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Abstract
Germline copy number variants (CNVs) and somatic copy number alterations (SCNAs) are

of significant importance in syndromic conditions and cancer. Massively parallel sequenc-

ing is increasingly used to infer copy number information from variations in the read depth

in sequencing data. However, this approach has limitations in the case of targeted re-

sequencing, which leaves gaps in coverage between the regions chosen for enrichment

and introduces biases related to the efficiency of target capture and library preparation. We

present a method for copy number detection, implemented in the software package CNVkit,

that uses both the targeted reads and the nonspecifically captured off-target reads to infer

copy number evenly across the genome. This combination achieves both exon-level resolu-

tion in targeted regions and sufficient resolution in the larger intronic and intergenic regions

to identify copy number changes. In particular, we successfully inferred copy number at

equivalent to 100-kilobase resolution genome-wide from a platform targeting as few as 293

genes. After normalizing read counts to a pooled reference, we evaluated and corrected for

three sources of bias that explain most of the extraneous variability in the sequencing read

depth: GC content, target footprint size and spacing, and repetitive sequences. We com-

pared the performance of CNVkit to copy number changes identified by array comparative

genomic hybridization. We packaged the components of CNVkit so that it is straightforward

to use and provides visualizations, detailed reporting of significant features, and export

options for integration into existing analysis pipelines. CNVkit is freely available from https://

github.com/etal/cnvkit.

This is a PLoS Computational Biology software paper.
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Introduction
Copy number changes are a useful diagnostic indicator for many diseases, including cancer.
The gold standard for genome-wide copy number is array comparative genomic hybridization
(array CGH) [1, 2]. More recently, methods have been developed to obtain copy number
information from whole-genome sequencing data ([3]; reviewed by [4]). For clinical use,
sequencing of genome partitions, such as the exome or a set of disease-relevant genes, is often
preferred to enrich for regions of interest and sequence them at higher coverage to increase
the sensitivity for calling variants [5]. Tools have been developed for copy number analysis of
these datasets, as well, including CNVer [6], ExomeCNV [7], exomeCopy [8], CONTRA [9],
CoNIFER [10], ExomeDepth [11], VarScan 2 [12], XHMM [13], ngCGH [14], EXCAVATOR
[15], CANOES [16], PatternCNV [17], CODEX [18], and recent versions of Control-FREEC
[19] and cn.MOPS [20]. However, these approaches do not use the sequencing reads from
intergenic and, usually, intronic regions, limiting their potential to infer copy number across
the genome.

During the target enrichment, targeted regions are captured by hybridization; however, a
significant quantity of off-target DNA remains in the library, and this DNA is sequenced and
represents a considerable portion of the reads. Thus, off-target reads provide a very low-cover-
age sequencing of the whole genome, in addition to the high-coverage sequencing obtained
in targeted regions. While the off-target reads alone do not provide enough coverage to call
single-nucleotide variants (SNVs) and other small variants, they can provide useful informa-
tion on copy number at a larger scale, as recently demonstrated by cnvOffSeq [21] and Copy-
writeR [22].

We developed a computational method for analysis of copy number variants and alter-
ations in targeted DNA sequencing data that we packaged into a software toolkit. This
toolkit, called CNVkit, implements a pipeline for CNV detection that takes advantage of
both on– and off-target sequencing reads and applies a series of corrections to improve accu-
racy in copy number calling. We compare binned read depths in on– and off-target regions
and find that they provide comparable estimates of copy number, albeit at different resolu-
tions. We evaluate several bias correction algorithms to reduce the variance among binned
read counts unlikely to be driven by true copy number changes. Finally, we compare copy
ratio estimates by the CNVkit method and two competing CNV callers to those of array
CGH, and find that CNVkit most closely agrees with array CGH. In summary, we demon-
strate that both on– and off-target reads can be combined to provide highly accurate and reli-
able copy ratio estimates genome-wide, maximizing the copy number information obtained
from targeted sequencing.

Design and Implementation
We implemented CNVkit as a Python 2.7 software package comprising a command-line pro-
gram, cnvkit.py, and reusable library, cnvlib.

