influence of tree shape, taxa number, and evolutionary model parameter on probabilistic distances. Results shown
for the Hellinger distance (dH) computed between a BM model and either the OU (a–c), EB (d–f), or D (g–i) model for simulations using different
numbers of taxa on three different tree shapes: “balanced” (left column), “left unbalanced” (center column), and “star” (right column). Branch
lengths are chosen such that the total tree height is scaled to 1.0. For each plot, the particular parameter values are indicated with arrows pointing
to the specific lines, such that each line represents a different parameter value on a log-scale from 0.01 to 10.0.

(BM, OU, EB, L, K, and D) for a data set consisting
of mean genome size estimates (mean c-value) for n=
465 amphibian species obtained from previous studies
(Pyron 2014; Liedtke et al. 2018). Amphibian genomes
are known to exhibit extreme variation in size among
all vertebrates, and a recent study highlighted the
extraordinary complex evolutionary dynamics of this
trait within this clade (i.e., Liedtke et al. 2018). Though
these six models are likely highly oversimplified for
this particular trait and clade, we can nonetheless use
this system as an example for computing probabilistic
distances to dissect relative evolutionary model fit and
its impacts on continuous trait distributions (i.e., as
measured via model distances; Fig. 1). We employed a
phylogenetic tree estimate alongside genome size data
obtained from Pyron (2014) and Liedtke et al. (2018),
respectively, and fit each of the six models to the data
set. We then computed probabilistic distances (dH here)

between each pair of fitted models to demonstrate the
utility of dH for comparing fitted models to one another.

Computing Pairwise Distributions of Probabilistic Distances
to Investigate Phylogenetic Uncertainty

We demonstrated the application of our probabilistic
distance approach for probing the impacts of
phylogenetic uncertainty when studying the evolution
of the total genomic transposable element (TE) content
for a data set of n=48 bird genomes (Jarvis et al. 2014).
In the context of this study, we refer to “phylogenetic
uncertainty” as a lack of knowledge pertaining to
which particular phylogenetic background is more or
less appropriate for modeling the evolution of a given
trait (i.e., Maddison 1997), rather than uncertainty in
the resolution of species relationships for any one tree
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a) b) c)

d) e) f)

g) h) i)

FIGURE 5. Investigating the relationship between model distances and the significance of likelihood ratio tests between fitted BM and OU
models (traits simulated under an OU model). Results shown for three different tree shapes: “balanced” (left panels), “left unbalanced” (center),
and trees simulated under a Yule model with the birth rate �=1 (right) with equal branch lengths that are scaled to give a total tree height of 1.0.
P values for a likelihood ratio test comparing the OU and BM models as a function of their Hellinger distance (dH) are shown for three different
tree sizes: 128 (a–c), 512 (d–f), and 1024 (g–i) tips. The mean (circle) and standard deviations (bars) of the distribution of 10 replicate P values
(subtracted from one). Each simulation replicate was computed by incrementally increasing the � parameter of the OU model from 0 to 5 (from
left to right in each panel colored in the blue scale shown), at increments of 0.01.

(i.e., Huelsenbeck et al. 2000). Because the phylogeny
defines the degree of relatedness among species and in
turn, covariation in their biological characteristics (i.e.,
Fig. 1 and Supplementary Fig. S1 available on Dryad),
understanding the specific phylogenetic framework
that a trait evolved under may be essential for accurate
inferences—yet, there are many reasons why one tree
estimate differs from another (Degnan and Rosenberg

2009; Lin et al. 2012). Thus, it can be difficult to decide
which tree is “best” when confronted with a set of
plausible phylogenetic hypotheses, particularly when
studying complex traits. Importantly, choosing any
one tree, such as an overall species tree estimate, may
not be the best choice (i.e., Hahn and Nakhleh 2016).
Indeed, Hahn and Nakhleh (2016) noted that every
accompanying analysis of avian trait evolution based

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab009#supplementary-data
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on this data set of 48 bird genomes assumed a single
species tree, despite notoriously high levels of gene tree
conflict within this data set (e.g., none of the individual
gene trees matched the species topology).

We chose a particularly complex trait (percent genomic
TE content) to demonstrate properties of probabilistic
distances in this context. In this case, it is not immediately
clear how the evolution genomic TE content should be
most appropriately modeled (i.e., species trees vs. gene
trees), and we seek to apply probabilistic distances to
investigate such uncertainty. To account for uncertainty
in a phylogenetic framework, we computed pairwise
model distances under BM and OU models for two
independent sets of trees that have been estimated for
these 48 bird genomes: (i) 6144 individual gene trees
(2136 exons, 329 introns, and 3679 UCEs) and (ii) 31
species trees (Reddy et al. 2017). We downloaded these
sets of trees (Mirarab et al. 2014), we fit both a BM
or an OU model independently to each tree (i.e., each
gene and species trees), and trait value (i.e., the point
estimate of percent genomic TE content for each species)
using the function fitContinuous function in GEIGER.
We computed pairwise distributions among all fitted
model distances for both tree sets, and conducted MDS
using cmdscale to visualize these pairwise distances
projected into multidimensional space and among trees
and between BM and OU models.

