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Abstract

In competitive settings, firms locate their facilities according to customers’ behavior to maxi-

mize their market share. A common behavior is consuming from different motivations: one

is for convenient demand, and the other is for quality demand. In this behavioral pattern,

consumers patronize facilities within convenience for some demands, and patronize high

quality facilities beyond convenience range for other demands. This behavior has never

been included in competitive facility location problems. Given several other companies’ facil-

ities in the market offering similar products or services, we study how a new entrant com-

pany can locate facilities based on this customer behavior to maximize its market share. A

two-level robust model for the new entrant company is proposed to locate its facilities by tak-

ing into account the uncertainty of the types of customers’ demands. For medium size prob-

lems, we propose an equivalent mixed binary linear programming to obtain exact solutions.

For large size problems, an exact algorithm (GCKP-A) for solving the inner-level model is

given first by exploring the optimal solution. Then a heuristic algorithm is proposed by

imbedding (GCKP-A) and 2-opt strategy into the framework of the improved ranking-based

algorithm. The performance of the proposed heuristic algorithm is checked for different size

problems. The sensitivity analysis of a quasi-real example shows that: (1) in most cases, the

uncertainty between two types of demands does not affect the location scheme; (2) the con-

venience range, the quality range and the quality threshold play an important role in the mar-

ket share of the new entrant company.

1 Introduction

Market competition inevitably exists in most business environments. With proper regulation,

market competition can promote econmic develpoment and technological progress, and pro-

vide better services to customers. The competitive facility location problem (CFLP) refers to

determining the location of new facilities in a competitive market to maximize the available

market share [1, 2]. CFLP arises in a wide variety of applications including locating school,

preventive health care facilities, chain stores, park-and-ride facilities, charging stations for elec-

tric vehicles, etc. Due to the practicality of CFLP in determining the location of commercial

facilities, many models have been proposed to describe various attributes of CFLP from
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different aspects, such as customer choice behavior, strategic space, competitive environment,

etc [3].

Customer choice behavior refers to the behavior pattern of customers patronizing differ-

ent facilities that provide similar products or services. Given facilities that can offer similar

products or services, customer behavior plays an important role in estimating the market

share that each facility can obtain. The binary rule and the proportional rule are the two

most common rules used to describe customer choice behavior in the literature [4]. The

binary rule assumes that customers always visit the most attractive facilities, it can be traced

back to Hotelling’s linear market duopoly model [5]. The proportional rule was first pro-

posed by Huff [6], which assumes that customers distribute their purchasing power among

all facilities in proportion to the attractiveness of the facility. From the perspective of utilities

that customers received from facilities, both the binary rule and the proportional rules are

forms of behavior determined by utilities. Due to the diverse behaviors of customers in

choosing facilities in reality, scholars have proposed a variety of choice rules to describe dif-

ferent customer behaviors.

A common behavior is consuming from different motivations: one is for convenient

demand, and the other is for quality demand. In this behavioral pattern, consumers patronize

facilities within convenience for some demands, and patronize high quality facilities beyond

convenience range for other demands. For example, people usually go to some nearby places

for entertainment on weekends, and for some places with higher attractiveness, such as Dis-

neyland, even if the distance is far, people still choose the right time to visit. This phenomenon

shows that there are two types of customer demands: one is for convenience and the other is

for quality. In addition, through market research, companies can obtain the value range of the

proportion of convenience-type (or quality-type) demands in all customer demands, but it is

difficult to obtain the specific value of this proportion in each customer. These are the two

motivations of this article: (1) Propose a new rule describing this kind of customer behavior;

(2) Study the applicability of robust optimization method in dealing with uncertain demand

types. To deal with the first motivation, we considered two different radii, the smaller one is

for convenience-type demands, and the larger one is for quality-type demands. We use a

threshold to distinguish whether a facility is of high quality or not. Aiming at the second moti-

vation, a two-layer robust model is proposed, in which the inner-layer model is used to solve

the impact of uncertain demand types on market share. Applying duality theory to the inner-

layer model, after proper linearization, the two-layer robust model can be transformed into a

mixed integer linear programming. Therefore, small and medium problems can be solved

directly by optimization software. For large-scale problems, we first prove a theorem for the

optimal solution of the generalized continuous Knapsack problem. Then we propose an exact

algorithm (GCKP-A) to solve the inner-layer model. Then a heuristic algorithm is proposed

by embedding (GCKP-A) and 2-opt strategy into the framework of the improved ranking-

based algorithm. The performance of the proposed heuristic algorithm is checked on 40

benchmark instances. The sensitivity analysis results of a quasi-real example show the impact

of different parameters on the location of competitive facilities.

The paper is structured as follows. Section 2 presents a brief literature review of competitive

facility location problems. Section 3 proposes a new customer choice rule to describe the cus-

tomer behavior presented in section 1. Section 4 establishes the robust competitive facility

location model. Section 5 gives the exact algorithm for the inner-layer problem, and proposes

a heuristic algorithm by embedding the inner algorithm into the framework of the ranking-

based procedure. Section 6 reports the computational results comparing the performance of

our approach with other approaches in the literature. Finally, Section 7 concludes.
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2 Literature review

Depending on how competitors respond to each other’s decisions, the main research streams

in the competitive facility location problems can be divided into three categories [7]:

(1) Static competition: In this case, a new firm enters a market and provides similar prod-

ucts or services as existing competitors. The basic assumption is the rivals take no action

against the newcomer. For example, Drezner et al. [8] extended the proportional rule by

assuming randomly distributed facility attractiveness, they proposed two effective methods to

solve the competitive facility location problem to analyze “effective” attractiveness. Fernández

et al. [9] studied a variant of the proportional rule, assuming that customers only patronize

those facilities that they find attractive to be greater than or equal to a threshold. Marianov

et al. [10] introduced the customer choice behavior called comparison-shopping in competi-

tive facility location problem. Comparison-shopping means that customers visit multiple

stores selling different products, make comparisons before making a purchase decision. By

assuming the utility of a customer consists of two parts: a measurable utility value and its non-

observable part, Ljubić and Moreno [11] adopted the multinomial logit model to estimate the

captured customer demands and proposed a method to solve the model by combining two

types of cutting planes. Ahmadi and Ghezavati [12] used two sustainablility measures, flexibil-

ity and productivity, to develop an attractiveness function for each facility. They proposed a

chance constraint to control the dissatisfactiion in the waiting time for services according to

the Jackson Markov network. Mahmoodjanloo et al. [13] studies the multimodal competitive

hub location pricing problem for a new company planning to enter a market where an existing

competitor operates its hub-and-spoke network. They propose a scatter search algorithm

based on a nested approach to solve the model. Mai and Lodi [14] investigated the maximum

capture facility location problem by assuming that customers choose facilities according to

random utilities. Taking advantage of the convexity and separable structure of the objective

function, they proposed an enhanced outer approximation algorithm. Aboolian et al. [15]

developed a generalized framework of the competitive facility location and design problem,

this generalized facility locatoin and design problem include many classic location models as

special cases. Fernández et al. [16] used a Pareto-Huff customer choice rule in the competitive

facility location problem, and proposed a heuristic procedure to obtain the best approximate

solutions.