Software pipeline
The input to the program is one or more DNA sequencing read alignments in BAM format
[23] and the capture bait locations or a pre-built “reference” file (Fig 1). All additional data
files used in the workflow, such as GC content and the location of sequence repeats, can be
extracted from user-supplied genome sequences in FASTA format using scripts included with
the CNVkit distribution. The workflow is not restricted to the human genome, and can be run
equally well on other genomes.
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CNVkit uses both the on-target reads and the nonspecifically captured off-target reads to
calculate log2 copy ratios across the genome for each sample. Briefly, off-target bins are
assigned from the genomic positions between targeted regions, with the average off-target bin
size being much larger than the average on-target bin to match their read counts (Table 1).
Both the on– and off-target locations are then separately used to calculate the mean read depth
within each interval. The on– and off-target read depths are then combined, normalized to a
reference derived from control samples, corrected for several systematic biases to result in a
final table of log2 copy ratios. A built-in segmentation algorithm can be run on the log2 ratio
values to infer discrete copy number segments. The log2 ratios and segments can then be used
for visualization and further analyses supported by CNVkit, exported to other formats, and
used with third-party software.

These steps are implemented entirely in CNVkit so that the complete workflow can be per-
formed in a reasonable amount of time on a commodity workstation or laptop. The most com-
putationally demanding step, read depth calculation, takes on the order of 20 minutes for an
exome at 100-fold coverage or 2 minutes for a 293-gene target panel at 500-fold coverage using
a single 3.7GHz CPU and a solid-state drive. Initial calculation of regional GC RepeatMasker
content from the human genome takes about one minute, and all other steps complete in a few
seconds at most. The implementation is designed to be memory-efficient, so that many samples
can safely be run in parallel on a single machine.

Fig 1. CNVkit workflows. The target and off-target bin BED files and reference file are constructed once for
a given platform and can be used to process many samples sequenced on the same platform, as shown in
the workflow on the left. Steps to construct the off-target bins are shown at the top-right, and construction of
the reference is shown at the lower-right.

doi:10.1371/journal.pcbi.1004873.g001
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Calculation of off-target intervals
Genomic intervals for counting off-target reads are initially calculated from the genomic positions
of the targeted intervals. The CNVkit antitarget command accepts a list of targeted regions,
in Browser Extensible Data (BED) or GATK/Picard interval list format, and divides the off-target
regions between each target into large bins, typically on the order of 100 kilobases. As an optional
input, separate lists of the sequencing-accessible chromosomal regions and low-mappability
regions can be used to exclude telomeres, centromeres and other sequencing-inaccessible or
unmappable repetitive regions from the off-target intervals when creating the off-target bins.

Each contiguous off-target region is divided into equal-sized bins such that the average bin
size within the region is as close as possible to the size specified by the user. The user can select
an appropriate off-target bin size by calculating the product of the average target region size
and the fold-enrichment of sequencing reads in targeted regions, such that roughly the same
number of reads are mapped to on– and off-target bins on average. In an effort to maximize
the number of bins, CNVkit will deviate from the user-specified bin size to fit bins into small
regions, such as introns, that are restricted in size. The user can also specify a lower limit on
bin size to avoid evaluating very small off-target regions, where it is expected that too few reads
would be captured to give a reliable estimate of copy number. Once a satisfactory set of off-tar-
get bins have been generated and saved as a BED file, the same BED file can be reused with
CNVkit for copy number analysis of other samples prepared with the same library preparation
protocol and sequenced on the same platform.

Estimation of copy number by read depth
The CNVkit coverage command computes the log2 mean read depth in each bin for a sam-
ple using an alignment of sequencing reads in BAM format and the positions of the on– or off-
target bins in BED or interval list format. For each bin the read depths at each base pair in the
bin are calculated and summed using pysam, a Python interface to samtools [23], and then
divided by the size of the bin. The output is a table of the average read depths in each of the
given bins log2-transformed and centered to the median read depth of all autosomes.

To produce the input BAM file, we recommend that an aligner such as BWA-MEM [24] be
used with the option to mark secondary mappings of reads, and that PCR duplicates be flagged.

Table 1. Binning statistics.