Applying Probabilistic Distances to Multitrait Models of
Continuous Trait Evolution

We demonstrated the application of probabilistic
distances in two different scenarios of multiple trait
evolution. In the first scenario, we simulated a 25-tip
phylogeny with a birth rate of one using the function
pbtree provided in PHYTOOLS (tree shown in Fig. 8a);
this tree was used to simulate bivariate data sets with
differing degrees of covariation between the two traits
using a BM model with an evolutionary rate matrix R

=
(

�2
1 =1 �

� �2
2 =1

)
, where � represents the evolutionary

covariance between the two traits and �2 =1 for both
traits. For each simulated data set, we fit two BM models:

ϕBM
1

(
�̂2

1 �̂

�̂ �̂2
2

)
and ϕBM

2

(
�̂2

1 �=0
�=0 �̂2

2

)
, where �̂2

1 and �̂2
2

indicates that the rates for both traits are estimated
from the data, whereas �̂ denotes that the covariance
between the traits is also estimated for the first model.
That is, ϕBM

1 represents an unconstrained model for
which both the covariance � and the rates �2

1 and �2
2

are estimated, whereas ϕBM
2 represents a constrained

model that assumes �=0 (i.e., ϕBM
2 assumes traits evolve

independently). We used the function mvBM provided
in the R package mvMORPH (Clavel et al. 2015) to
fit both models and compute the likelihood ratio, and
we measured the Hellinger distance (dH) between the
two models across a non-negative range of covariance
�∈[0,1].

In the second scenario, we applied probabilistic
distances to characterize model divergence when
studying traits that have experienced singular
evolutionary events, which have recently been shown
to mislead phylogenetic comparative methods when
neglected (Uyeda et al. 2018). Indeed, Uyeda et al. (2018)
used such a scenario to demonstrate how instantaneous
character trait shifts can yield misleading evidence of
apparent correlations between two traits that, in fact,
evolved independently of one another. Following the
approach of Uyeda et al. (2018), we recreated a version
of “Felsenstein’s worse-case scenario” by simulating
bivariate data sets of independent traits (i.e., �=0 for
all simulations) along a 40-tip phylogeny (i.e., Fig. 5
in Felsenstein 1985, Fig. 2a in Uyeda et al. 2018, and
Fig. 8c in this study). On one of the two stem branches
subtending the root, we simulate an instantaneous shift
in the character trait value that is drawn from a MVN
distribution with zero covariance and equal variances
that are a scalar value �2 =1. That is, a large variance
of this MVN distribution used to randomly draw a
shift value is likely to produce larger magnitude shifts
or jumps in trait value, and for smaller variances is
likely to yield smaller magnitude shifts or jumps in
trait value. For each simulated data set, we fit two

BM models: ϕBM
1

(
�̂2

1 �̂

�̂ �̂2
2

)
and ϕBM

2

(
�̂2

1 �=0
�=0 �̂2

2

)
, and

we computed both the likelihood ratio test as well as
Hellinger distance (dH) between them.

To further investigate distances between models that
differ in their underlying assumptions of complex traits
coevolution, we also applied probabilistic distances to
an alignment of 29 morphometric characters taken from
a data set of 87 cranium landmarks (each trait spans
three landmarks) measured for 10 extant and nine extinct
carnivoran mammals from a recent study (Álvarez-
Carretero et al. 2019). We obtained a dated phylogeny
hypothesis from Álvarez-Carretero et al. (2019) referred
to as “morph+molec B” that was inferred using both
a set of morphological and molecular characters (see
Fig. 8 in Álvarez-Carretero et al. 2019 for details). Each
of the 29 morphometric characters consists of a triplet
set of landmark measurements, and thus, we fit two
different BM models to each of the 29 triplet traits: a
constrained model (i.e., landmarks assumed to evolve
independently) and an unconstrained model for which
between-landmark covariances are estimated for each of
the three landmarks associated with a given trait. We
computed pairwise Kullback–Leibler divergences (dKL)
between all 29 fitted models for each set (i.e., constrained
vs. unconstrained model sets) independently. Next, we
conducted MDS of each set of 29 traits independently to
project and visualize these pairwise model distances to
the first two principle coordinates of variation.

