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Abstract
Population and conservation genetics studies have greatly benefited from the devel-
opment of new techniques and bioinformatic tools associated with next-generation 
sequencing. Analysis of extensive data sets from whole-genome sequencing of even 
a few individuals allows the detection of patterns of fine-scale population structure 
and detailed reconstruction of demographic dynamics through time. In this study, we 
investigated the population structure, genomic diversity and demographic history of 
the Komodo dragon (Varanus komodoensis), the world's largest lizard, by sequencing 
the whole genomes of 24 individuals from the five main Indonesian islands compris-
ing the entire range of the species. Three main genomic groups were observed. The 
populations of the Island of Komodo and the northern coast of Flores, in particular, 
were identified as two distinct conservation units. Degrees of genomic divergence 
among island populations were interpreted as a result of changes in sea level affecting 
connectivity across islands. Demographic inference suggested that Komodo dragons 
probably experienced a relatively steep population decline over the last million years, 
reaching a relatively stable Ne during the Saalian glacial cycle (400–150 thousand 
years ago) followed by a rapid Ne decrease. Genomic diversity of Komodo dragons 
was similar to that found in endangered or already extinct reptile species. Overall, 
this study provides an example of how whole-genome analysis of a few individuals 
per population can help define population structure and intraspecific demographic 
dynamics. This is particularly important when applying population genomics data to 
conservation of rare or elusive endangered species.
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1  |  INTRODUC TION

Single- and multilocus molecular assays have been efficiently em-
ployed in a multitude of population and conservation genetic studies 
on endangered species to assess population divergence and gene 
flow, and how palaeogeographical and historical factors as well as 
habitat fragmentation may have affected contemporary population 
dynamics (e.g., Amos & Balmford, 2001; DeSalle & Amato, 2004; 
Hedrick, 2001). More recently, next-generation sequencing tech-
nologies and advances in bioinformatic tools have introduced a 
wider, genomic perspective to population ecology and conservation 
(Amato et al., 2009; Avise, 2010; Hohenlohe et al., 2020; Supple & 
Shapiro, 2018).

Parallel sequencing of pools of DNA molecules results in the 
detection of tens of thousands of single nucleotide polymorphisms 
(SNPs) and indels distributed along the whole genome. This allows 
a comprehensive description of the patterns of genetic variation 
among individuals (Ellegren, 2014; Hohenlohe et al., 2018; Luikart 
et al., 2018). Population structure can be estimated for multiple 
polymorphisms in a sliding window analysis along the genome, re-
sulting in increased accuracy and the possibility of better detect-
ing differences at specific genomic regions (Corander et al., 2013; 
Gaughran et al., 2018; Martin & Van Belleghem, 2017; Steane et al., 
2015; Waples et al., 2016). Genomic analysis also provides a power-
ful tool to reconstruct the demographic history of populations, infer 
fluctuations in effective population size, test for population expan-
sion and contraction, and delineate conservation and management 
units (Funk et al., 2012; Sato et al., 2020; Smith & Flaxman, 2020; 
Smith et al., 2018; Younger et al., 2017). Moreover, demographic 
events can be reconstructed over much wider timescales than it is 
possible by using high-mutation-rate loci, such as microsatellites (Li 
& Durbin, 2011).

A great advantage of using genomic data is that many indepen-
dent loci allow for comprehensive investigations to be conducted 
even when the sample size is small. Genetic diversity and population 
differentiation estimated over thousands of loci in a few individu-
als per population may, in fact, be comparable to those obtained by 
genotyping a high number of individuals using traditional molecular 
markers (Attard et al., 2018; Gaughran et al., 2018; Wright et al., 
2020). This is of particular importance when studying species of 
conservation concern, with few or very elusive individuals available 
for sample collection, as well as relatively small island populations, 
where a more comprehensive analysis of genomic diversity can bet-
ter describe demographic patterns resulting from complex biogeo-
graphical scenarios (e.g., Jensen et al., 2018; Meröndun et al., 2019; 
Sjodin et al., 2020).

Among a variety of molecular techniques available for popula-
tion genomic studies, the most comprehensive approach is to se-
quence the whole genomes of target individuals (Fuentes-Pardo 
& Ruzzante, 2017; Schlötterer et al., 2014; Therkildsen & Palumbi, 
2017; Wright et al., 2020). In this study, we assessed patterns of pop-
ulation structure and demographic history in island populations of 
the Komodo dragon (Varanus komodoensis), the world's largest lizard, 

by comparison of whole genome sequences obtained from a rela-
tively limited number of animals. The Komodo dragon is endemic to 
Komodo National Park (KNP) and the Island of Flores in the Lesser 
Sunda region of eastern Indonesia, and has one of the smallest known 
range distributions of any large vertebrate (Ariefiandy, Purwandana, 
Azmi, et al., 2021; Ciofi & de Boer, 2004; Jessop et al., 2018). Extant 
populations occupy different sized islands and persist at very differ-
ent abundances and densities (Jessop et al., 2007; Laver et al., 2012; 
Purwandana et al., 2014). The Komodo dragon is a keystone and 
umbrella species for the dry monsoon forest ecosystem, one of the 
biodiversity hotspots for conservation (Myers et al., 2000). It is still 
considered “vulnerable” by the IUCN (2020), although the range dis-
tribution has been substantially reduced over the last five decades 
and the species now comprises fewer than 4,000 individuals in the 
wild (Ariefiandy & Purwandana, 2019; Purwandana et al., 2014).