TR EX C0902

Statistic on-target off-target on-target off-target on-target off-target

Number of bins 8,216 19,434 301,249 55012 8,662 19,402

Total bin footprint (bp) 1,791,315 2,837,786,301 70,364,091 2,468,075,581 1,867,888 2,837,005,032

Mean bin size (bp) 218.0 146,021.7 233.6 44864.3 215.6 146,222.3

Min. bin size (bp) 36 10,012 114 6,000 42 10,089

1st quartile bin size (bp) 183 148,196 197 11,304 181 148,108

Median bin size (bp) 203 149,819 227 28,358 200 149,814.5

3rd quartile bin size (bp) 259 151,062 268 86,767 257 151,070

Max. bin size (bp) 397 223,781 399 134,972 398 224,678

The bins for the exome panel (EX) cover a slightly smaller total genomic footprint than the targeted panels (TR, C0902) because most introns are smaller

than the minimum size allowed for off-target bins, and thus discarded from the exome bins, while the off-target bins in the targeted panels span both the

introns and exons of non-targeted genes.

doi:10.1371/journal.pcbi.1004873.t001
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Construction of a copy number reference
The reference command estimates the expected read depth of each on– and off-target bin
across a panel of control or comparison samples to produce a reference copy-number profile
that can then be used to correct other test samples. At each genomic bin, the read depths in
each of the given control samples are extracted. Read-depth bias corrections (see below) are
performed on each of the control samples. In each bin, a weighted average of the log2 read
depths among the control samples is calculated to indicate bins that systematically have higher
or lower coverage, and the spread or statistical dispersion of log2 read depths indicates bins
that have erratic coverage so that they can be de-emphasized at the segmentation step. A single
paired control sample can also be used, or, in absence of any control samples, a “generic” refer-
ence can be constructed with a log2 read depth and spread of 0 assigned to all bins. In all cases
a “male reference” can be specified in which the expected read depth of X chromosome bins is
half that of the autosomes.

Additional information can be associated with each bin for later use in bias correction and
segmentation. If the user provides a FASTA file of the reference genome at this step, the GC
content and repeat-masked fraction of each binned corresponding genomic region are calcu-
lated. CNVkit calculates the fraction of each bin that is masked and records this fraction in an
additional column in the reference file, along with GC, average log2 read depth, and spread.

As with the target and off-target BED files, once a satisfactory reference file has been gener-
ated, it can be reused with CNVkit for copy number analysis of other similar samples
sequenced with the same platform and protocol.

Normalization of test samples to the reference
The fix command combines a single sample’s on– and off-target binned read depths, removes
bins failing predefined criteria, corrects for systematic biases in bin coverage (see below), sub-
tracts the reference log2 read depths, and finally median-centers the corrected copy ratios.

Each bin is then assigned a weight to be used in segmentation and plotting. Each bin’s
weight is calculated according to bin size, difference from the global median coverage (if at
least one control sample is provided), and the spread of normalized coverages in the control
pool (if more than one control sample is provided). Finally, the overall variability of bin log2
ratio values is compared between on- and off-target bins, and the more variable of the two sets
is downweighted in proportion.

Correction of coverage biases
Read depth alone is an insufficient proxy for copy number because of systematic biases in cov-
erage introduced during library preparation and sequencing. For example, read depth is
affected by GC content, sequence complexity and the sizes of individual targeted intervals [15,
19, 25]. To account for each of these potential biases in depth of read coverage, CNVkit uses a
rolling median technique to recenter each on– or off-target bin with other bins of similar GC
content, repetitiveness, target size or distance from other targets, independently of genomic
location.

Systematic coverage biases may be largely removed simply by normalization to a reference
of one or more representative normal samples, and subsequent corrections for these biases
then have relatively little effect. However, even after normalization to a pooled reference, biases
in coverage typically do persist in an individual sample and must still be removed.

Genomic GC content. DNA regions with extreme GC content are less accessible to
hybridization and amenable to amplification during library preparation [26, 27]. The degree of
GC bias can vary between samples due to differences such as the quality of each sample’s DNA
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or efficiency of hybridization between library preparations. To remove this bias, CNVkit
applies a rolling median correction (see below) to GC values on both the target and off-target
bins, independently.

Sequence repeats. Repetitive sequences in the genome can complicate read-depth calcula-
tions, as these regions often show high variability in coverage from sample to sample [15]. This
variability may be due to differences in the efficiency of the blocking step during library prepa-
ration (e.g. differences in the quantity of Cot-1 during blocking). The presence of sequence
repeats serves as an indicator for regions prone to these biases.