(2) Dynamic competition: This type of competition is characterized by the assumption that

competitors can respond to new entrants. In general, the strategic decisions of competitors are

different to change due to high costs, and usually only the operational strategies of competitors

are considered. Dynamic competition is often modeled as a Nash equilibrium problem, which

is solved using differential systems. For example, Fahimi et al. [17] considered the competitive

supply chain network design problem in which two competitors enter the market at the same

time. They derived the equilibrium condition and established the finite-dimensional varia-

tional inequality formulation, then proposed an algorithm to solve the problem. Zhou et al.

[18] proposed a game-theoretical model to study the price competition between two recyclers

of electrical and electronic equipment waste. Cai et al. [19] studied the price and warranty

competition between two risk-averse retailers by assuming that the retailers’ risk-aversion lev-

els are private information. Shalouhi et al. [20] studied Nash and Stackelberg models of com-

petition problems in two pharmaceutical supply chains in which both exclusive retailer and

manufacturer are included. Sazvar et al. [21] developed a scenario-based multi-objective pro-

gramming model to design a sustainable closed-loop pharmaceutical supply chain, which

simultaneously considers competitive market and demand uncertainties. Yu and Khan [22]

employed stochastic programming and fuzzy mathematical programming to establish a multi-
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objective uncertain equilibrium model for the green supply chain network, and they integrated

several different methods to solve the model.

(3) Competition with foresight: The newcomer makes logical decisions by forecasting the

possible reactions of the competitor after its entry. Qi et al. [23] considered a variant of the

proportional rule that customers only patronize facilities within a range they feel is convenient.

They proposed a hybrid tabu search algorithm to solve the corresponding competitive facility

location problem. Yu [24] studied the leader-follower competitive facility location problem

with the partially proportional rule, this rule assumes that a customer chooses the most attrac-

tive firm at first then patronizes all facilities of this firm according to proportional rule. Santos-

Peñate et al. [25] considered the competitive facility location problem with the binary and S-

shaped customer choice rule, they proposed a matheuristic procedure combining the kernal

search algorithm with linear programming for the follower problem. Saha et al. [26] used a

multinomial logit model to represent customers’ preferences, and proposed a non-linear inte-

gar programming model for the joint facility location and inventory problem with partial-dis-

ruption risk. Yu and Khan [27] built an evolutionary game model based on the relationship

between agricultural product suppliers and urban residents in the financing system. Lin et al.

[28] investigates a bilevel competitive facility location problem to maximize expected reveue

by considering a discrete choice rule. Latifi et al. [29] studied the leader-follower competitive

facility location problem in a closed-loop supply chain, where customer behavior is the Huff

gravity-based rule. By replacing the inner level program with its corresponding Karush-Kuhn-

Tucker conditions, they proposed an improved branch-and-refine algorithm to solve this

problem.

The above literatures mentioned above combine different customer choice rules to deter-

mine the market share a facility can obtain, but none of the rules are suitable for describing the

customer behavior described in the introductin of this paper. Therefore, in order to better

describe this kind of customer behavior, we need to propose a new customer choice rule, and

then study the competitive facility location problem on this basis, so as to provide a useful ref-

erence for decision makers.

3 New customer choice rule

In this paper, we assume that every customer has two different types of demands. One is the

convenience-type demands, which requires the facilities that meet this type of demand are

within the convenience range of customers. The other is the quality-type demands, which

requires the facilities that meet this type of demand to have sufficient quality and its range is

larger than the convenience range. That is, we consider two patronizing radii, a smaller radius

(Rc) for convenience-type demands and a larger radius (Rq) for quality-type demands. The lat-

ter can only be used for facilities whose quality exceeds a given threshold (δ). From the per-

spective of customer, the patronage pattern of customers is shown in Fig 1.

It can be seen from Fig 1 that customers only patronize facilities within the range of Rc to

meet their convenience-type demands. On the other hand, in order to meet their quality-type

demands, customers patronize facilities whose quality exceeds the quality threshold δ and falls

within the range of Rq, where Rq> Rc. Note that, no matter the demands are convenience-type

or quality-type, the customer behavior follows the proportional rule, in other words, his

demands are split by these facilities that satisfy corresponding conditions. If a customer

exceeds the Rc range of all facilities, his convenience-type demands cannot be met. Similarly, if

a customer exceeds the Rq range of all facilities whose quality exceeds δ, his quality-type

demands cannot be met. From the perspective of facility, the patronage pattern of customers is

shown in Fig 2. It can be seen from Fig 2 that for a facility whose quality exceeds the threshold
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δ, it can meet all types of demands within the range of Rc. In addition, it can also meet the qual-

ity-type demands between the range of Rc and Rq. However, for a facility whose quality is

lower than the threshold δ, it can only meet the convenience-type demands within the range of

Rc.

4 Robust competitive facility location model

4.1 The original two-layer model

An entering company hopes to compete for market share of a region by opening several new

facilities, and other companies have already established similar facilities. Assumed that the

demands of each customer can be divided into two types: the convenience-type demands and

the quality-type demands. The total demands of each customer are fixed and known. Through

preliminary market research, companies can obtain the value range of the proportion of con-

venience-type (or quality-type) demands in all customer demands, but it is difficult to obtain

the specific value of this proportion in each customer. Due to a limited budget, the new com-

pany needs to determine the location of all new facilities from a set of potential locations in

order to obtain the largest market share.