The palaeogeography of KNP and Flores reflects patterns of vi-
cariance and connectivity among islands which are mainly the result 
of recurrent past eustatic changes in sea level. Despite physical and 
sensory capabilities for long-distance movements on land and lim-
ited sea water crossing, Komodo dragons show little dispersal both 
within and across islands (Jessop et al., 2018). This scenario, along 
with historical and more recent population changes due to habitat 
encroachment and expansion of human populations, particularly 
on the Island of Flores (Ariefiandy, Purwandana, Azmi, et al., 2021; 
Ariefiandy et al., 2015; Ciofi & de Boer, 2004), make the current 
insular distribution of V. komodoensis an excellent case study for a 
genome-wide assessment of population structure. Komodo dragon 
population genetics have been investigated using species-specific 
microsatellite loci (Ciofi & Bruford, 1998; Ciofi et al., 2011), which 
recovered a gradient of population distinctiveness and gene flow 
across islands with different levels of proximity (Ciofi et al., 1999; 
Ciofi & Bruford, 1999). In this work, we investigate whether analysis 
of whole-genome sequencing data for a few individuals per island 
corroborates previous results based on multilocus allelic variation 
over a much wider sample size, and/or reveals previously undetected 
fine-scale demographic patterns.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling, DNA isolation and sequencing by 
synthesis

Komodo dragons are found on the islands of Komodo (KM), Rinca 
(RN), Nusa Kode (NK), Gili Motang (GM), all part of KNP, and the 
West (WF) and North (NF) coastal areas of Flores (Ariefiandy, 
Purwandana, Azmi, et al., 2021; Ciofi & de Boer, 2004). Samples 
were collected as described in Ariefiandy et al. (2013) on the two 
large islands of Komodo (311.5 km2) and Rinca (204.8 km2) and two 
smaller islands of Gili Motang (9.5  km2) and Nusa Kode (7.8  km2). 
On Flores, Komodo dragons were sampled on the western (Wae 
Wuul nature reserve and the Lenteng area) and northern coast (Pota 
and Riung districts). We obtained either blood or tissue samples of 



    |  6311IANNUCCI et al.

four individuals from each of the six sampling locations for a total 
of 24 samples (Figure 1; Table S1). Whole DNA was extracted using 
a PureLink Genomic DNA Mini Kit (Invitrogen). DNA integrity was 
assessed by 1.5% agarose gel electrophoresis and DNA concentra-
tion was measured using a Qubit 4 fluorometer Broad Range Assay 
(Invitrogen). Sex was determined by polymerase chain reaction 
(PCR) amplification of sex-specific genomic regions as described in 
Halverson and Spelman (2002). Short-read genomic libraries were 
constructed using a Nextera DNA Flex Library Prep Kit (Illumina) ac-
cording to the manufacturer's protocol. Target coverage was 10× for 
all samples except NF1, WF1, NK1, GM1, RN1 and KM1 (one from 
each sampling site), for which a 25× coverage was obtained. This 
sequencing strategy was used as demographic inference methods 
need high-confidence genotypes (coverage ≥20×) for at least one 
individual per group. Lower coverages are sufficient to discover pol-
ymorphisms segregating at high frequency in all the other individu-
als from the same population (Nielsen et al., 2011). Libraries were 
pooled with a 2.5:1 concentration ratio of high- vs. low-coverage 
individuals. A free adapter blocking reagent (Illumina) was used to 
reduce index hopping. Libraries were sequenced paired-end on an 
Illumina NovaSeq 6000 System using a 300-cycle NovaSeq 6000 S1 
Reagent Kit v1.0.

2.2  |  Mapping and SNP calling

Demultiplexing and conversion of sequencing data from bcl to fastq 
formats were performed using bcl2fastq version 2.20 (Illumina). 
Quality control of the reads was assessed with fastqc version 
0.11.8 (Andrews, 2010). Reads were then processed with adapter-
removal version 2 (Schubert et al., 2016) to remove residual Illumina 
adapters. Read tails with a mean Phred-quality score <10 over a 
4-bp sliding window were trimmed and subsequently aligned to 
the Komodo dragon reference genome (Lind et al., 2019) using the 
mem algorithm implemented in the bwa version 0.7.15 aligner (Li & 
Durbin, 2009). Alignments in sam format were sorted, indexed and 
compressed in bam format using samtools version 1.9 (Li & Durbin, 
2009). Polymerase chain reaction duplicates, produced during li-
brary preparation, and optical duplicates were removed using the 
MarkDuplicates tool in the picard toolkit version 2.18.20 (http://
broad​insti​tute.github.io/picar​d/). Regions close to indels showing 
putative alignment errors were identified and realigned using the 
RealignerTargetCreator and the IndelRealignment tools in gatk ver-
sion 3.5 (McKenna et al., 2010). Alignment statistics were calculated 
using the CollectAlignmentSummaryMetrics tool, and bam files 
were validated with the ValidateSamFile tool of the picard toolkit 

F I G U R E  1  Map of the study sites. A total of 24 Komodo dragons were sampled for genomic analyses on four islands in Komodo National 
Park (dotted line) and on the western and northern coast of Flores, covering the entire range of the species. The current distribution of 
Varanus komodoensis is shown by the light red areas
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version 2.18.20. Observed coverage was computed using the depth 
command of samtools version 1.9 with the “-aa” flag activated.

We also downloaded paired-end reads of the Chinese crocodile 
lizard Shinisaurus crocodilurus (Gao et al., 2017) from GenBank (ac-
cession no.: PRJNA353147), and used it as outgroup for population 
structure analyses by applying the same informatics pipeline as de-
scribed above.