Investigating Identifiability of Mixed Gaussian Models
Recently, a number of models have been proposed that

relax the assumption of model homogeneity across a
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phylogeny (Mitov et al. 2019, 2020), and studies have
highlighted intrinsic difficulties of inferring multiple
rate optima of the OU model (Ho and Ané 2014).
We applied the Hellinger distance to investigate the
identifiability for three scenarios of mixed OU models on
an example phylogeny of flowering plants (Davis et al.
2007). For the first scenario, we computed distances using
two examples of a single shift model discussed in Ho and
Ané (2014) and depicted in the left and right trees shown
in Figure 9a that varied in the parameters of the shift. For
the left tree model, we applied a background OU model
with parameters �2 =1 and �=1 using an ancestral state
� and selection optimum �opt of one (i.e., �=�opt =1),
and we then shifted the optimum �shift =2 at the branch
marked by an asterisk (Fig. 9a, left tree). Alternatively,
we varied the ancestral state �∈[−2,3] and set the
shift optimum �shift = �, while varying the background
optimum �opt ∈[−2,3], to compute distances for the right
tree in Figure 9a to compute the Hellinger distance across
a range of values for these parameters, which have been
shown to be unidentifiable (Ho and Ané 2014).

For the second scenario, we computed distances
between mixed models with two shifts in � and depicted
in the left and right trees shown in Figure 9c that both
applied a background OU model with parameters �2 =1
and �=1, while varying the location of one of the two
OU shifts (location of asterisks in left vs. right trees of
Fig. 9c). For the left tree model, we used �2 =1 and �=2
for the first shift of the OU and �2 =1 and �=3 for
the second shift. We computed distances between this
shift model and a separate shift model with a different
location for the second shift (gray asterisk shown in the
right tree of Fig. 9c) for which we varied the �2 ∈[0,5] and
�∈[0,5] parameters. Similarly, for a third scenario, we
computed probabilistic distances between two different
shift models depicted in the left and right trees of
Figure 9e, with the same values for all shift models
described in the second scenario, but different locations
in the trees (Fig. 9c vs. e).

Alongside our mixed OU scenarios, we also
investigated model divergences between two different
applications of mixed BM models (left trees with
asterisks shown in Supplementary Fig. S9a and c
available on Dryad) and the K model (right trees
without asterisks in Supplementary Fig. S9a and c
available on Dryad), which varied both the parameter
values (�2

1 for the BM marked by gray asterisk, and the �
parameter of the K model) and the tree topology for five
taxa (Supplementary Fig. S9a vs. c available on Dryad).
For the first mixed BM model (Supplementary Fig. S9a
available on Dryad), we applied a background BM with
�2 =1, and used �2

1 ∈[0,5] (gray asterisk), �2
2 =3, and

�2
3 =2, for the three shifts marked in Supplementary

Figure S9a available on Dryad, respectively. For the
second mixed BM model, we also applied a background
BM with �2 =1 while varying the rate parameter
�2

1 ∈[0,5] for the BM shift marked by a gray asterisk in

Supplementary Figure S9c available on Dryad. In both
cases, we varied the �∈[0,5] parameter of the K model.
We repeated this analysis for larger trees with n=1027
tips (Supplementary Fig. S10 available on Dryad) that
were generated by appending a “balanced” subtree
with 1024 tips (Supplementary Fig. S10a available on
Dryad) or an “unbalanced” subtree with 1024 tips
(Supplementary Fig. S10c available on Dryad) each with
equal branch lengths of one (i.e., different tree heights
and a length of one for each branch of the subtree).

In addition to scenarios of mixed models, we
applied the Hellinger distance (dH) to investigate
identifiability (or lack thereof) between the OU model
and the generalized EB model for which the rate
parameter is positive (sometimes referred to as the
Acceleration–Deceleration model; Blomberg et al. 2003).
We downloaded a phylogeny of n=100 Anolis lizards
(Mahler et al. 2010) that was also analyzed in a recent
study that highlighted unidentifiability of the OU and
EB models (Uyeda et al. 2015), which can occur when the
initial rate parameter of the EB model is parameterized
as �2

0 =e−2�, where � corresponds to the OU model
parameter � (Uyeda et al. 2015). We computed the
Hellinger distance across a range of values for a using an
EB model with �2

0 =e−2� =e−2(0.25) =0.607 and a∈[0,2],
and an OU model with parameters �2 =1 and �=0.25.
Using these results, we also computed the absolute
difference in Hellinger distances measured across the
range of a to characterize the rate of change in model
divergence.