In the reference genome sequences provided by the UCSC Genome Bioinformatics Site
(http://genome.ucsc.edu/) and others, repetitive regions are masked out by RepeatMasker
(http://repeatmasker.org). CNVkit calculates the proportion of each bin that is masked, similar
to the method used in XHMM [13], and uses this information for bias correction. The CNVkit
implementation applies the RepeatMasker correction to only the off-target bins. For most cus-
tom bait libraries, the on-target bins are much smaller, and usually are exonic, and therefore
generally have no overlap with repeats. For those on-target bins that were identified as contain-
ing repeats (e.g.*7% in our custom target panel, see Results), we found them mostly entirely
covered by the repeat, leaving very few intermediate points to infer a continuous trend for cor-
rection by the rolling median.

Target density. We observed two distortions to read depth consistently occurring at the
edges of each targeted interval (Fig 2): The “shoulders” of each interval showed reduced read
depth due to incomplete sequence match to the bait, creating a negative bias in the observed
read depth inside the interval near each edge; this effect was greatest for short intervals (Fig
2A). Some off-target capture also occurred in the “flanks” of the baited interval due to the same
mechanism. Where targets are closely spaced or adjacent, this flanking read depth may overlap
with a neighboring target, creating a positive bias in its observed read depth (Fig 2B). We
accounted for the negative bias at the interval “shoulders” and the positive bias in the interval
“flank” regions in a single model that describes the “density” of targets around a bin.

CNVkit’s bias correction procedure needs only a monotonic function of the actual read
depth bias, rather than the magnitude of the bias itself. For simplicity, we modeled the density

Fig 2. Baited region size and spacing affect read depth systematically. A: Example of typical coverage observed at a targeted exon, as viewed in IGV,
and simplified geometric models of the negative coverage biases (yellow) that can occur as a function of the relative sizes of sequence fragments and the
baited region. B: Coverage observed at two neighboring targeted exons, and models of the positive coverage biases (red) that can occur where intervals are
separated by less than half the insert size of sequence fragments.

doi:10.1371/journal.pcbi.1004873.g002
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biases as a linear decrease in read depth from inside the baited region to the same distance out-
side, calculated from the start and end positions of a bin and its immediate neighbors (Fig 2A
and 2B). In the common case of no other targets within the window surrounding the given tar-
get, there is a one-to-one correspondence of the density value to target size. Thus, the density
bias correction also accounts for the bias due to target size that has been described by others
[15].

While the density bias can be significantly reduced by normalizing each sample to a refer-
ence, it may vary between samples due to differences in the insert sizes of sequence fragments
introduced during the step of DNA fragmentation of the library preparation, and thus should
still be accounted for even if a matched normal comparison exists. Density bias being related to
the capture, CNVkit only applies this correction to the on-target bins.

Computational correction of biases. All of the information needed to calculate the biases
at each bin is stored in the reference file. For each of the biases (GC content, repeat-masked
fraction, target density), the bias value is calculated for each bin. Next, bins are sorted by bias
value. A rolling median is then calculated across the bin log2 ratios ordered by bias value to
obtain a midpoint log2 ratio value representing the expected bias for each bin. Finally, this
value is subtracted from the original bin log2 ratio for the given sample to offset the observed
bias. We also evaluated local regression (LOWESS) [28] and a Kaiser window function [29]
in place of the rolling median to estimate the trend due to bias; all three functions produced
similar fits on sample data, and we chose rolling median as the default for its simplicity and
robustness.

Segmentation and calling absolute copy number
The sample’s corrected bin-level copy ratio estimates can be segmented into discrete copy-
number regions using the segment command. The bin log2 ratio values are first optionally
filtered for outliers, defined as a fixed multiple of the 95th quartile in a rolling window, similar
to BIC-seq [30]. The default segmentation algorithm used is circular binary segmentation
(CBS) [31], via the R package PSCBS [32]. Alternatively, the HaarSeg algorithm [33] or Fused
Lasso [34] can be used in place of CBS. In either case, the segmentation output is in a BED-like
tabular format similar to that used for bin-level copy ratio tables.