The following notations are used:

I: Set of demand points (customers), indexed by i;

JE: Set of locations that have established facilities, indexed by j;

JN: Set of potential locations for new facilities, indexed by j;

Fig 1. Patronage pattern from the perspective of customer.

https://doi.org/10.1371/journal.pone.0273123.g001
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J: Union of set JE and set JN, i.e., J = JE
S

JN;

Qj: Quality of facility at point j, j 2 J;

δ: The quality threshold of facilities for quality-type demands;

Rc: The patronage range of customers for convenience-type demands;

Rq: The patronage range of customers for quality-type demands;

aC
ij : The attractiveness of facility j to the convenience-type demands of customer i;

aQ
ij : The attractiveness of facility j to the quality-type demands of customer i;

wC
i : The convenience-type demands of customer i 2 I;

wQ
i : The quality-type demands of customer i 2 I;

wi: The total demands of customer i, that is, wi ¼ wC
i þ wQ

i ; i 2 I;

W: The total demands of all customers, W ¼
P

i2I
wi;

γ1: The lower bound of the proportion of wC
i in the total demands W, i.e. 0 � g1 �

P

i2I
wi=W;

γ2: The upper bound of the proportion of wC
i in the total demands W, i.e.

P

i2I
wi=W � g2 � 1;

fj: The fixed cost of establishing a facility in the potential location j 2 JN;

dij: The distance between the customer i and the facility j;

Fig 2. Patronage pattern from the perspective of facility.

https://doi.org/10.1371/journal.pone.0273123.g002
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G: Total budget for the new entering company to build facilities;

yj, j 2 JN: Binary variable, if the potential location j is selected to build a facility, then yj = 1, oth-

erwise yj = 0.

From the definition of the convenience-type demands and the quality-type demands, we

can define the attractiveness of facility j to the convenience-type (and quality-type) demands

of customer i as follows:

aC
ij ¼

Qj

1þ d2
ij

; if dij � Rc

0; otherwise

8
>><

>>:

ð1Þ

aQ
ij ¼

Qj

1þ d2
ij

; if dij � Rq and Qj � d

0; otherwise

8
>><

>>:

ð2Þ

The goal of the new entrant is to maximize market share by setting new facilities in the

competitive market under the given budget. Therefore, the competitive facility location prob-

lem of the new entering company can be established as the following two-layer programming

model:

ZR ¼ maxPðyÞ

ðOMÞ s:t:

X

j2JN

fjyj � G

yj 2 f0; 1g; 8j 2 JN

8
><

>:

Here the outer-layer model (OM) is used to determine the location of new facilities with a

limited budget in order to maximize the market share of the new entrant. According to the

previous assumptions, we know that the proportion of
P

i2I
wC

i =W is uncertain within the inter-

val [γ1, γ2]. Therefore, the following inner-layer model (IM) can be used to deal with the

uncertainty of convenience-type demands and quality-type demands of each customer:

PðyÞ ¼ min
X

i2I

wixi

X

j2JN

aC
ij yj

X

j2JE

aC
ij þ

X

j2JN

aC
ij yj

þ wið1 � xiÞ

X

j2JN

aQ
ij yj

X

j2JE

aQ
ij þ

X

j2JN

aQ
ij yj

2

6
6
4

3

7
7
5

ðIMÞ s:t:
g1 �

X

i2I

wixi=W � g2

0 � xi � 1; i 2 I:

8
><

>:

Here xi represents the ratio of convenience-type demands wC
i to total demands wi of cus-

tomer i, i.e. xi ¼ wC
i =wi. And

P

j2JN

aC
ij yj=

P

j2JE

aC
ij þ

P

j2JN

aC
ij yj

 !

represents the convenience-type

demands captured by the new entrant from customer i.
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4.2 Linearization of the original model

For brevity, let hC
i ðyÞ :¼

P

j2JN

aC
ij yj

P

j2JE

aC
ijþ
P

j2JN

aC
ij yj
; hQ

i ðyÞ :¼

P

j2JN

aQ
ij yj

P

j2JE

aQ
ijþ
P

j2JN

aQ
ij yj

, then (IM) is equivalent to:

PðyÞ ¼
X

i2I

wih
Q
i ðyÞ þmin

X

i2I

wixi½h
C
i ðyÞ � hQ

i ðyÞ� ð3Þ

s:t:

X

i2I

wixi � g1W ð4aÞ

�
X

i2I

wixi � � g2W ð4bÞ

� xi � � 1; i 2 I ð4cÞ

xi � 0; i 2 I: ð4dÞ

8
>>>>>>>><

>>>>>>>>:

Suppose the dual variables of constraints (4a–4c) are u1, u2, and vi, repectively. Then the

dual problem of the minimization part of P(y) is as follows:

max ðg1WÞu1 � ðg2WÞu2 �
X

i2I

vi ð5Þ

s:t:
wiðu1 � u2Þ � vi � wiðhC

i ðyÞ � hQ
i ðyÞÞ; 8i 2 I ð6aÞ

u1; u2 � 0; vi � 0; 8i 2 I ð6bÞ

(

Therefore, the original two-layer model can be rewritten as a single-layer model as follows:

ZR ¼ max
X

i2I

wih
Q
i ðyÞ þ ðg1WÞu1 � ðg2WÞu2 �

X

i2I

vi ð7Þ

s:t:

X

j2JN

fjyj � G ð8aÞ

wiðu1 � u2Þ � vi � wiðhC
i ðyÞ � hQ

i ðyÞÞ; 8i 2 I ð8bÞ

u1; u2 � 0; vi � 0;8i 2 I ð8cÞ

yj 2 f0; 1g; 8j 2 JN ð8dÞ

8
>>>>>><

>>>>>>:

Since hC
i ðyÞ and hQ

i ðyÞ are nonlinear with respect to yj, the above model is difficult to solve.

Therefore, we linearize these two expressions by introducing two new decision variables

aC
i ; a

Q
i , let aC

i ¼ hC
i ðyÞ; a

Q
i ¼ hQ

i ðyÞ.

aC
i ¼

X

j2JN

aC
ij yj

X

j2JE

aC
ij þ

X

j2JN

aC
ij yj

; aQ
i ¼

X

j2JN

aQ
ij yj

X

j2JE

aQ
ij þ

X

j2JN

aQ
ij yj

ð9Þ
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From Eq (9), it can be seen that if
P

j2JN

aC
ij yj ¼ 0 ðor

P

j2JN

aQ
ij yj ¼ 0Þ, then aC

i ¼ 0 ðor aQ
i ¼ 0Þ,

otherwise there are

ð
X

j2JE

aC
ijÞa

C
i þ ð

X

j2JN

aC
ij yjÞa

C
i ¼

X

j2JN

aC
ij yj ð10Þ

ð
X

j2JE

aQ
ij Þa

Q
i þ ð

X

j2JN

aQ
ij yjÞa

Q
i ¼

X

j2JN

aQ
ij yj ð11Þ

Now introduce two other decision variables b
C
ij ; b

Q
ij ; i 2 I; j 2 JN , let

b
C
ij ¼ a

C
i yj; b

Q
ij ¼ a

Q
i yj ð12Þ

Since yj is a binary variable, if yj = 0 there are b
C
ij ¼ 0 and b

Q
ij ¼ 0, otherwise there are b

C
ij ¼

aC
i and b

Q
ij ¼ a

Q
i .