RESULTS

Probabilistic Distances Between Capture Impacts of Model
Parameter Scaling

Computing probabilistic distances across models
highlights the impacts of scaling particular model
parameters designed to capture different evolutionary
processes acting on trait distributions for both
bifurcating trees (Fig. 2) and phylogenetic networks
(Fig. 3). By scaling these model parameters by a factor
�∈[0,5], probabilistic distances provide a clear means for
assessing model identifiability (or lack thereof) and for
dissecting the relative impacts of different parameters
on phenotypic trait distributions. In all cases, we find
substantial differences in slopes of the curves generated
by computing Hellinger distances between a standard
BM model (ϕ1 =ϕBM

1 ) with �2
1 =1 (Fig. 2b) or when �2

1 =2
(Fig. 2c) against the six alternative models with scaled
parameters ϕ2 ∈{ϕBM

2 ,ϕOU
2 ,ϕEB

2 ,ϕL
2 ,ϕK

2 ,ϕD
2 }. Computing

a maximum approximate derivative (maximum rate
of change in these slopes) highlights particular model
parameters with especially strong influence on model
distances, and therefore the underlying continuous
trait probability distributions when scaled by a factor �
(i.e., comparing the maximum approximate derivatives
shown in Fig. 2b and c). We also find that as we scale
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each parameter by larger � values (as �→5 in Fig. 2b and
c), several distances exhibit increasing trends and/or
asymptotic behaviors toward the maximum dH of 1,
suggesting that the underlying probability distributions
of continuous traits become increasingly divergent
when parameters are scaled in such a fashion.

In our bifurcating tree scenarios (Fig. 2), probabilistic
distances measured between ϕ1 and each of the
respective scaled BM ϕBM

2 (�2 =1�), kappa ϕK
2 (�=

1�), delta ϕD
2

(
�=1�

)
, and lambda ϕL

2 (�=1�) models
approach zero when their respective parameters are
essentially unscaled (i.e., these distance curves approach
zero when �=1 in Fig. 2a), indicating that these models
become unidentifiable under these conditions because
they induce identical distributions over �′′. In other
words, the K, D, and L models collapse to a simple BM
model as � approaches 1 for each model. Conversely,
scaling the a and � parameters for the EB and OU models,
respectively, did not result in model unidentifiability
when computed against a standard BM model ϕBM

1 when
�2 =1 (Fig. 2b) or when �2 =2 (Fig. 2c). Indeed, only the
scaled BM and delta models approach unidentifiability
when � approaches 2 for scenarios with ϕBM

1 and an
evolutionary rate of two (i.e., �2 =2), while the other four
models (OU, EB, K, and L) remain identifiable for all
values of � (Fig. 2c).

Similarly, computing both the Hellinger (dH) distance
and the Kullback–Leibler (dKL) divergence between BM
models evolving according to a pair of hybridization
networks (Fig. 3a) or a hybridization network and a
strictly bifurcating tree (Fig. 3c) highlighted the utility
of such approaches for probing the effects of scaling
evolutionary rate or the migration proportion m on trait
distributions underlying model distances and complex
phylogenetic structures (Fig. 3b and d). We observed
fundamentally different curves for dH and dKL across
a range of scaling for either m or �2, as well as apparent
shifts in model identifiability under these conditions. For
example, when �=0 yielding m=0.5 �=0, both the dH
and dKL distance curves approach zero when comparing
the network and tree shown in Figure 3c, such that
the hybridization network essentially collapses to the
tree as the migration proportion goes to zero. In many
cases, scaling the evolutionary rate parameter �2 has
a particularly strong impact on model distances under
both networks and trees.

Tree shape, number of taxa, branch length model,
and the particular parameter values had substantial
influence over probabilistic distances (Fig. 4 and
Supplementary Fig. S1 available on Dryad). In particular,
the specific model used to generate branch lengths had
a strong and synergistic role in shaping probabilistic
distances between different models and tip numbers
(Fig. 4 vs. Supplementary Fig. S1 available on Dryad).
When using branch lengths are scaled to a tree height of
one, we found that increasing the number of sampled
species n on a fixed topology shape yields trends of
increasingly larger pairwise distances between a BM