Calling absolute copy number is implemented separately from segmentation. The rescale
command, an optional step, can adjust a tumor sample’s log2 ratios given an estimate of nor-
mal-cell contamination (separately derived from cell count or DNA content, see S2 Text), and
can re-center the log22 ratios by median, mode, or other measures of central tendency. The
call command rounds the log2 ratios to the nearest integer absolute copy number given the
normal ploidy of each chromosome, or directly maps segment log2 ratios to absolute copy num-
ber states given a set of numeric thresholds.

Data summarization, reporting and visualization
CNVkit generates several kinds of plots using the software libraries Biopython [35], Reportlab
(http://www.reportlab.com/opensource/) and matplotlib (http://matplotlib.org):

• a “heatmap” of segmented results from multiple samples;

• a single-sample “scatter” plot of bin-level coverages with overlaid segments, either genome-
wide or in selected chromosomal regions, optionally with single-nucleotide variant allele fre-
quencies from a separately called Variant Call Format (VCF) file shown to indicate regions
of loss of heterozygosity;
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• a “diagram” of each chromosome drawn with bin-level copy ratios, segments, or both, labeled
with the genes covered by copy number variants.

Copy number features can also be summarized as tabular text reports: Gene-level copy
number information can be extracted with the gainloss command, and segmentation
breakpoints that fall within a gene (possibly indicating translocation) with the breaks com-
mand. Statistics on the residual deviations of bin-level copy ratios from the segmentation calls
are calculated per-sample with the metrics command, and per-segment with
segmetrics.

Integration and compatibility with other software
To ease integration into a variety of workflows and pipelines, CNVkit can convert between its
native, BED-like file format and formats supported by other software. In particular, the stan-
dard SEG format used by GenePattern [36] and Integrative Genomics Viewer [37], and others
is supported for both import and export, while standard BED, VCF and Clustered Data
Table (CDT) and the native formats of Java TreeView [38] and Nexus Copy Number (BioDis-
covery Inc.) are only exported. The per-target coverages reported by the CalculateHsMetrics
script in Picard tools (http://picard.sourceforge.net/) can be imported as an alternative to
CNVkit’s coverage command. Import and export compatibility with the tumor heterogene-
ity analysis program THetA2 [39] is implemented to allow fully automated estimation of
tumor cell fraction and subclones.

Application wrappers are available for Galaxy [40], DNAnexus, and Docker. CNVkit is also
included in the best-practices sequencing analysis pipeline bcbio-nextgen (https://bcbio-
nextgen.readthedocs.org/en/latest/) and can be used with the ensemble structural-variant caller
MetaSV [41].

Results
We evaluated our method on DNA sequencing data from targeted sequencing of the mela-
noma cell line C0902 [42] and two sets of samples, referred to here as “TR” and “EX”, derived
from a recent study of advanced melanomas [43]:

• Targeted sequencing (“TR”) of 82 samples, paired tumor and normal tissue from archived
microdissected FFPE of 41 melanoma patients, sequenced with a custom 293-gene target
capture protocol.

• Exome sequencing (“EX”) of 20 samples, paired fresh frozen tumor and matching blood
samples from 10 melanoma patients, sequenced with a whole-exome capture protocol.

Sequencing methods are described in S1 Text.
For each panel of targets, on– and off-target genomic regions are each partitioned into bins

(Table 1) in which unique reads are counted in the initial step of copy number estimation. The
read counts and percentages in on– and off-target regions for each of these samples are shown
in S1 Table.

Correction of systematic biases in read depth improves copy ratio
estimates
While normalization to a reference reduces the coverage biases attributable to GC content,
repetitive sequence, and target density introduced by library preparation and sequencing, the
extent of each of these systematic biases varies from sample to sample (Fig 3), requiring addi-
tional correction measures of the residual biases.
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We evaluated the effect of each of our bias corrections by comparing the final segmented
copy number data, separately determined with all corrections enabled, to the bin-level read
depths or log2 ratios for on– and off-target bins at each processing step (Fig 4). For each sample
in the TR and EX cohorts, we used CNVkit to perform each of the corrections described above
sequentially to estimate bin-level log2 ratios. First, we subtracted the uncorrected, median-cen-
tered log2 read depth of each on– and off-target bin from the corresponding log2 copy ratio val-
ues of the final segmentation to obtain the deviations of each bin from our final estimate of
true log2 copy ratio. We repeated this calculation at each of the subsequent steps of bias correc-
tion: (i) after GC bias correction; (ii) after the density and repeat corrections; and (iii) after nor-
malizing to a pooled reference.