Therefore, the original model can be linearizing as follows:

ZR ¼ max
X

i2I

wia
Q
i þ ðg1WÞu1 � ðg2WÞu2 �

X

i2I

vi ð13Þ

ðLMÞ s:t:

X

j2JN

fjyj � G ð14aÞ

wiðu1 � u2Þ � vi � wiða
C
i � a

Q
i Þ; 8i 2 I ð14bÞ

ð
X

j2JE

aC
ij Þa

C
i þ

X

j2JN

aC
ijb

C
ij ¼

X

j2JN

aC
ij yj; 8i 2 I ð14cÞ

ð
X

j2JE

aQ
ij Þa

Q
i þ

X

j2JN

aQ
ijb

Q
ij ¼

X

j2JN

aQ
ij yj; 8i 2 I ð14dÞ

aC
i � M

X

j2JN

aC
ij yj; 8i 2 I ð14eÞ

aQ
i � M

X

j2JN

aQ
ij yj; 8i 2 I ð14fÞ

0 � aC
i � b

C
ij � ð1 � yjÞ; 8i 2 I; j 2 JN ð14gÞ

0 � aQ
i � b

Q
ij � ð1 � yjÞ; 8i 2 I; j 2 JN ð14hÞ

b
C
ij � yj; 8i 2 I; j 2 JN ð14iÞ

b
Q
ij � yj; 8i 2 I; j 2 JN ð14jÞ

u1; u2 � 0; vi; a
C
i ; a

Q
i ; b

C
ij ; b

Q
ij � 0; 8i 2 I; j 2 JN ð14kÞ

yj 2 f0; 1g; 8j 2 JN ð14lÞ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Here M is a sufficiently large positive number. Constraint (14a) indicates that the total cost

of all facilities does not exceed the budget. (14b) are the dual constraints on variables xi in (4d).

Constraints (14c–14f) guarantee that Eq (9) holds, and constraints (14g–14j) ensure that Eq

(12) is true. Since this linearization model (LM) is a mixed binary linear programming, any

commercial optimization software (such as Gurobi, Cplex, etc.) can solve medium-scale

problems.
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5 Ranking-based imbedding algorithm

For large-scale problems, current commercial optimization software cannot solve them well.

Therefore, this section designs a ranking-based heuristic algorithm to solve large-scale

problems.

Let pi :¼ wi½h
Q
i ðyÞ � hC

i ðyÞ� and λ1 ≔ γ1W, λ2 ≔ γ2W, the minimization part of P(y) is actu-

ally a generalized continuous knapsack problem (GCKP).

max
Xn

i¼1

pixi

ðGCKPÞ s:t:
l1 �

Xn

i¼1

wixi � l2

0 � xi � 1; i ¼ 1; 2; � � � ; n:

8
>><

>>:

where wi> 0, i = 1, 2, . . ., n and 0 � l1 < l2 �
Pn

i¼1

wi. Please note that we call the problem

(GCKP) ‘general’ not only it has upper and lower bounds, but also because the profit pi may be

negative. When the item
Pn

i¼1

wixi has only an upper bound and all profits pi, i = 1, 2, . . ., n are

non-negative, this problem is a continuous knapsack problem [30].

Reorder the index i so that the sorted index ki(i = 1, 2, . . ., n) satisfies:

pk1

wk1

�
pk2

wk2

� � � � �
pks

wks

� 0 >
pksþ1

wksþ1

� � � � �
pkn

wkn

: ð15Þ

The optimal solution of (GCKP) can be determined by the following theorem.

Theorem. In addition to the key item s defined in (15), the other two key items s1 and s2 are

defined as follows:

s1 ¼ max j :
Xj

i¼1

wki
� l1

( )

; s2 ¼ min j :
Xj

i¼1

wki
> l2

( )

: ð16Þ

Then the optimal solution x� of (GCKP) is

(Case 1) If s< s1, then

x�ki ¼

1; i ¼ 1; 2; � � � ; s1 � 1

ðl1 �
Xs1 � 1

i¼1

wki
Þ=wks1

; i ¼ s1

0; i ¼ s1 þ 1; � � � ; n

8
>>>>>><

>>>>>>:

ð17Þ

(Case 2) If s1� s< s2, then

x�ki ¼
1; i ¼ 1; 2; � � � ; s

0; i ¼ sþ 1; � � � ; n

(

ð18Þ
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(Case 3) If s� s2, then

x�ki ¼

1; i ¼ 1; 2; � � � ; s2 � 1

ðl2 �
Xs2 � 1

i¼1

wki
Þ=wks2

; i ¼ s2

0; i ¼ s2 þ 1; � � � ; n

8
>>>>>><

>>>>>>:

ð19Þ

Proof: (Case 1) If s< s1, there is 0 >
pks1
wks1
� � � � �

pkn
wkn

. Then for any feasible solution x that

satisfies l1 �
Pn

i¼1

wixi � l2 and 0� xi� 1, i = 1, 2, . . ., n. We have

Xn

i¼1

pki
xki
¼
Xs1 � 1

i¼1

pki
xki
þ
Xn

i¼s1

pki

wki

ðwki
xki
Þ �

Xs1 � 1

i¼1

pki
xki
þ

pks1

wks1

Xn

i¼s1

wki
xki

�
Xs1 � 1

i¼1

pki
xki
þ

pks1

wks1

ðl1 �
Xs1 � 1

i¼1

wki
xki
Þ ¼

pks1

wks1

l1 þ
Xs1 � 1

i¼1

ð
pki

wki

�
pks1

wks1

Þwki
xki

�
pks1

wks1

l1 þ
Xs1 � 1

i¼1

ð
pki

wki

�
pks1

wks1

Þwki
¼
Xs1 � 1

i¼1

pki
þ

pks1

wks1

ðl1 �
Xs1 � 1

i¼1

wki
Þ ¼

Xn

i¼1

pki
x�ki

The first inequality is due to
pki
wki
�

pks1
wks1

; 8i ¼ s1; . . . ; n. The second inequality is due to
pks1
wks1

<

0 and l1 �
Ps1 � 1

i¼1

wki
xki
�
Pn

i¼s1

wki
xki

. The third inequality is due to ð
pki
wki
�

pks1
wks1
Þwki

> 0;8i ¼

1; . . . ; s1 � 1 and xki
� 1. Therefore, x� in (17) is the optimal solution of (GCKP) when s< s1.