model and either the OU (Fig. 4a–c), EB (Fig. 4g–i), or D
(Fig. 4m–o) models. However, we observed an opposite
trend towards smaller Hellinger distances for the largest
trees when branches are equal in length and scaled such
that the total tree length is three for the OU and EB
model comparisons (Supplementary Fig. S1a–f available
on Dryad). We also found that distances computed under
the D model were less sensitive (compared to the OU and
EB comparisons) to the branch length model (Fig. 4g–i
vs. Supplementary Fig. S1g–i available on Dryad). One
reason that may explain these differences for the D model
is that the tree becomes more star-like as the � parameter
increases, which in turn, increases the total length of the
tree as well as the total amount of evolution occurring
along branches. For a given number of taxa n and height
h, the total tree length approaches nh as the � parameter
increases, thereby resulting in greater evolution along
the tree with a larger number of taxa. Specifically, with
large �, for our balanced tree scenario (Supplementary
Fig. S1g available on Dryad with original fixed length
of three) the total tree length increase logarithmically
as a function of the number of tips, and for our
left unbalanced scenario (Supplementary Fig. S1h
available on Dryad with original fixed length of three)
the total tree length approaches six with increasing
tip number. On our examples simulated under the
Yule (Supplementary Fig. S3 available on Dryad) or
Aldous’ branching (Supplementary Fig. S4 available
on Dryad) models, we observed similar trends toward
increasingly larger pairwise distances under the BM
(Supplementary Figs. S3a and S4a available on Dryad),
OU (Supplementary Figs. S3b and S4b available on
Dryad), and EB (Supplementary Figs. S3c and S4c
available on Dryad) models for larger trees, respectively
(see Methods section for details). However, the influence
of increasing the number of sampled species n depended
on the relative scaling of each parameter (dark to light
distributions indicated in Supplementary Figs. S3 and S4
available on Dryad). In all examples, modulating specific
evolutionary parameters tended to have a strong and
synergistic influence with tree shape and taxa number
on probabilistic distances (Fig. 4 and Supplementary
Figs. S2–S4 available on Dryad). We also found that
probabilistic distances measured between even the
largest trees in our simulations (2048 species) required
less than a minute of computation using a single thread
of a 2.6 GHz Intel Core i7 CPU (Supplementary Fig. S5
available on Dryad).

Probabilistic Distances and Likelihood Ratio Test
Significance

The fit of nested evolutionary models (i.e., BM and
OU) to a data set of continuous characters is often
compared using the likelihood ratio tests (i.e., O’Meara
et al. 2006). In this context, our simulation analyses
identified a positive relationship between increasing
model distances and significance (i.e., smaller P values)
for the likelihood ratio test between fitted OU and BM
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FIGURE 6. Computing probabilistic Hellinger distances (dH)
between the BM, OU, EB, L, K, and D continuous trait models that
were fit to the amphibian genome size data set of n=465 taxa. Graphical
network showing the six models (BM, OU, EB, L, K, and D) as nodes
connected by edges, with the widths of edges scaled by their respective
probabilistic distances (shown beside each edge).

models, which varied according to the size and shape
of the tree, as well as model parameters (Fig. 5 and
Supplementary Figs. S6 and S7 available on Dryad;
see Methods section for details). That is, the ability
to identify statistically significant differences between
the fitted models increased as the models became
more divergent, because the data were generated
under increasingly larger � values for the OU model.
Conversely, smaller � models tended to decrease the
ability to detect statistically significant differences
between the models because the parameter estimates of
the BM and OU models were more similar, and thus, they
induce similar underlying distributions over character
traits �� that were quantified via the Hellinger distance
(Fig. 5, Supplementary Figs. S6 and S7 available on
Dryad).

Comparing Fitted Models with Probabilistic Distances
Size is a fundamental characteristic of genomes, and

yet, accurately modeling the evolution of genome size
can be challenging (e.g., Liedtke et al. 2018). Comparing
the fit of the six evolutionary models to the amphibian
genome size data set consisting of 465 species provided a
detailed depiction of the relative distance between each
estimated model (Fig. 6; see Methods section for details).
For example, the distance between the fitted BM and
OU models (5.7×10−6) was substantially smaller than
any other pairwise model distance (see the BM–OU edge
in Fig. 6). This small distance between the BM and OU
models suggests that the estimated � parameter for the

OU model does not strongly influence the underlying
distribution of trait values, and thus the estimate � is
close to zero, indicating a lack of stabilizing selection for
genome size. Conversely, the largest pairwise distance
of any two models was observed between the EB and
K models for this data set (i.e., the large EB-K edge in
Fig. 6).

Investigating the Impacts of Phylogenetic Uncertainty with
Probabilistic Distances

Rigorous modeling of trait evolution often requires
accounting for uncertainty in the phylogenetic
relationships assumed to underlie a given trait
(Huelsenbeck et al. 2000). Our applications of
probabilistic distances to the 6144 gene trees (2136
exons, 329 introns, and 3679 UCEs) and the 31 species
trees estimated for a 48 bird genome data set highlights
the utility of this approach for probing the impact of
such uncertainty on evolutionary model comparisons
(Fig. 7; see Methods section for details). For example,
our analyses of the avian data set revealed substantial
differences among distances computed using the
individual gene trees or the reconstructed species-level
trees (i.e., Fig. 7a vs. b). Similarly, we found major
differences in the MDS projections for both the gene
and species tree analyses depending on whether a
simple BM or OU model was used. In particular, we
see substantial divergence in pairwise model distances
between the 6144 gene trees that were based on the BM
or OU models, respectively (i.e., Fig. 7a vs. c).