Single nucleotide polymorphisms and indels were called using 
the HaplotypeCaller algorithm implemented in gatk version 3.5. We 
excluded nucleotides with a base phred quality score <20 or those 
located in reads with a mapping phred quality score <20. The raw 
callset was then filtered by excluding variants matching at least one 
of the following criteria: not a biallelic SNP, a SNP phred quality 
score (QUAL) <60, a significant fisher strand test (FS >60), a Variant 
Confidence/Quality by Depth (QD) <2, a root mean square of the 
Mapping Quality (MQ) <40, an MQRankSum < −20 or a significant 
read position bias (ReadPosRankSum  <  −8.0). Genomic regions 
showing a depth of coverage lower than 0.25× or higher than 4× 
the mean coverage across samples were removed. We additionally 
removed SNPs within 5 bp of called indels with a QUAL >60. The 
quality of the variants was further improved by removing singletons, 
private doubletons and sites showing a frequency of the minor al-
lele lower than 0.042 or that were missing in more than four indi-
viduals. Finally, we removed variants in genomic regions (i) showing 
an excessive coverage (>4 times the mean coverage) in at least one 
individual, (ii) containing repetitive elements (see Lind et al., 2019) 
and (iii) having a low mappability score (p < 1) computed using gem 
(Derrien et al., 2012) by setting a maximum mismatch of 4% in a 150-
bp read. Variants located in scaffolds of <500 kb in length, or scaf-
folds showing a coverage across individuals lower than half or higher 
than 3× the mean coverage were also removed from the final set. A 
total of 135 scaffolds were retained, corresponding to 96% of the 
V. komodoensis genome length. All remaining variants were phased 
using a two-stage approach. Initially, whatshap version 0.18 (Martin 
et al., 2016) was used to phase genomic variants by considering all 
sequencing reads spanning multiple heterozygous sites. shapeit ver-
sion 4 (Delaneau et al., 2019) was then run to phase all the remaining 
unphased variants by setting the “--use-PS” and “--sequencing” flags.

2.3  |  Analysis of population structure

The autosomal SNP data set was used to estimate individual ances-
try using admixture version 1.3 (Alexander et al., 2009). This method 
provides maximum-likelihood estimates of the proportion of each 
sequenced genome that belonged to each of K populations. We 
explored co-ancestry for a number of K ancestral populations be-
tween one and 10. The optimal number of hypothetical K ancestral 
groups was inferred using the cross-validation (CV) error estimation 
method, whereby the CV error for each K is inferred by first mask-
ing and then re-inferring genotypes. The optimal value of K was 
that with the lowest CV error across 20 replicates. The analysis was 

restricted to variants having an maf ≥0.05 and a minimum distance 
between SNPs of 20 kb.

A multivariate discriminant analysis of principal components 
(DAPC, Jombart et al., 2010) was also performed using adegenet 
version 1.2.8 (Jombart & Collins, 2015) in R 3.5.1 (Team, 2018). We 
determined the optimal number of principal components (PCs) by 
cross-validation using the “xvalDapc” function with 1,000 replicates. 
We then selected the number of PCs associated with the lowest root 
mean squared error value. We ran DAPC using all the available dis-
criminant functions.

Single nucleotide polymorphisms contained in the autosomal re-
gions were used to compute an individual pairwise distance matrix 
between samples using the “--distance square0 1-ibs flat-missing” 
command in plink version 1.9 (Chang et al., 2015). The distance ma-
trix was then converted to the nexus format using the phangorn 
R package (Schliep, 2011), and splitstree version 4.14.6 (Huson & 
Bryant, 2006) was used to obtain a phylogenetic network according 
to the neighbour-net algorithm (Bryant & Moulton, 2004).

Evolutionary relationships were further estimated from SNPs 
using snapp (Bryant et al., 2012), a coalescent-based method imple-
mented in beast2 (Bouckaert et al., 2014). We selected one variant 
every 100 kb, for a total of 13,482 SNPs, in order to reduce correla-
tion between markers. We ran snapp for 1,000,000  Markov chain 
Monte Carlo (MCMC) generations, sampling every 1,000 steps and 
setting a burn-in of 10%. We set mutation rates equal to 1 and used 
default parameters for the gamma prior (alpha 11.75, beta 109.73). 
The trees distribution was visualized using densitree version 2.1 
(Bouckaert et al., 2014).

The level of divergence between populations was assessed by 
the Weir and Cockerham (1984) θ estimator of the FST parameter 
computed using vcftools. A population phylogenetic tree was built 
based on the pairwise θ matrix using the neighbour-joining algorithm 
implemented in the ape R package (Paradis & Schliep, 2019).

2.4  |  Mitochondrial DNA analysis

Mitochondrial DNA (mtDNA) sequencing reads were extracted by 
filtering whole genome alignments for the scaffold corresponding 
to the mtDNA of the Komodo dragon reference genome (NCBI ac-
cession no.: SJPD01001108.1) using samtools view. Alignments with 
MAPQ <30 were filtered out. Mitochondrial region alignments were 
visually screened using geneious prime 2020.1.1 (Kearse et al., 2012). 
Consensus sequences were called for each individual from the most 
frequent nucleotide at each site with a 60% consensus thresh-
old. An mtDNA phylogenetic tree was built using raxml version 
8.2.7 implemented in geneious prime 2020.1.1 by applying the GTR 
GAMMA nucleotide model with rapid bootstrapping and search for 
best-scoring maximum-likelihood trees across 100 bootstrap repli-
cates (Stamatakis, 2014). We used the complete mtDNA sequence 
of the water monitor V. salvator as outgroup (NCBI accession no.: 
EU747731.1).
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2.5  |  Z chromosome analysis

Reads aligned to scaffolds associated with the Z chromosome of the 
Komodo dragon (Lind et al., 2019) were used to call variants against 
the reference sequence using bcftools version 1.10.2 (Li, 2011). We set 
a minimum mapping quality of 40, a minimum base quality score of 30 
and the “-C50” flag to adjust the mapping quality of reads containing 
excessive mismatches. The variants were called in female individuals 
by setting a ploidy equal to 1 because of the Z chromosome's hemizy-
gous state, and applying the same genomic masks used for autosomes. 
Positions showing a phred quality score (QUAL)  <60, a sequencing 
depth <5 reads or an INDEL were excluded. The filtered set of vari-
ants, together with the Komodo dragon reference sequence, was used 
to produce a consensus sequence for each female using bcftools ver-
sion 1.10.2. Consensus sequence quality was improved by repeating 
the variant calling procedure and setting a ploidy of 2 with the same 
quality filters as above. Single nucleotide polymorphisms showing 
within-individual heterozygosity were masked with “N” in the final se-
quences. Consensus sequences were used to build a phylogenetic tree 
using the same method described for the mtDNA sequences.