(Case 2) If s1� s< s2, the result is obvious.

(Case 3) It can be proved in a similar way to Case 1.

This theorem is proved by us and is not quoted from any other papers, it is a generalization

of the optimal solution theorem for the continuous knapsack problem in [30]. The form of this

optimal solution is not very intuitive, but the result obtained after combining wki
becomes very

intuitive.

Xn

i¼1

wki
x�ki ¼

l1;
Xs

i¼1

wki
< l1

Xs

i¼1

wki
; l1 �

Xs

i¼1

wki
� l2

l2;
Xs

i¼1

wki
> l2

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð20Þ

According to the result of Eq (20) and the non-increment of xki
, we propose the iterative

algorithm for solving the (GCKP) as follows:

GCKP-A:

Step 1: Let J1≔fj : pj >¼ 0g; J2≔fj : pj < 0g; �W≔
P

j2J1

wj. Set x�j≔1 for j 2 J1 and x�j≔0 for

j 2 J2.
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Step 2: While �W < l1:

Find the index j0 such that
pj0

wj0
¼ max pj

wj
: j 2 J2

n o
.

If wj0 � l1 �
�W , then set x�j0≔1; �W≔ �W þ wj0 . Else set x�j0≔ðl1 �

�WÞ=wj0 ;
�W≔l1.

Update J2 ≔ J2\{j0}.
End while.

Step 3: While �W > l2:

Find the index j0 such that
pj0

wj0
¼ min pj

wj
: j 2 J1

n o
.

If wj0 �
�W � l2, then set x�j0≔0; �W≔ �W � wj0 . Else set x�j0≔1 � ð �W � l2Þ=wj0 ;

�W≔l2.

Update J1 ≔ J1\{j0}.
End while.

Step 4: Output the optimal solution x� and the objective value
Pn

j¼1

pjx�j .

We know that the inner-layer model (IM) can be accurately solved by (GCKP-A) for any

given location scheme of the new entering firm, so the remaining problem is to efficiently

solve the outer-layer model (OM). Fernández et al. [16] proposed a new rule: Pareto-Huff cus-

tomer choice rule, and used the ranking-based heuristic strategy (RDOA) to solve the corre-

sponding competitive facility location problem. By setting a different rank rule, we [31]

proposed an improved ranking-based algorithm for the competitive facility location problem.

Compared with other heuristic algorithms (such as genetic algorithm, simulated annealing

algorithm, ant colony algorithm, etc.), the ranking-based heuristic algorithm performs very

well on the facility location problem. Therefore, by embedding (GCKP-A) and the 2-opt strat-

egy, we proposed a ranking-based embedding algorithm (REA) to solve the model of this

paper. The flowchart of the algorithm (REA) is shown in Fig 3.

Ranking-based Embedding Algorithm (REA)

Step 1. (Initialization of the algorithm):

Input parameters of the model, set the iterate number L and set initial ranking scores rj≔

Fig 3. Flowchart of the algorithm (REA).

https://doi.org/10.1371/journal.pone.0273123.g003
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1, 8j 2 JN, set λC≔ (λ1+ λ2)/2. Randomly choose y� such that
P

j2JN

fjy�j � G, calculate P(y�)

by (GCKP-A). Let k≔ 0 and set Z�R≔Pðy�Þ.

Step 2. (Ranking-based algorithm embedding (GCKP-A)):

While k< L:

Step 2.1 (Generate a solution y according to the ranking-based rule)

Let yj≔ 0, 8j 2 JN, calculate the probability pj of each candidate location j 2 JN:

pj≔
AjrjX

j2JN

Ajrj
; 8j 2 JN ;whereAj ¼ lC

X

i2I

aC
ij þ ð1 � lCÞ

X

i2I

aQ
ij

Repeat the roulette-wheel selection process to set yj≔ 1 until
P

j2JN

fjyj > G.

Step 2.2 (Use 2-opt strategy to update the ranking scores)

Randomly choose j0 2 Y1 ≔ {j 2 JN|yj = 1}. Let

F0≔ k 2 ðJN n Y1Þjfk � G �
P

j2JN

fjyj þ fj0

( )

.

For each�j 2 F0:
Let ~y≔y. Set ~yj0≔0; ~y�j≔1, calculate P(y) and Pð~yÞ by (GCKP-A).

If PðyÞ > Pð~yÞ:
Set rj≔rj þ yj � 2; rj≔rj � ~yj; Update y�≔y;Z�R≔PðyÞ when PðyÞ > Z�R;

Else:

Set rj≔rj þ ~yj � 2; rj≔rj � yj; Update y�≔~y;Z�R≔Pð~yÞ when Pð~yÞ > Z�R.

Update rj≔ rj + 1, 8j 2 JN if any rj = 0.

End for.

k≔ k+ 1.

End while

Step 3. Algorithm termination. Output the optimal solution y� and the maximal market share

Z�R.

In (REA), we embed (GCKP-A) to solve the inner-layer problem and use the 2-opt strategy

to update the ranking score. Because (GCKP-A) is much faster than using other linear pro-

gramming algorithms to solve the inner-layer problem, it can improve the computational effi-

ciency of (REA). The 2-opt strategy can make the ranking results more comparable, so as to

obtain a better combination of facility locations.

6 Computational experiments

6.1 Results for benchmark problems

By comparing the performance of our algorithm (REA) with the algorithm (RDOA-D) [16]

on 40 benchmark problems (pmed1�pmed40) [32], this subsection demonstrates the effec-

tiveness of (REA). Note that computational experiments in [16] prove that the algorithm

(RDOA-D) is superior to the algorithm (RDOA) and the genetic algorithm (GA) for all param-

eters of the tested problem, so we only compare the performance of algorithm (REA) and algo-

rithm (RDOA-D). The number of nodes in these benchmark instances ranges from 100 to

900. The distance dij between the pair of points i and j is the Euclidean distance. All experi-

ments are performed in a MATLAB environment on a laptop computer with Intel(R) Core

(TM) i7–1065G7 @1.30 GHz CPU, and 16.00 GB of RAM.
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First, for generalized continuous knapsack problems of different scales, we compare the

efficiency of the algorithm (GCKP-A, A1 in Table 1) with the algorithm used for linear pro-

gramming algorithm in Gurobi 9.1.1 (Linear-A, A2 in Table 1). For each example, the parame-

ters pj and wj are randomly generated from intervals [−100, 100] and [10, 100], respectively.