Applying Probabilistic Distances to Models of Multitrait
Evolution

Determining the degree of covariation (or lack
thereof) between two traits is a major goal of
phylogenetic comparative methods (Uyeda et al. 2018),
and probabilistic distances can be useful in this context
for quantifying model divergence and its relation to
model testing (Fig. 8). We found that increasing the
degree of evolutionary covariation between two traits
yields corresponding increases in probabilistic distances
between models that differ on whether traits are
or are not assumed to be independent (Fig. 8b). In
particular, our application of the Hellinger distance
(dH) highlights the divergence between such models
when analyzing independent traits that have evolved
under scenarios of instantaneous character trait change
(i.e., Fig. 8c and d). Though the two traits were
simulated independently from one another, we found
that as the magnitude of the instantaneous shift
increases, so does the Hellinger distance, as well
as statistical support (i.e., lower P values) for an
incorrect model of trait coevolution (Fig. 8d). Applying
MDS of pairwise probabilistic distances computed
between multitrait models fit to morphometric landmark
characters yielded differences in model space depending
on whether landmarks of each trait are assumed
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a) b)

c) d)

FIGURE 7. Multidimensional scaling (MDS) based on pairwise Hellinger distances (dH) estimated assuming a BM model (a) or an OU model
(c) for a set of 6144 avian gene trees that comprise 2136 exons (dark gray), 329 introns (black), and 3679 UCEs (light gray). Analogous, plots (b)
and (d) depict pairwise distances projected using MDS for the 31 avian species trees assuming BM (b) or OU (d) models, respectively.

to evolve independently or in a correlated fashion
(Supplementary Fig. S8 available on Dryad). Most
multitrait models are more tightly clustered together
(i.e., pairwise model distances tend to be smaller) when
fitting models that assume independence in comparison
to models that estimate between-landmark evolutionary
covariance (Supplementary Fig. S8a vs. b available on
Dryad), and we also see that the particular traits driving
most of the variance in the coordinates differ between
these analyses (i.e., the placement of models fitted to trait
27 vs. trait 25 in Supplementary Fig. S8a vs. b available
on Dryad driving variation in the first coordinate).

Investigating Probabilistic Distances Between Complex
Gaussian Models

Our applications of the Hellinger distance to multiple
OU models with shifted parameters underscored
the utility of this approach for investigating the
degree of identifiability between complex models
(Fig. 9). For example, distances measured between
two models depicted in Figure 9a that varied in the
locations and parameter values of OU shifts highlighted
regions of parameter space for which the models
were mathematically unidentifiable, as well as nearby
regions with particularly small distances that may be
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a) b)

c) d)

FIGURE 8. Applying the Hellinger distance (dH) to multivariate models of continuous trait evolution. Results for simulation analyses using
the phylogeny depicted in (a) are shown in (b), where � is the covariance between the two traits. Phylogeny depicting “Felsenstein’s worst case”
scenario is shown in (c), which was used to simulate data sets in which an instantaneous shift occurs on one of the ancestral branches (location
of shift depicted as a tick mark on the tree in (c)), and results shown in (d) with log10 ratio of the shift to BM variance (x-axis) and the Hellinger
distance (y-axis) computed between the unconstrained and constrained models that have been fit to the simulated data. Color of points in (b)
and (c) indicate 1-P value of the likelihood ratio test between an unconstrained model (i.e., � is estimated) and a constrained model (i.e., �=0
such that traits are assumed to be independent) that have been fit to the data.

unidentifiable in practice. We also find that overall
levels of identifiability were lower between the two
shift models shown in Figure 9c (left vs. right tree),
with the Hellinger distance ranging from zero to a
maximum of 0.92 for these parameter values (Fig. 9d),
when contrasted to the third example scenario depicted
in Figure 9f. Indeed, when comparing the two scenarios
(i.e., middle vs. bottom rows of Fig. 9), we observed a
more diffuse range of Hellinger distances (i.e., larger
band of gray shading in Fig. 9d vs. f) in the first scenario,
indicating that these models may be more difficult to
distinguish from one another as measured by the lower
Hellinger distances, at least for many of the parameter
values explored here.

Measuring model divergences between our two
applications of mixed BM models and the K model
highlights regions of parameter space for which these
two models become unidentifiable (Supplementary
Figs. S9 and S10 available on Dryad). The identifiability
(or lack thereof) of mixed BM and K models depends on
the particular shape of the tree (Supplementary Figs. S9a
vs. c and S10a vs. c available on Dryad), with a larger
region of unidentifiability (or nearly so) depicted in
our second example (Fig. 9b vs. d and Supplementary
Fig. S10b vs. d available on Dryad). Additionally, our
applications of probabilistic distances to the generalized
EB model highlighted regions of parameter space that
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a) b)

c) d)

e) f)