2.6  |  Genomic diversity

Genetic diversity of individuals and populations was evaluated using 
Watterson's Theta estimator (Watterson, 1975). The number of 
segregating sites was counted for each callable region, defined by 
genomic intervals showing good mappability, low repetitiveness and 
appropriate coverage levels (see Section 2.2). The total number of 
segregating sites was first divided by the (n − 1) harmonic number, 
where n is the number of haploid chromosome copies, and then by 
the total size of the callable regions to obtain the per-base estimator 
θW. The same approach was used to obtain a θW estimate over neu-
tral regions and exons. Neutral regions were defined by callable re-
gions located in intergenic regions that were at least 25 kb from the 
closest gene. Exon regions were extracted directly from the refer-
ence genome annotation by merging overlapping elements in differ-
ent strands and discarding portions that were not in callable regions.

Genomic diversity estimates for Komodo dragon individu-
als were compared to published values for the Aldabra giant tor-
toise Aldabrachelys gigantea and Pinta Island Galápagos tortoise 
Chelonoidis abingdonii (Quesada et al., 2019), saltwater crocodile 
Crocodylus porosus, Indian gharial Gavialis gangeticus and American 
alligator Alligator mississippiensis (Green et al., 2014). Genetic vari-
ants in callable, neutral and exon genomic partitions were processed 
using snpsift (Cingolani et al., 2012) to identify private segregating 
sites in each of the six groups.

2.7  |  Run of homozygosity and inbreeding

Runs of homozygosity (ROH) were first identified by estimating 
the heterozygosity levels in 250-kb nonoverlapping windows using 

Rohan's probabilistic method (Renaud et al., 2019). Each genomic 
segment was then defined to be in ROH based on a Hidden Markov 
Models (HMM) classifier. The analysis was performed on bam align-
ments considering base and mapping errors. We used a transition/
transversion rate of 2.251, estimated by vcftools across the entire 
data set, and an expected θW in ROH regions (rohmu flag) of 2 × 10−5. 
The parameter θW was estimated by either including or excluding 
ROH regions. Although the method was developed to provide relia-
ble ROH estimates for different coverages (>5×) (Renaud et al., 2019), 
the six individuals sequenced at higher coverage were downsampled 
to 10× in order to facilitate comparison with the other samples.

A second approach to identify ROH was based on the HMM im-
plemented in bcftools version 1.10.2. Regions in autozygosity were 
called using genotype likelihoods as input and a fixed recombination 
rate of 1 centiMorgan (cM) Mb–1. The analysis was repeated three 
times by setting the per-nucleotide frequency of the alternate al-
lele to (i) the value observed across all 24 individuals, (ii) the per-
population estimate (n = 4) or (iii) a fixed value of 0.4. Finally, ROH 
was also detected using plink (Chang et al., 2015) under default pa-
rameters. All of these methods used ROH regions ≥1 Mb to estimate 
the fraction of the whole genome that was in ROH state (FROH).

2.8  |  Demographic analyses

Trajectories of effective population size (Ne) through time were inferred 
using a Multiple Sequentially Markovian Coalescent (MSMC) (Schiffels 
& Wang, 2020) on one high-coverage sample. Input data were gener-
ated using the “generate_multihetsep.py” script selecting all callable 
segments from autosomal scaffolds and removing those having a mini-
mum length <500  kb (Gower et al., 2018). One-hundred bootstrap 
replicates were generated using the “multihetsep_bootstrap.py” script 
which created, at each iteration, a set of 35 chromosomes each com-
posed of 20 random chunks of 2 Mb in length from the original data 
set (total size of 1.4 Gb for each replicate). The same method was also 
used to estimate the Relative Cross Coalescent Rate (RCCR) between 
pairs of high-coverage individuals by applying a more stringent ap-
proach to exclude genomic regions containing phasing artefacts that 
could bias the inference. Each of the six high-coverage genomes was 
processed to remove all 50-kb genomic segments containing at least 
one heterozygous site that we were unable to phase using paired-end 
read information. The total proportion of masked base pairs along the 
genome was 0.28, 0.36, 0.34, 0.35, 0.45 and 0.40 in NF1, NK1, GM1, 
RN1, WF1 and KM1, respectively. The “-s” flag was also activated to 
avoid sites with ambiguous phasing, as suggested by Schiffels and 
Wang (2020). The time at which the RCCR decreased below the 0.5 
threshold was taken as a point estimate of the divergence time. All pa-
rameter estimates were scaled using a mutation rate of 7.9 × 10−9 bp−1 
per generation (Green et al., 2014) and a generation time of 12 years 
(Auffenberg, 1981). Results of genomic analyses were integrated with 
known eustatic changes in sea level during the last five glacial cycles 
(Grant et al., 2014) and the approximate arrival of anatomically modern 
human (AMHs) on the Island of Flores (Aubert et al., 2014).
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3  |  RESULTS

3.1  |  SNP and genotype calling

We produced a total of ~3.92 billion reads which uniquely mapped 
to the Komodo dragon genome. The mean coverage for six high-
coverage individuals was 28.4× while the mean coverage for the 
remaining 18 individuals was 12.3×. Individuals previously classified 
as females by using end-point PCR amplification of sex chromosome 
genes showed, for Z chromosome scaffolds, approximately half of 
the mean coverage found in males for the same scaffolds and auto-
somal scaffolds (Figure S1). This was expected considering that fe-
male Komodo dragons have heteromorphic sex chromosomes (ZW) 
while males have two copies of the Z chromosome (Iannucci et al., 
2019; Johnson Pokorná et al., 2016).

The number of reads, percentage of aligned reads and final mean 
coverage are reported for each sample in Table S1. A total of 608,471 
SNPs were retained across 24 individuals after filtering. Of these, 
6,991 were located in coding regions. The number of heterozygous 
SNPs ranged from 95,013 in GM3 to 172,607 in WF2. An average of 
1.4% of the heterozygous SNPs was found to be within coding re-
gions. The mean percentage of phased heterozygous SNPs across all 
samples was 68% in the first phasing step and 100% in the final step.