The optimal solutions obtained by the two algorithms are the same, and the CPU times used

are shown in Table 1. It can be seen from Table 1 that the average CPU time used by (Linear-

A) is more than 640 times that of (GCKP-A), so the calculation efficiency of (GCKP-A) is sig-

nificantly higher than (Linear-A) of Gurobi. Therefore, using (GCKP-A) in (REA) instead of

linear algorithm of Gurobi can greatly improve the efficiency of the algorithm (REA).

Next, we test the optimality of the algorithm (REA) and compare the performance of Simu-

lated Annealing Algorithm (SA). For the first 5 benchmark examples (pmed1�pmed5), we

compare the results obtained by (REA) with the exact results (Market Share (MS)) obtained by

solving the linearized model (LM). In each example, suppose that the first 10 locations are

occupied by existing facilities, and the next |JN| locations are candidate facility locations for the

new entrant. The quality Qj of facility j is randomly generated as an integer number in [10,

100]. The customer demands of node i set to be wi = 100/i and the fixed cost fj of opening a

new facility at candidate node j randomly generated as an integer number in [200, 500]. Other

parameters are as follows: Rc = 60, Rq = 100, δ = 80, γ1 = 0.4, γ2 = 0.6, G = 2000. For each exam-

ple, (REA) and (SA) were run 20 times, and the results are listed in Table 2. The Gap is defined

as follows: Gap ¼ MS� Mean
MS � 100%. From Table 2, we can find that the maximum gap between

the average market share obtained from the algorithm (REA) and the exact result is no more

than 0.35%. This verifies the optimality of the proposed algorithm (REA). On the other hand,

Table 1. Comparison of algorithm efficiency for solving (GCKP) (time unit: Second).

n = 100 n = 200 n = 300 n = 400 n = 500 n = 600 n = 700 n = 800 n = 900 n = 1000 Mean

A1 0.0003 0.0003 0.0004 0.0002 0.0002 0.0002 0.0002 0.0004 0.0005 0.0005 0.00032

A2 0.1762 0.1899 0.1894 0.1859 0.1826 0.1925 0.1809 0.1857 0.2979 0.2896 0.2071

https://doi.org/10.1371/journal.pone.0273123.t001

Table 2. Optimality of the algorithm (REA).

Exact (REA) (SA)

No. |JN| MS Max. Min. Mean Gap Max. Min. Mean Gap

#1 30 86.0944 86.0944 86.0944 86.0944 0% 86.0944 85.0634 85.8367 0.3%

40 100.1909 100.1909 100.1909 100.1909 0% 100.1909 97.3497 99.8464 0.34%

50 101.5025 101.5025 101.5025 101.5025 0% 101.5025 96.1879 99.8296 1.65%

#2 30 102.9141 102.9141 102.9141 102.9141 0% 102.9141 102.8386 102.9028 0.01%

40 127.7107 127.7107 127.7107 127.7107 0% 127.7107 124.7100 126.6604 0.82%

50 129.9127 129.9126 127.2366 129.4630 0.35% 129.9126 124.7341 129.6025 0.24%

#3 30 88.6559 88.6559 88.6559 88.6559 0% 88.6559 85.9735 88.3029 0.40%

40 111.1247 111.1242 110.1094 111.0734 0.05% 111.1242 106.5701 110.8965 0.21%

50 101.6469 101.6469 100.2887 101.5790 0.07% 101.6469 94.1251 99.8916 1.73%

#4 30 118.1794 118.1794 118.0909 118.1219 0.05% 118.1794 118.0105 118.0612 0.10%

40 122.4177 122.4177 122.4177 122.4177 0% 122.4177 120.7804 122.2540 0.13%

50 70.3602 70.3602 70.3602 70.3602 0% 70.3602 63.7387 69.7246 0.90%

#5 30 80.3325 80.3325 80.3325 80.3325 0% 80.3325 79.5055 80.2085 0.15%

40 104.0804 104.0804 104.0804 104.0804 0% 104.0804 99.9589 103.8743 0.20%

50 82.1296 82.1296 80.8194 82.0641 0.08% 82.1296 77.8385 81.7646 0.44%

https://doi.org/10.1371/journal.pone.0273123.t002
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the Gap of the Simulated Annealing Algorithm is larger than the Gap of (REA) for almost

every example. Therefore, we can conclude that the performance of (REA) is better than (SA).

Finally, we compared the performance of the algorithm (REA) with the algorithm

(RDOA-D) using 40 benchmark instances. Similarly, assuming that in each example, the first

10 locations are occupied by existing facilities, the next |JN| locations are candidate facility loca-

tions for the new entrant. Except for the parameters given in Table 3, all other parameters are

the same as those used in Table 2. We performed 20 calculations for each instance, and the

mean and standard deviation of the market shares obtained are shown in Table 3. The larger

mean and smaller standard deviation of the two algorithms are shown in bold.

It can be clearly seen from Table 3 that the algorithm (REA) is superior to the algorithm

RDOA-D in both the mean and standard deviation of the market share.

6.2 A quasi-real example

In order to investigate the effects of different parameters in the presented competitive facility

location model. This subsection discusses a quasi-real example based on the 49-nodes data set

described in Daskin [33]. This data set consists of the capitals of the continental United States

and Washington, DC.

The customer demands di is proportional to the population of the state (i) in 1990. The

opening cost fj of the potential facility location j 2 JN also comes from Daskin’s data set. In this

example, we generated a set of random numbers within [10, 120] to represent the facility qual-

ity Qj at each point j 2 J. Now, there are 5 facilities located in the states of California, Kentucky,

New York, Texas, and Wyoming, respectively. The qualities of these 5 facilities are 106, 98,

107, 45, and 106 respectively. To avoid being too close, we multiply the Euclidean distance

Table 3. Performance comparison of (REA) and (RDOA-D).

h#:G, |I|, |JN|i (REA) (RDOA-D) h#:G, |I|, |JN|i (REA) (RDOA-D)

Mean Std. Mean Std. Mean Std. Mean Std.