In these results, the deviation values decreased monotonically across all steps, indicating
that each step of corrections reduces random deviations from the true copy number signal/
value. The spread of deviation values also decreased overall, indicating that the improvements
are seen consistently and are reliable; even outlier data points (representing samples with poor
overall sequencing quality) were consistently improved. The greatest improvements were seen
from GC bias correction and normalization to the pooled reference.

While each step reduced deviations of off-target bins similarly between the two cohorts, the
on-target bins in the EX cohort appear to exhibit more variation in read depths that is indepen-
dent of GC and targeting density, but consistently removed by refererence normalization. This dif-
ference between the two cohorts may be due to differences in the target capture kits’ probe design,
the diversity of genes captured, and the type of samples sequenced. In particular, the Nimblegen
custom panel used for TR primarily captures average-sized genes that are amenable to hybridiza-
tion, while the Agilent exome panel used for EX captures nearly all protein-coding genes.

We also found that the deviation of the off-target bins was inversely related to the off-target
bin size, or equivalently, directly related of the number of reads captured in each off-target bin.
Thus, by choosing the off-target bin size to match the average read counts for on-target bins,
we ensured that the deviations or random error in the read counts per bin was similar between
on– and off-target bins.

Fig 3. Bin read depths are systematically biased by GC content and other factors. A: GC coverage bias follows a unimodal distribution in sample
TR_37_T. Target bins are sorted according to bin GC fraction (x-axis), and the uncorrected, median-centered log2 bin read depths are plotted (y-axis). A
rolling median of the bin log2 read depths in order of GC value is drawn in red, showing a systematic deviation from 0 in the selected sample. B: Trendlines
summarize each bias type in each sample. TR and EX samples are shown in the top and bottom rows, respectively. Columns show biases due to GC content
in target bins and off-target bins, repeat content in off-target bins, and density bias in target bins.

doi:10.1371/journal.pcbi.1004873.g003
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Fig 4. Bias corrections reduce the extraneous variation in bin read depths. Distributions of the absolute
deviation of on– and off-target bins from the final, segmented copy ratio estimates are shown as box plots at
each step of bias correction for all samples in the TR and EX sequencing cohorts. At each step, for on- and
off-target bins separately, boxes show the median and interquartile range of absolute deviations and
whiskers show the 95% range. Steps shown are the initial median-centered log2 read depth (“Raw”),
correction of GC bias (“GC”), correction of on-target density and off-target repeat biases (“Density/Repeat”),
and normalization to a pooled reference (“Reference“).

doi:10.1371/journal.pcbi.1004873.g004

CNVkit: Copy Number Detection from Targeted Sequencing

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004873 April 21, 2016 10 / 18



Validation by array CGH and FISH assays
We validated the segmented copy ratio estimates by CNVkit with respect to two widely used
methods for copy number measurement, array CGH (Agilent 4x180K) and fluorescence in situ
hybridization (FISH) (see S1 Text). For this validation we used the C0902 cell line, derived
from a melanoma.

We compared CNVkit and array CGH copy ratios across the whole genome (Fig 5A). Seg-
mentation by CBS yielded 70 segments from the CNVkit bins and 146 segments from the array
CGH probes. The median absolute deviation (MAD) of the residual bin– or probe-level log2
ratio values from the corresponding array CGH segment means was 0.2002 by array CGH and
0.1531 by CNVkit.

One multi-copy gene-level deletion was detected by array CGH but not by CNVkit. In the
gene CEBPA, a 27.5-kilobase loss with a log2 copy ratio of -1.5691 is detected by 8 array CGH
probes, but the corresponding CNVkit bins showed neutral copy number. These bins cover
sequence regions with very high GC content (73–82%) and the CNVkit reference indicated an
expected read depth significantly below the genome-wide average, which may have masked
any true copy number loss at this locus in the sequencing data. Further comparison of the
CNV calls made by array CGH and CNVkit is presented in the next section and in S1 Text.