The population with the highest number of SNPs was West 
Flores (333,416) followed by Komodo (331,214), Rinca (312,421), 
North Flores (276,933), Nusa Kode (271,718) and Gili Motang 
(250,404). Details on SNP numbers are reported for each individual 
and population in Tables S2 and S3, respectively.

3.2  |  Population structure

Based on the cross-validation error value (Figure S2), the clustering 
analysis performed with admixture suggested the presence of three 
distinct genetic clusters (Figure 2a). These correspond to the Island 
of Komodo, the northern coast of Flores and a third group includ-
ing all remaining individuals. There were no admixed individuals 

except in West Flores, where we observed a North Flores genetic 
component ranging from 4% (WF1, WF2 and WF4) to 8% (WF3). 
The cross-validation error was slightly higher for K = 4 and K = 5. In 
particular, a genomic differentiation of Gili Motang was supported 
for K = 4, while a further separation of West Flores and Nusa Kode 
was recovered for K = 5. However, at K = 5 the Rinca samples were 
not a homogeneous group but rather a mixture of the West Flores 
and Nusa Kode genetic components. The DAPC analysis (Figure 2b), 
the networks based on whole-genome analysis (Figure 3a) and Z 
chromosome data (Figure S3), and the phylogenetic trees based on 
mtDNA (Figure 3b) and SNPs (Figure 3c) all support the overall sce-
nario of three main genomic units described by admixture.

The neighbour-joining network constructed using pairwise FST 
values between sampling locations also confirms the individual-
based structure whereby the Island of Komodo and North Flores 
represent distinct groups equally diverging from a third one com-
posed of the remaining populations (Figure S4). Low levels of differ-
entiation were recorded among Rinca, Nusa Kode and West Flores, 
with Gili Motang separated by a more pronounced branch length.

3.3  |  Genomic diversity and inbreeding

Single individual genome-wide heterozygosity levels for high-
coverage Komodo dragon samples were rather homogeneous, 
with θW estimates ranging from 7.62  ×  10–5 in southern Rinca to 
1.31 × 10–4 in western Flores. These values were consistently lower 
than θW estimates recorded for other reptiles including vulnerable, 
critically endangered or even extinct species (Figure 4a). At the 
population level, the lowest θW estimate was recorded for the small 
island populations of Gili Motang (7.37  ×  10–5). The islet of Nusa 
Kode and the North Flores region, both of limited extent and small 
population abundances, showed a slightly higher (8.00 × 10–5 and 
8.15 × 10–5, respectively) genomic diversity values. Relatively higher 
θW estimates were instead recorded in West Flores (9.81 × 10–5) and 
for the largest island populations of Komodo (9.75 × 10–5) and Rinca 
(9.20 × 10–5).

F I G U R E  2  Results of the population structure analyses performed using admixture version 1.3 (a), and a multivariate discriminant analysis 
of principal components (b). Each column in (a) corresponds to an individual Komodo dragon, and each colour represents the proportion of 
an individual's genome belonging to each of the K clusters
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Analysis of genetic diversity recovered a marked reduction in di-
versity in neutral regions with respect to exons for populations with 
low genomic diversity (Figure 4b; Table S4). Neutral regions were 
10.8%, 8.3% and 8.2% more variable than exons in the populations 
of Komodo, West Flores and Rinca, while a strong reduction to 3.6%, 
2.1% and 1.7% was recorded in Nusa Kode, North Flores and Gili 
Motang, respectively.

The genome-wide diversity was substantially different if ROH re-
gions were either included or excluded. Outside ROH, all individuals 
showed a θW midpoint estimate between 1.91 × 10–4 and 2.45 × 10–4, 
with negligible differences between mean values across populations 
(Figure 5a). Inclusion of ROH in the analysis caused an average de-
crease in θW estimates of ~25% (Figure 5b). The fraction of the ge-
nome being in ROH (FROH) was quite different across samples. Some 
individuals had relatively high FROH, while others showed negligible 
FROH (Figure 5c). The North Flores population had the highest mean 
FROH (12%) with sample NF1 showing 30% of its genome in ROH. A 
similar pattern was observed in the populations of Nusa Kode and 

Komodo with a mean FROH value of 11% and 10%, respectively, while 
the populations of West Flores, Rinca and Gili Motang showed mean 
FROH values lower than 10% (Table S5). plink and bcftools produced 
FROH estimates that were positively correlated to values estimated 
by rohan (Pearson correlation coefficient ranging from 0.31 to 0.71). 
However, no significant correlation was observed when the bcftools 
analysis was conducted using an alternate frequency across individ-
uals or a fixed frequency of 0.4 in each population. This may suggest 
that the frequency threshold is a critical parameter to identify the 
proper within-individual FROH and that a single frequency value may 
not be suitable for all populations (Table S6).

Private segregating sites were not uniformly distributed across 
populations. Komodo and North Flores showed the highest fraction 
of private polymorphisms (11.7% and 8.9% of the total SNP varia-
tion in the genome, respectively). Proportions of private SNPs were 
lower in West Flores (0.4%) and the populations of Rinca, Nusa Kode 
and Gili Motang (0.3%). Similar proportions were observed in exons 
and neutral regions (Figure S5).

F I G U R E  3  Phylogenetic network based on autosomal SNPs showing relationships among 24 Komodo dragons from six locations in 
Komodo National Park and the Island of Flores (a), phylogenetic tree based on mitochondrial DNA genomes (b), and phylogenetic tree based 
on SNPs (c). The cloudogram represents the posterior distribution of lineage trees from the Bayesian phylogenetic analysis performed using 
snapp. Higher density areas indicate greater agreement in tree topologies

KM4

KM1

KM3

KM2

NF2

NF3

NF4

NF1

RN2

GM4

GM2

GM3

GM1

WF1

WF3

NK1

RN4

WF2

RN3

WF4

V. salvator

NK4

NK3

RN1

NK2

GM

NF

WF

NK

KM

(a)

(c)

(b)

GM4
GM2

GM3

GM1

WF1

WF2

WF4

WF3

RN2

RN4

RN3

RN1 NK4NK3 NK2

NK1

KM4 KM1

KM3
KM2

Shinisaurus
crocodilurus

0.01

NF2

NF3

NF4

NF1

North Flores
West Flores

Nusa Kode
Gili Motang

Rinca
Komodo

RN

100

58

100

19

93

78

2

7 89

10 26

14
1 1

94100

100

90

100 17

2
5



6316  |    IANNUCCI et al.