1:2000,100,60 93.966 0.185 93.391 0.676 21:3000,500,60 231.714 0.231 229.980 1.769

2:2000,100,60 118.544 0.119 118.513 0.077 22:3000,500,60 303.405 0.131 303.088 0.416

3:2000,100,60 104.674 1.304 104.845 1.180 23:3000,500,60 330.032 0.000 329.904 0.299

4:2000,100,60 104.694 0.178 103.128 2.418 24:3000,500,60 275.718 0.000 275.592 0.163

5:2000,100,60 144.267 2.530 141.658 2.801 25:3000,500,60 334.615 0.537 333.547 0.816

6:2000,200,80 151.319 0.520 150.159 0.737 26:3000,600,80 276.799 0.000 276.541 0.557

7:2000,200,80 179.535 1.470 180.449 0.783 27:3000,600,80 332.570 0.000 331.917 0.630

8:2000,200,80 234.200 0.000 234.200 0.000 28:3000,600,80 318.632 0.000 318.462 0.225

9:2000,200,80 153.915 0.906 150.949 1.941 29:3000,600,80 301.130 0.360 300.459 0.443

10:2000,200,80 225.614 0.000 224.554 1.367 30:3000,600,80 315.423 0.798 314.436 1.294

11:2500,300,80 239.610 0.529 237.713 1.160 31:3500,700,80 295.503 0.000 294.107 1.279

12:2500,300,80 247.627 0.000 247.512 0.182 32:3500,700,80 305.194 0.161 303.251 0.912

13:2500,300,80 206.564 0.105 206.491 0.172 33:3500,700,80 320.562 0.000 319.979 0.506

14:2500,300,80 252.478 0.107 252.074 0.719 34:3500,700,80 383.017 0.107 382.329 0.500

15:2500,300,80 232.803 0.638 232.243 1.182 35:3500,800,80 348.047 0.000 347.483 0.499

16:2500,400,100 288.557 0.134 288.621 0.000 36:3500,800,100 339.951 0.584 336.575 1.323

17:2500,400,100 230.678 1.144 229.300 1.023 37:3500,800,100 349.700 0.279 347.553 1.144

18:2500,400,100 302.579 0.570 301.718 0.579 38:3500,900,100 337.952 0.874 335.746 0.788

19:2500,400,100 314.042 0.000 311.155 2.262 39:3500,900,100 334.147 0.278 332.247 0.892

20:2500,400,100 306.630 1.137 302.049 1.548 40:3500,900,100 389.986 0.681 387.673 0.420

https://doi.org/10.1371/journal.pone.0273123.t003
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between any two points by 10, and then round it to dij. Other parameters are defined as fol-

lows: G = 200000, δ = 100, Rc = 40, Rq = 80, γ1 = 0.4, γ2 = 0.6.

The best solution to the problem of the new entrant’s competitive facility location is to

open three facilities in Georgia, Indiana, and Missouri. The newly-entered company’s market

share from its three facilities is 7821.1. The locations of the new facilities and customers served

are shown in Table 4.

Let γ1 change from 0.1 to 0.9 with a step size of 0.1 to test the impact of γ1, γ2 on the location

scheme while maintaining γ2 > γ1. We found that when γ1� 0.8, no matter what value γ2

takes in [γ1, 1], the location scheme is exactly the same as that shown in Table 4. Only when γ1

� 0.9, the location scheme will be different. In this case, the new company will build three

facilities in Georgia, Indiana, and Pennsylvania. Table 5 shows the location scheme when γ1 =

0.9, γ2 = 1. The market share captured by the new entering firm is 8159.2, which is larger than

the previous market share 7821.1. This reflects that the reduced degree of uncertainty can

bring more market share to the new entrant.

In addition to γ1, γ2, there are other important parameters in the model such as G, Rq, Rc, δ,

etc. Now we analyze the influence of these parameters on the market share of the newly

entered company.

Firstly, we analyze the impact of Rq on market share. Set the budget G to 200000, 250000,

and 300000 respectively. For each value of G, let Rq change from 60 to 130 with a step of 10, we

can get a curve representing the change of market share with Rq. The three curves with differ-

ent budgets are shown in Fig 4.

It can be clearly seen from Fig 4 that for different budgets, with the increase of Rq, the mar-

ket share first increases and then decreases. Due to the increase in Rq, the number of demand

points that can be met by high-quality facilities increases, so the market share first increases

with the increase in Rq. With the further increase of Rq, the coverage of existing high-quality

facilities has also increased, leading to intensified competition among facilities, so the available

market share of the newly entered firm has begun to decline.

Secondly, we analyze the impact of Rc on market share. We still set the budget G to 200000,

250000, and 300000 respectively. Then change Rc from 10 to 70 in step size of 10. The relation-

ship curves between market share and Rc are shown in Fig 5.

It can be seen from Fig 5 that the market share increases with the increase of Rc. When Rc

changes from 10 to 20, the demand points covered by low-quality facilities are unchanged, so

Table 4. Location scheme of the new entrant (γ1 = 0.4, γ2 = 0.6).

Location Demand type Customers Served

Georgia Convenience Alabama, Florida, Georgia, South Carolina, Tennessee

Indiana Quality/

Convenience

Alabama, Arkansas, Georgia, Illinois, Indiana, Iowa, Kentucky, Michigan,

Missouri, Ohio, South Carolina, Tennessee, West Virginia, Wisconsia

Missouri Convenience Arkansas, Illinois, Iowa, Kansas, Missouri

https://doi.org/10.1371/journal.pone.0273123.t004

Table 5. Location scheme of the new entrant (γ1 = 0.9, γ2 = 1).

Location Demand type Customers Served

Georgia Convenience Alabama, Florida, Georgia, South Carolina, Tennessee

Indiana Quality/

Convenience

Alabama, Arkansas, Georgia, Illinois, Indiana, Iowa, Kentucky, Michigan,

Missouri, Ohio, South Carolina, Tennessee, West Virginia, Wisconsia

Pennsylvania Convenience Delaware, Maryland, New Jersey, New York, Pennsylvania, Virginia

https://doi.org/10.1371/journal.pone.0273123.t005
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Fig 4. The relationship between market share and Rq (Rc = 40, δ = 100, γ1 = 0.4, γ2 = 0.6).

https://doi.org/10.1371/journal.pone.0273123.g004

Fig 5. The relationship between market share and Rc (Rq = 80, δ = 100, γ1 = 0.4, γ2 = 0.6).

https://doi.org/10.1371/journal.pone.0273123.g005
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the market share remains the same. When Rc changes from 20 to 40, the demand points cov-

ered by low-quality facilities increase, so the market share increases significantly. When Rc fur-

ther increases, competition among low-quality facilities begins to emerge, and therefore, the

growth of market share slows down.