FIGURE 9. Investigating identifiability of mixed OU models using the Hellinger distance (dH). Asterisks (*) indicate the location of shift points
for OU model parameters in the tree pairs shown in (a), (c), and (e). Heatmap shown in (b) represents the Hellinger distance computed between
the left and right tree models displayed in (a) across a range of values for the ancestral state � and the background optimum �ropt using a shift
optimum �shift =� of the right tree, while using �=1, �shift =2, and �opt =1 for the left tree in (a). d) The distance between the two tree models
shown in (c) across a range of �2 and � parameter values of the OU model marked with a gray asterisk in the left tree of (c). Similarly, results
for the Hellinger distance between the two tree models displayed in (e) are shown in (f), with a range of �2 and � parameter values for the OU
model represented by a gray asterisk in the right tree of (e).

may lead to identifiability issues with an OU model
(Supplementary Fig. S11a available on Dryad), as well
as the rate of change in model distances as a function
of the parameter a (Supplementary Fig. S11b available
on Dryad). We find that the rate of model convergence

increases as the parameter a approaches 0.5, while
eventually trending toward an asymptote of zero as
a increases and the models diverge from one another
(right-hand side of the curves shown in Supplementary
Fig. S11b available on Dryad).
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DISCUSSION

Statistical models of evolutionary change convey
information encoded within their parameters to define
probability distributions over character traits given a
phylogeny. We have found that computing distances
under such models can be useful for elucidating the
impacts of excluding, including, and/or modulating
various parameters (i.e., Figs. 2–4) for both strictly
bifurcating trees (i.e., Fig. 2), as well as more
complex phylogenetic structures and models, such
as hybridization networks (Fig. 3), scenarios of trait
coevolution (Fig. 8 and Supplementary Fig. S8 available
on Dryad), and mixed Gaussian models that allow shifts
in the models and parameters along different lineages
(Fig. 9 and Supplementary Figs. S9 and S10 available on
Dryad). Throughout our demonstrations, we explored
diverse phylogenetic backgrounds across a range of tree
sizes and shapes to gain insight into the properties
of these measures in both data-limited (e.g., small
trees) and data-rich (e.g., large trees) scenarios that are
both of relevance to empirical studies. Collectively, we
also find that probabilistic distances measures provide
a toolset for investigating model divergences in a
way that is complementary with both likelihood-based
model selection criterion (e.g., Fig. 5, Supplementary
Figs. S6 and S7 available on Dryad) and mathematical
proofs of model identifiability (or lack thereof; e.g.,
Supplementary Fig. S11 available on Dryad).

Phylogenetic trees and networks represent powerful
and complementary frameworks for modeling the
evolution of molecular sequence data (Blair and
Ané 2019), and our results suggest the same when
considering continuous traits. Probabilistic distances
offer a means for quantifying the impacts of assuming
one phylogenetic background or another on inferences
of character evolution (i.e., Figs. 3 and 7), and for
investigating regions of parameter space that yield
identical trait distributions for models (e.g., Figs. 2, 3, 9
and Supplementary Figs. S9–S11 available on Dryad).
Fundamentally, these distances can be interpreted as
capturing underlying differences in character trait
distributions between two models. For example, scaling
the overall BM rate parameter �2 resulted in particularly
strong impacts on model distances in many cases, and
therefore, these distances were able to quantify impacts
of this parameter on predicted trait distributions under
models with faster or slower rates (i.e., Figs. 2–4). Scaling
the migration proportion m of a hybridization network
model permitted investigation of the effects of including
or excluding a migration edge in the tree for continuous
trait distributions (Fig. 3). Likewise, increasing the
number of sampled taxa n in the model yields increasing
trends in pairwise model distances, but these trends
are modulated by the particular parameters included
in the models, as well as the particular shape of the
tree (i.e., Fig. 4 and Supplementary Figs. S2–S4 available
on Dryad). Projections of multimodel space based on
these distances depend on whether models incorporate
trait coevolution, or alternatively, models that assume

independence have been fit to morphometric landmark
data (Supplementary Fig. S8a vs. b available on Dryad).
Taken together, these results underscore the complexities
of comparing phylogeny-aware models, such that scaling
and including or excluding parameters can have complex
implications for character trait evolution and tree
distances.