3.4  |  Demographic analysis

Estimates of past demographic patterns based on whole genome 
analysis of extant populations recovered a very large effective 
population size between 1  million and 500 thousand years ago 
(ka). Moving forward in time, in North Flores we estimated a long 
and gradual population decline that ended ~3 ka with an Ne of a 
few hundred individuals (Figure 6). A similar pattern was recov-
ered for the other populations, where an initial, steady decrease 
in Ne was followed by a period of constant population size during 
the Saalian cold period (spanning from ~400 to 150 ka), and then 
by a further population decline that ended between 5 and 3 ka.

The relative cross-coalescent rates analysis highlighted 
three time periods with reduced gene flow between populations 
(Figure 6). Approximately 20  ka, the gene flow between North 
Flores and all other populations started to decrease, reaching the 
0.5 threshold ~15 ka. More recently, ~10 ka, Komodo Island showed 
a decreasing RCCR with respect to other populations (excluding 
North Flores) going below 0.5 ~5  ka. All other pairwise compar-
isons involving Rinca, Nusa Kode, West Flores and Gili Motang 
showed oscillating RCCR through time, with rates going below the 
0.5 threshold ~1 ka. These values, however, were never equal to 0, 
an indication of historical and ongoing gene flow among island pop-
ulations across the central part of KNP and West Flores. The most 
informative RCCR dynamics refers to the central part of the plot 
of Figure 6. Although the analysis was restricted to high-quality 
phased regions, the presence of residual incorrectly phased sites 
might affect the reconstruction of the RCCR profile in this time 
window (Schiffels & Wang, 2020).

4  |  DISCUSSION

4.1  |  Population structure

In this study, whole genome sequencing was used to assess popu-
lation structure, genomic diversity and demographic history of 
Komodo dragons. We performed genome resequencing of 24 indi-
viduals from six islands, covering the entire distribution of the spe-
cies. Overall, our results show how whole genome analysis of a few 
individuals per population can refine and improve information on 
intraspecific genetic diversity that can be otherwise obtained using 
a data set based on a much larger sample size genotyped at a few 
genetic markers (Ciofi et al., 1999; Ciofi & Bruford, 1999). This is 
in accordance with other studies where genomic analysis of a very 
limited number of animals was used to corroborate multilocus as-
sessments of population structure in an insular ecosystem (e.g., 
Gaughran et al., 2018).

We recorded a clear genomic distinction of Komodo dragons 
of the island of Komodo and the north coast of Flores from the 
rest of the archipelago. The degree of isolation of Komodo drag-
ons could be associated with the Island's palaeogeographical his-
tory. According to eustatic sea level variations over the past 250 ka 
(Chappell & Shackleton, 1986; McCulloch et al., 1999; Voris, 2000) 
and bathymetric data of the study area, the Island of Komodo was 
probably connected to the eastern islands for relatively short time 
intervals, ~140 and 18  ka, during the last two Pleistocene glacial 
maxima. On the other hand, Flores and Rinca, currently separated 
by narrow and shallow waters, remained isolated during a high sea 
level event about 125 ka and were then reconnected until ~10 ka 

F I G U R E  4  Genomic diversity estimates based on Watterson's Theta θW (a), and estimates of θW per site in exons and neutral regions 
(b). Solid colour bars show values recorded for each of the six Komodo dragon individuals with a 25× genome coverage (one individual 
per location). Striped colour bars indicate θW estimates per location. Grey bars show values for other reptile species. VU: Vulnerable; CR: 
Critically Endangered; EX: Extinct
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(Voris, 2000). The smaller islands of Gili Motang and Nusa Kode 
were also connected several times to Flores and Rinca. The in-
creased distance between Komodo and Rinca following the sea 
level rise after the last glaciation might have represented a major 
barrier to gene flow. By contrast, gene flow was probably main-
tained between West Flores, Rinca, Nusa Kode and, to some extent, 
Gili Motang given the Komodo dragons' ability to swim over short 
distances (Auffenberg, 1981).

Our genomic data also advocate the strong pattern of genetic 
divergence of the North Flores population, described by previous 
analysis of microsatellite allelic diversity (Ciofi et al., 1999), from 
the other islands and the population found on the western coast of 
Flores. Similar levels of within-island genetic structure have been re-
corded for other amphibian and reptile species on Flores (e.g., Reilly, 
2016). Reilly et al. (2019) pointed at Flores's palaeogeography as a 
possible explanation for the population structure of fanged frogs. 
In particular, the observed patterns of genetic differentiation could 
have been related to the existence of ancient volcanic islands that 
later coalesced into a single island. However, this explanation con-
trasts with fossil records that support the appearance of Komodo 
dragons on Flores ~900 ka (Hocknull et al., 2009), a relatively short 
time period compared to the geological time of Flores Island for-
mation. The observed divergence between the West and North 
Flores Komodo dragon populations might be instead the result of an 
isolation by distance (IBD) process. We suggest that Komodo drag-
ons previously had a much wider distribution on Flores (Ariefiandy, 
Purwandana, Azmi, et al., 2021; Auffenberg, 1981; Ciofi & de Boer, 
2004). The limited dispersal of the species (Jessop et al., 2018), cou-
pled with anthropogenic habitat fragmentation and other ecological 
barriers, may have resulted in a gradient of genetic diversity across 
the north coast of Flores, and eventually to peripatric divergence. 
Patterns of IBD related to sedentary habits and habitat fragmenta-
tion have also been described for other reptile species (e.g., Driscoll, 
2004; Heath et al., 2012; Moore et al., 2008). Unfortunately, no 
samples are available for locations in between the northern and 
western coast of Flores in order to effectively test this hypothesis.