Next, we used FISH to determine the absolute copy number at loci harboring cancer-rele-
vant genes: ALK, ROS1, MET, BRAF and RET.

Fig 5. CNVkit copy ratios agree with experimental results array CGH and FISH on cell line DNA. A: Whole-genome profiles of log2 copy ratio by CNVkit
(top) and array CGH (bottom) are shown. B: Genes additionally assayed by FISH are labeled with the detected absolute copy number. At CDKN2A, log2
ratios below the marked level of -3.58 indicate the site is entirely deleted in the majority of cells.

doi:10.1371/journal.pcbi.1004873.g005
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We compared the log2 ratios obtained by both CNVkit and array CGH to the average signal
counts per nucleus obtained by FISH. We transferred the average FISH signal counts into
log2 copy ratios, by calculating the difference between the log2 of their average nuclear signal
counts and the log2 of the cell’s ploidy, which we determined to be 6n. In all five of the genes
assayed by FISH, the copy ratio inferred by CNVkit is close to the average value observed by
FISH (Fig 5B).

Comparison to related software
CNVkit is the first CNV caller to automatically combine copy number information from both
on– and off-target regions. These two sources of copy number information have been sepa-
rately considered in other methods and their software implementations. In particular, CON-
TRA [9] implemented a pipeline for inferring copy number from targeted regions alone, and
CopywriteR [22] recently demonstrated that copy number information can be obtained from
off-target reads alone, but neither attempted to combine the off-target and on-target informa-
tion. Like CNVkit, CONTRA and CopywriteR both use the CBS algorithm to perform segmen-
tation, and both report segment means without requiring an integer copy number value—a
feature essential for reporting CNVs in heterogeneous samples. We therefore selected CON-
TRA and CopywriteR for evaluation alongside CNVkit on the same targeted and whole-exome
sequencing datasets presented earlier in this text.

We performed array CGH on each sample in the TR cohort using the Agilent 180K array,
and on the EX cohort using the Agilent 1-million-probe array. We used the GenePattern server
[36] to segment the array CGH log2 ratio values by CBS. The analysis pipelines for CNVkit ver-
sion 0.7.6, CopywriteR version 1.99.3 and CONTRA version 2.0.6 were run with default set-
tings (see S1 Text). Each of the methods was evaluated using all of the available approaches for
constructing a reference: All normal samples pooled (supported by CNVkit and CONTRA),
matched tumor-normal pairs (all three methods), and tumor-only calling with no normal ref-
erence (CNVkit and CopywriteR). The CNVkit pipeline completed the fastest in all cases,
while CopywriteR and CONTRA generally required about 2–4 times as long as CNVkit.

We compared the CNV calls from each program to those obtained by array CGH. Our pri-
mary interest in this evaluation was to see how accurately each method estimates copy ratio at
targeted genes, as the inclusion of these genes in a target panel implies that they are the geno-
mic regions of the most interest. We took the differences in segmented log2 ratio estimates by
array CGH and CNVkit, CONTRA or CopywriteR at each of the targeted genes, and plotted
the distributions of these values for comparison (Fig 6). We also calculated the median,
2.5-percentile and 97.5-percentile of each of these distributions to identify the prediction inter-
val (PI) in which 95% of estimates by each method typically deviate from that of array CGH
(S1 Table).