Thirdly, we analyze the impact of δ on market share. Let Rq = 80 and δ changes from 50 to

110 in step size of 10, for 7 different values of Rc, the relationship curves between market share

and δ are shown in Fig 6.

It can be seen from Fig 6 that when δ changes from 50 to 90, the market share decreases as δ
increases. This is because with the increase of δ, the number of facilities that meet the quality

requirements higher than δ gradually decreases. When δ changes from 90 to 100, the market

share increases as δ increases. This is due to the reduction in the number of existing facilities

that meet the quality higher than δ, resulting in less competition among high-quality facilities.

When δ changes from 100 to 110, the market share does not increase with the increase of δ.

This is because when the δ further increases, the number of facilities that meet the quality

requirements decreases significantly, so the market share that the new entrant can obtain

remains unchanged or slightly decreases. For any value of Rc, when δ = 90, the market share

reaches the minimum value. In order to study the reason in-depth, we take Rc = 40 as an exam-

ple, and the locations of δ = 80, 90, 100 are listed in Table 6.

It can be seen from Table 6 that when δ increases, the number of high-quality facilities (Qj

underlined in Table 4) in the selected facilities gradually decreases. Denote the solution when

δ = 80 as y�
d¼80

, then the market share corresponding to this solution when δ = 90 is 4887. Simi-

larly, denote the solution when δ = 100 as y�
d¼100

, then the market share corresponding to this

solution when δ = 90 is 5496.8.

Fig 6. The relationship between market share and δ (Rq = 80, γ1 = 0.4, γ2 = 0.6).

https://doi.org/10.1371/journal.pone.0273123.g006
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Similarly, let Rc = 40 and δ changes from 50 to 110 in step size of 10, for different values of

Rq, the relationship curves between market share and δ are shown in Fig 7.

It can be seen in Fig 7 that when δ� 90, the impact of Rq on the market share is not obvi-

ous. But when δ� 100, there is a clear positive correlation between market share and Rq. This

is because as δ increases, the number of existing facilities meeting high-quality requirements

decreases. Therefore, for the new entrant, the market share brought about by choosing high-

quality facilities will increase with the increase of Rq.

Finally, we analyzed the impact of the budget G on the location of the new entrant’s facili-

ties, and the results are listed in Table 7. The last raw in Table 7 indicates the market share of

the new entrant.

It can be seen from Table 7 that the market share of the new entrant increases as the budget

increases. An interesting phenomenon is that for a multi-stage budget situation, it is also possi-

ble to obtain the overall optimal solution. For example, suppose that the first stage budget is

150000, and the second stage budget is 100000. We can choose Georgia and Indiana in the first

stage, and then choose Iowa and South Dakota in the second stage. This is exactly the optimal

location scheme under the total budget of 250000.

Table 6. The location scheme for different δ (Rc = 40, Rq = 80, γ1 = 0.4, γ2 = 0.6).

δ = 80 δ = 90 δ = 100

Locations Qj MS Locations Qj MS Locations Qj MS

Arkansas 91 8297.5 Arkansas 91 6351.1 Georgia 36 7821.1

Indiana 111 Indiana 111 Indiana 111

Virginia 82 Kansas 67 Missouri 24

https://doi.org/10.1371/journal.pone.0273123.t006

Fig 7. The relationship between market share and δ (Rc = 40, γ1 = 0.4, γ2 = 0.6).

https://doi.org/10.1371/journal.pone.0273123.g007
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7 Conclusion

Observing that many customers often have both convenience and quality demands, we pro-

pose a new customer choice rule to describe this behavior. In fact, if the quality threshold δ is

set to infinity, the customer choice rule based on convenience range proposed by Qi et al. [23]

can be regarded as a special case of the rule in this paper. By considering the uncertainty of the

proportion of convenience-type demands in the total demands, we proposed a two-layer

robust model to study the competitive facility location problem.

The initial two-layer robust model is linearized as a mixed binary linear programming

problem. This allows us to solve exactly medium size problems. For large size problems, we

first prove a theorem for the optimal solution of the generalized continuous Knapsack prob-

lem. Then we propose an exact algorithm (GCKP-A) to solve the inner-layer model. By imbed-

ding (GCKP-A) and 2-opt strategy into the framework of the improved ranking-based

algorithm, we propose the heuristic algorithm (REA) for large size problems. On the one

hand, the solution of the proposed algorithm (REA) is compared with the exact solution for

different benchmark examples, which verifies the optimality of the proposed algorithm. On

the other hand, the comparison of the performance of the algorithm (REA) and the algorithm

(RDOA-D) reflects the superiority of the algorithm (REA).

A quasi-real example is used to illustrate the impact of different parameters on the market

share of the new entrant. Four main conclusions are obtained through sensitivity analysis: (1)

Only when the proportion of convenience-type demands is high, will it affect the robust location

scheme; (2) The market share of the new entrant increases first and then decreases with the

increase of Rq; (3) The market share of the new entrant increases with the increase of Rc; (4) The

market share of the new entrant decreases first and then does not decrease with the increase of δ.

In this article, we only studied the competitive facility location problem in a static environ-

ment. Based on the classification of these two types of demands, we should consider the reac-

tion of the competitors in the location of competitive facilities. The leader-follower

competitive facility location problem based on the newly proposed customer choice rule

deserves to be studied in future work.

Supporting information

S1 File. The data set of the 49-nodes example in subsection 6.2 is provided as S1 File. The

first two columns of the data are latitudes and longitudes of the capitals of the continental

United States plus Washington, DC. The third column denotes the existing facilities. The fourth

column is the demand di. The fifth column denotes the quality of facilities. The sixth column

represents the cost of opening a facility at position j. The last column is the name of the states.

(XLS)

Table 7. The location scheme for different G (Rc = 40, Rq = 80, δ = 100, γ1 = 0.4, γ2 = 0.6).

G = 100000 G = 150000 G = 200000 G = 250000 G = 300000

Locations Qj Locations Qj Locations Qj Locations Qj Locations Qj

Indiana 111 Georgia 36 Georgia 36 Georgia 36 Alabama 31

Indiana 111 Indiana 111 Indiana 111 Indiana 111

Missouri 24 Iowa 16 Iowa 16

South Dakota 114 Ohio 51

South Dakota 114

West Virginia 52

4321.0 6224.7 7821.1 8875.0 9363.0

https://doi.org/10.1371/journal.pone.0273123.t007
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