Although Komodo dragons sampled on the islands of Rinca, 
Nusa Kode, Gili Motang and on West Flores probably experienced 
higher population connectivity levels over the last glacial periods, as 
confirmed by the RCCR analysis, a slight differentiation of the Gili 
Motang population was observed (Figure 6). This result could be due 
to the remote position of this islet and the strong currents originat-
ing from the exchanges of water masses between the Indian and 
Pacific Oceans (Gordon et al., 1994), which may significantly hinder 
gene flow between Gili Motang and the other nearby islands.

4.2  |  Genomic diversity

Estimates of θW showed that genomic diversity was low for all popu-
lations. In particular, genomic diversity values were lower than es-
timates reported for vulnerable and critically endangered reptiles, 
such as the Indian gharial (Green et al., 2014), the Aldabra giant 
tortoise and the now extinct Pinta Island Galápagos giant tortoise 
(Quesada et al., 2019). Low genomic diversity has commonly been 
associated with an increased susceptibility to genetic diseases and a 
decreased adaptive potential, both of which can lead to increased ex-
tinction rates in vertebrates (Clark et al., 2011; Johnson et al., 2010; 
Reed & Frankham, 2003; de Villemereuil et al., 2019). Nevertheless, 
in other species with similarly low genetic diversity, no detrimental 
consequences were reported (e.g., Benazzo et al., 2017; Westbury 

F I G U R E  5  Population genomic diversity estimated using rohan 
including (a), or excluding (b) ROH regions; (c) proportion of the 
genome composed of ROH (FROH) ≥ 1 Mb
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et al., 2018; Xue et al., 2015). This may also be the case for Komodo 
dragons, which currently show no evident sign of severe deleterious 
mutations. A possible explanation for this state may be the absence 
of a significant difference in genomic diversity recorded for Komodo 
dragons in neutral regions with respect to exons (Figure 4b; Table 
S4). As suggested for other species (Morin et al., 2020; Westbury 
et al., 2019), such a condition may imply the retention of diversity in 
coding regions relative to the noncoding regions. If so, this process 
could help maintain adaptive potential in Komodo dragons, enabling 
the species to better adapt to environmental changes (but see Jones 
et al., 2020). Conversely, the overall low levels of heterozygosity and 
lack of variation in diversity levels between coding and noncoding 
regions may suggest that heterozygosity has reached a minimum, 
stable threshold, and any further decrease in genomic diversity 
could affect survival (Morin et al., 2020; Purwandana et al., 2015; 
Westbury et al., 2019).

Overall, the proportion of the genome in long ROH (FROH) was 
moderate. The most inbred sample had ~30% of its genome com-
posed of ROH. However, FROH was highly variable among individ-
uals within populations and among populations. This pattern was 
particularly evident in Komodo, Rinca and West Flores, where two 
individuals per group showed an FROH lower than 5% while the oth-
ers had FROH between 10% and 20%. This result may suggest that 

inbreeding levels in Komodo dragon populations have been increas-
ing with respect to higher, historical values maintained by gene flow 
among islands. Such average values of inbreeding coefficients across 
populations, where most of the variation actually occurs within pop-
ulations, are neither unexpected nor uncommon events. Segregation 
and recombination are random processes, mating can be assorta-
tive and it is more likely to occur in small populations where some 
individuals may have highly consanguineous parents (Kardos et al., 
2015; Schraiber et al., 2012). Although our results suggest moder-
ate intraspecific levels of inbreeding, a 10% FROH increase in a single 
individual may severely impact its fitness, especially in certain age 
classes, as observed for other organisms with small effective popu-
lation size (Stoffel et al., 2020).

4.3  |  Demographic history

Whole-genome analysis allowed reconstruction of the demographic 
history of Komodo dragons in the last one million years. All popula-
tions showed a similar demographic pattern consisting of a rapid Ne 
decrease in the ancient past, followed by a period of relatively stable 
effective population size during the Saalian glacial cycle, and a fur-
ther decline following the colonization of Flores by AMHs.

F I G U R E  6  Evolutionary dynamics of Komodo dragon populations inferred across the whole genomes using MSMC (Schiffels & Wang, 
2020). Upper plot: effective population size through time in six populations (dashed lines) with bootstrap intervals (coloured areas) based 
on high-coverage individuals. Eustatic changes in sea levels relative to the present are shown in dark grey. Light grey columns represent the 
time span of the last glacial maximum (LGM; 31–16 ka) and the Saalian cold period (SCP; 400–150 ka). Lower plot: relative cross coalescent 
rates (RCCR) through time between populations. Each line depicts the RCCR profile estimated using pairs of high-coverage genomes. The 
pairwise comparisons involving the North Flores and Komodo Island populations vs. all the other sampling sites are shown by the black and 
red lines, respectively. Comparisons among West Flores, Nusa Kode, Gili Motang and Rinca populations are shown in grey. Values below the 
threshold of 0.5 (horizontal dashed line) indicate negligible gene flow between groups
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Studies of demographic trends over extended periods of time are 
scarce for reptiles, but they all report patterns of effective popu-
lation size decrease in the Pleistocene. Green et al. (2014) investi-
gated demographic trends in crocodilians and found that all three 
studied species experienced a sharp Ne decline between 100 and 
10 ka. Similar results were reported for the Chinese alligator (Wan 
et al., 2013) and elapid snakes (Ludington & Sanders, 2020). Marine 
reptiles also showed a decline in Ne size over the last glacial period 
(Fitak & Johnsen, 2018; Kishida et al., 2020; Ludington & Sanders, 
2020), suggesting that global climatic events including a generalized 
decrease in temperature (Van de Wal et al., 2011) may have had 
major demographic consequences for ectothermic species. A reduc-
tion in temperature could have played only a minor role in Komodo 
dragon Ne reduction. Varanids are more independent of ambient 
temperature than other lizards, especially large individuals (McNab 
& Auffenberg, 1976). On the other hand, temperature lowering 
could have indirectly influenced the Komodo dragon's abundance 
by affecting the habitat quality of this species (Jones et al., 2020). 
Palaeoecological reconstructions of the Quaternary habitat of the 
Banda Sea area suggest a dry environment and a reduction in pre-
cipitation levels, with open vegetation replacing rainforest in some 
areas (van der Kaars et al., 2000). This could have influenced the 
population dynamics of V. komodoensis, considering that monsoon 
forest offers better conditions to Komodo dragons for thermoregu-
lating than does savannah habitat (Harlow et al., 2010).