A growing concern in comparative trait studies is
the identifiability (or lack thereof) of many commonly
used models of evolutionary inference (e.g., Ho and
Ané 2014; Zhu and Degnan 2017), with recent evidence
implicating the nonidentifiability of entire classes of
popular birth–death models that are often used for
studying trait evolution (Louca and Pennell 2020).
Relevant to these concerns is the distinction between
mathematical and practical identifiability: two models
are mathematically indistinguishable when they induce
identical probability distributions, whereas two models
that are mathematically distinguishable can still be
“practically indistinguishable” when model inference
is unreliable for finite data sets of reasonable size
(Zhu and Degnan 2017). Thus, the recent emergence
of probabilistic distances that can be used to directly
measure model identifiability, such as those proposed in
this study and others (i.e., Garba et al. 2018; Adams and
Castoe 2019b), provide a timely and relevant framework
for assessing these important properties of phylogenetic
models. As two models converge toward the same
probability distribution and therefore mathematical
unidentifiability, the probabilistic distance between
them will correspondingly decrease toward zero. Thus,
our applications have shown that probabilistic distances
can shed light on particular regions of parameter space
that yield indistinguishable models, including more
complex scenarios and mixed models that incorporate
shifts in parameters along particular branches or clades
of a tree (i.e., Fig. 9 and Supplementary Figs. S9
and S10 available on Dryad). Finally, we have found
that probabilistic distances provide a clear connection
with likelihood-based tests of model fit (i.e., Fig. 5 and
Supplementary Figs. S6 and S7 available on Dryad).
Significance of statistical tests of evolutionary model fit
is likely a complex function of many parameters, such as
the number of tips, the divergence times, the tree shape,
number of traits, and the particular model analyzed (Ho
and Ané 2014), and these features may be reflected in our
analysis (e.g., Supplementary Fig. S6 vs. S7 available on
Dryad).

Studying the evolution of complex traits often
requires the use of parameter-rich models that more
adequately accommodate these complexities. In our
avian empirical example, we deliberately chose such
a trait (percent genomic TE content) to demonstrate
the utility of pairwise probabilistic distances when
considering uncertainty in the phylogenetic background
assumed for a given trait. As in this case, it is not
always straightforward to decide how the phylogenetic
framework for a particular trait should best be modeled
(i.e., a single gene tree, multiple gene trees, or a single
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species tree). For example, if a particular trait is known
to be encoded by a single locus, then it may be preferable
to assume the specific gene tree of that locus, rather than
an overall species tree. Conversely, some traits may be
better modeled as a function of the overall species tree,
or perhaps multiple gene trees for polygenic traits. In
practice, however, it is seldom known which or even
how many gene trees underlie a particular trait, and
recent studies have demonstrated that focusing only
on one particular tree (usually the species tree) can be
problematic when modeling trait evolution (i.e., Hahn
and Nakhleh 2016). Traits that evolved along discordant
gene trees may yield patterns of “hemiplasy” when
forced to a species tree, leading to incorrect inferences
(i.e., Avise and Robinson 2008; Mendes and Hahn 2016;
Guerrero and Hahn 2018). In our case, modeling total
genomic TE content is particularly challenging: should
we only use gene trees located in or nearby TE-rich
regions in the genome? Should we use multiple gene
trees? The overall species tree? For example, many
studies of TE evolution typically assume a single species-
level phylogeny (e.g., Malmstrøm et al. 2018), and
most analyses of avian trait evolution based on these
48 genomes have assumed only a single tree, despite
widespread phylogenetic discordance within this data
set (i.e., Zhu and Degnan 2017; Hahn and Nakhleh 2016).
Importantly, the distances applied here can be used to
investigate the effects of such uncertainty on character
trait distributions and models (i.e., Fig. 7).

There are a number of limitations to our applications
of probabilistic distances explored in this study. We
primarily focused on the Hellinger distance, because
closed-form solutions exist for this distance that is also
a true metric bounded by zero (identical models) and
one (maximum divergence between models), which
proved useful throughout our demonstrations. We
also applied the Kullback–Leibler divergence in two
scenarios (Fig. 3 and Supplementary Fig. S8 available
on Dryad), which is also of interest given its connections
with model selection, as several information-theoretic
approaches, such as AIC, are designed to approximate
this divergence between a fitted model and a true
underlying probability generating model (Akaike 1973).
It is likely that other distances may prove useful in this
context, such as the Fréchet (Dowson and Landau 1982)
and Bhattacharyya (1943) distances. We also examined
only a handful of different models, and there is now
a wealth of models that may prove useful for future
distance computations (e.g., Slater 2013; Guerrero and
Hahn 2018; Mendes et al. 2018; Puttick 2018). From
this perspective, the distances discussed in this study
provide a flexible foundation for incorporating new
models and novel phylogenetic distances. As a practical
consideration, we also note that the computational
complexity of computing probabilistic distances may
be higher than more traditional approaches that
only consider topologies and/or branch lengths alone
(Supplementary Fig. S5 available on Dryad). Collectively,
we have shown a number of insightful uses of this

approach for contrasting phylogeny-aware models with
one another and believe that our distance framework
advances the toolkit for future studies seeking to
understand the evolutionary history of organisms and
their traits.

SOFTWARE AVAILABILITY

The R package PRDATR (PRobabilistic Distances
under models of Adaptive Trait evolution in R) was
written in R v3.6.1 and is available on Github at:
github.com/radamsRHA/PRDATR PRDATR includes
a number of functions for computing probabilistic
model distances for bifurcating trees, hybridization
networks, and an array of continuous trait models,
and it also provides scripts for replicating experiments
demonstrated in this study.
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