With CNVkit, the best estimates were consistently obtained using a pooled reference, then
by a “generic” reference, while reference-free calling remained competitive in all cohorts. In
the TR cohort CNVkit performed best overall, though when restricted to reference-free call-
ing CNVkit and CopywriteR performed similarly (PI = 0.464 and 0.462, respectively); it is
striking to note that in this cohort CopywriteR performed better with no reference than with
a single matched normal reference. In the EX cohort CNVkit and CopywriteR achieve refer-
ence-free performance (PI = 0.36 and 0.382), and improved by a similar degree using a refer-
ence (CNVkit pooled PI = 0.287, CopywriteR paired PI = 0.27). CONTRA did not produce
better results than CNVkit or CopywriteR under any conditions, and in the TR cohort and
cell line, pooling the reference appeared to exacerbate the inconsistencies apparent in the
paired normals.
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Fig 6. Comparison of CNVkit and other methods to array CGH. Log2 ratio estimates by CNVkit, CONTRA
and CopywriteR were compared to those by array CGH at each of the targeted genes in the TR and EX
cohorts as well as the C0902 cell line sample (CL). The distribution of differences of segmented log2 ratio
estimates by each caller from that of array CGH at each targeted gene is shown as a box plot, where each
box shows the median and interquartile range of absolute deviations, whiskers show the 95% range, and the
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We also investigated genome-wide CNV calling of each method, quantifying performance
in terms of precision (specificity) and recall (sensitivity). For the C0902 cell line we derived
absolute integer copy numbers from the segmentation obtained by array CGH, CNVkit,
CopywriteR, and CONTRA. Treating the array CGH calls as the truth set, we then compared
the deletions and duplications from each caller at each copy number state between each caller
and array CGH using BEDtools [44], using calls with at least 50% overlap as matches, and
calculated the precision and recall for gains and losses of at least one copy and at least two
copies (Fig 7). To evaluate performance on larger and smaller CNVs separately, we split the
array CGH calls into subsets with CNV sizes above and below 5 megabases, the median size
of CNV calls by array CGH, and recalculated precision and recall within each subset. As a
check on these results, we also calculated precision and recall across each basepair in all
CNVs in lieu of the 50% overlap criterion. As with the gene-level analysis presented above,
under most of these metrics CNVkit appears to be competitive with or superior to the other
methods.

This evaluation merely considers how well the copy number estimates by several callers
agree with array CGH, and ignores key advantages that CNVkit offers—i.e. the ability to effi-
ciently infer copy number from both on– and off-target genomic regions simultaneously,
and CNVkit’s extreme flexibility in composing and summarizing the analyses. Nonetheless,
CNVkit consistently performs at least as well as, and in some cases much better than, similar
software under a range of conditions while maximally extracting copy number resolution from
deep sequencing data.

Availability and Future Directions
CNVkit source code is freely available from https://github.com/etal/cnvkit under the Apache
License 2.0 (http://www.apache.org/licenses/LICENSE-2.0). Documentation is available at
http://cnvkit.readthedocs.org/ and as S2 Text. Instructions and data files for recreating the
analyses presented here are available at http://github.com/etal/cnvkit-examples.

CNVkit provides robust and efficient implementations of methods to improve estimates of
copy number from high-throughput sequencing data, making use of both on– and off-target
reads from hybrid captures. The flexible design also allows CNVkit to be readily adapted to dif-
ferent sequencing platforms such as Ion Torrent systems (Thermo Fisher Scientific Inc.), and
to integrate well into existing analysis pipelines.

The software library underlying CNVkit serves as a basis for developing and benchmark-
ing a variety of approaches to call, analyze and visualize copy number, not unlike the Geno-
micRanges framework in Bioconductor [45]. The library’s modular design accommodates
multiple methods for copy ratio normalization, bias correction and segmentation, and can
easily incorporate new methods at any point in the workflow. In particular, we are exploring
additional normalization and segmentation approaches within CNVkit to better support
whole-genome sequencing and targeted amplicon capture, in which off-target reads are not
available to improve copy number estimates. Another current avenue of development is
using single-nucleotide polymorphism allele frequencies to assign allele-specific copy num-
ber, detect copy-number-neutral loss of heterozygosity, and investigate the structure of
tumor heterogeneity in terms of absolute copy number and ploidy in each subclonal cell
population.

magnitide of the 95% range (prediction interval) is printed under the box plot. Columns are CNV callers, and
rows are the TR and EX cohorts and C0902 sample on which the callers were evaluated.

doi:10.1371/journal.pcbi.1004873.g006
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Fig 7. Precion and recall of absolute copy number calls.CNV calls obtained using each sequencing-based method are compared to those determined by
array CGH to calculate precision and recall under several criteria for the C0902 cell line sample. Columns show detection of each copy number level versus
the neutral hexaploid state. Rows show criteria for comparison: all CNVs, CNVs larger than 5 MB, CNVs smaller than 5MB, all CNV basepairs. Each subplot
shows the calculated precision and recall of CNVkit, CopywriteR and CONTRA with each supported reference.

doi:10.1371/journal.pcbi.1004873.g007
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