A period of relatively constant effective population size was re-
corded for all populations over the Saalian glacial cycle (400–150 ka), 
except for the North Flores population. At this time, a decrease in 
sea level reduced the distance among several islands of the Lesser 
Sunda and Banda Arcs, and increased habitat availability for Komodo 
dragons (Voris, 2000). This might have led to either a temporary 
population range expansion or an increase in gene flow between is-
lands. Both events could explain a temporary population recovery. 
The MSMC reconstruction is expected to track changes in effective 
population size, but Ne trajectories might also represent changes 
in connectivity in metapopulation systems (Mather et al., 2020; 
Mazet et al., 2016), as supported by the RCCR analysis. The above-
mentioned ecological conditions might have had a marginal effect on 
North Flores, where the effective population size was constantly de-
creasing. Since new habitat areas were probably available for all pop-
ulations, this may not be true for the connectivity between groups. 
Western populations probably experienced more gene flow due to 
their geographical proximity, whereas a reduced gene flow towards 
the North Flores group due to its geographical location might have 
promoted its isolation. For this reason, gene flow could have been 
the main factor explaining the population recovery observed during 
the Saalian period between 400 and 150 ka.

Considering the differences in the Ne curve between the Saalian 
glaciation and the last glacial maximum, where no population re-
covery was recorded, it is possible that other factors in addition to 
changes in environmental temperature and habitat availability af-
fected the demography of Komodo dragons in the Quaternary. The 
colonization of Flores by AMHs around 50 ka and their subsequent 

population expansion (Aubert et al., 2014; Tucci et al., 2018) coin-
cides with the beginning of a steep descent of the Komodo dragon 
Ne curve. Anthropogenic interference has been suggested as one 
of the drivers of population decline in vertebrates in the early and 
mid-Holocene (e.g., Cooke et al., 2017; Dong et al., 2021). However, 
further research is needed to assess whether humans have directly 
or indirectly negatively affected Komodo dragon population size and 
distribution.

Time trajectories of Ne resulted in an interesting demographic 
scenario for Komodo dragons over the last 1 million years. However, 
while MSMC is proving a robust approach for estimating Ne and 
patterns of population size variation over distant time periods (Li 
& Durbin, 2011), it does also depend on assumptions that may bias 
the calculation of the actual values of Ne, particularly for very re-
cent population histories (Liu & Fu, 2015; Sheehan et al., 2013). The 
assumption of MSMC that populations are isolated and the uncer-
tainty over a precise mutation rate estimate are additional factors 
that need further evaluation for ad hoc analysis of Komodo dragon 
effective population size.

4.4  |  Conservation outcomes

Our study provides an example of how whole-genome analysis of a 
few individuals per population can help assess fine-scale population 
structure and intraspecific demographic dynamics. This is particu-
larly important when applying population genomics data to manage-
ment and conservation of endangered species, for which extended 
field effort is required in order to obtain an adequate sample size for 
analyses based on more traditional molecular markers.

Our data advocate the genomic distinction of the populations 
of the Island of Komodo and the northern coast of Flores, both of 
which should be managed as separate conservation units (Casacci 
et al., 2014; Ciofi et al., 1999; Crandall et al., 2000; DeWeerdt, 2002; 
de Guia & Saitoh, 2007). However, while the Komodo Island popula-
tion is fairly well protected within the boundaries of KNP, Komodo 
dragons from North Flores suffer from habitat encroachment and 
other human-related threats (Ciofi & de Boer, 2004). Only a small 
proportion of the extant populations of Flores Island are found in 
protected areas. The unambiguous genetic distinction of Komodo 
dragons from the northern coast of Flores is, therefore, important 
information to support ongoing collaborative efforts with local 
communities and authorities for the protection of V. komodoen-
sis outside KNP (Ariefiandy et al., 2015; Ariefiandy, Purwandana, 
Azmi, et al., 2021).

Future directions in the definition and management of conser-
vation units of Komodo dragons could rely on genome sequencing 
of a broader sample set in order to assess adaptive genetic variation 
among populations. This information will be valuable to prioritize 
which populations to focus management efforts on, and which 
populations to use as sources for translocation, demographic re-
inforcement and assisted migration efforts (Barbosa et al., 2018; 
Funk et al., 2012).
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Our data showed levels of genomic diversity in Komodo dragons 
to be lower than other threatened or even extinct reptile species. 
IUCN assigns Red List status based mainly on population size and 
trends and degree of population fragmentation, while genetic diver-
sity is yet to be considered as an important parameter in evaluating 
the status of a species (IUCN, 2020). Genetic diversity is critical to 
the sustainability of small populations (Reed & Frankham, 2003), 
and many authors have argued that Red List status should be de-
termined in part by the degree of genetic diversity of a species with 
respect to closely related lineages (e.g., Brüniche-Olsen et al., 2018; 
Willoughby et al., 2015). Therefore, results of genomic analysis 
should be integrated with data on current population size and dis-
tribution (Ariefiandy, Purwandana, Azmi, et al., 2021; Purwandana 
et al., 2014), differences in population ecology and carrying capac-
ity across islands (Ariefiandy et al., 2016; Jessop et al., 2006, 2007; 
Purwandana et al., 2015), as well as deterministic and stochastic 
threats to extant populations (Ariefiandy et al., 2015; Jones et al., 
2020) to try and re-evaluate the conservation status of Komodo 
dragons, particularly for groups living outside protected area net-
works (Jessop et al., 2020).
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