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Abstract
The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination 
of movement by the brain’s basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting 
in the cardinal motor deficits associated with Parkinson’s disease. In order to fully understand the physi-
ology of these key neurons and develop potential therapies for their loss, it is essential to determine if and 
how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for 
adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate 
this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells 
have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, 
we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we 
employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine 
hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the ge-
netic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction 
in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study 
suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell popula-
tion potentially arising from an endothelial lineage. 

Key Words: nerve regeneration; neural progenitor cells; adult neurogenesis; endothelial cells; substantia nigra; 
dopaminergic neurons; Parkinson’s disease; mouse model 

Introduction
The existence of adult neurogenesis for dopaminergic (DA) 
neurons is controversial. However, a major limitation of 
previous studies is their reliance upon nucleotide analog, 
such as bromodeoxyuridine (BrdU), incorporation to iden-
tify replicating neurons (Kay and Blum, 2000; Zhao et al., 
2003; Frielingsdorf et al., 2004; Aponso et al., 2008). This 
approach presumes that DA neurons in adult animals are 
generated in a replication-dependent manner from neural 
progenitor cells (NPCs). Recent studies have demonstrated 
in multiple animal systems, including mice and non-human 
primates, that quiescent, nonreplicative neurogenesis occurs 
for some neural populations within the adult brain (Tandé 
et al., 2006; Nishimura et al., 2011; Barbosa et al., 2015; 
Fuentealba et al., 2015). Additionally, previous studies that 
have focused on DA adult neurogenesis employed relatively 
short labeling and post-labeling periods, thereby decreas-
ing the ability to detect slow regeneration rates (Zhao et al., 
2003; Frielingsdorf et al., 2004; Arias-Carrión et al., 2009). 
To avoid these potential pitfalls, we have established a trans-
genic mouse system that utilizes genetic cell lineage tracing 
observed over a 26 week period. 

Neurons are believed to arise from ectodermal tissue 
during embryonic development, while endothelial cells like-
ly arise from the mesoderm. However, a strong connection 
exists among vascular physiology, NPCs, and Parkinson’s 
disease (PD). NPCs in the adult brain have been reported to 
reside and differentiate in close association with capillaries, 
suggesting an intimate relationship with endothelial cells 
(Siegenthaler and Pleasure, 2010). One unexplored possi-
bility, supported by mounting evidence, is that specialized 
endothelial cells give rise to NPCs. For example, a num-
ber of factors associated with endothelial physiology (e.g., 
VEGF and endothelin) have robustly influenced outcomes 
in pre-clinical models of neurodegenerative disease (Wang 
et al., 2007; Kirby et al., 2015). Remarkably, similar to DA 
neurons, subsets of endothelial cells have been demonstrat-
ed to produce and respond to dopamine (Basu et al., 2001; 
Sorriento et al., 2012). In addition, when co-cultured with 
endothelial cells, it has been reported that mouse NPCs dif-
ferentiate into endothelial cells (~6% rate) capable of form-
ing capillary networks, which blurs the lines between these 
cell types (Wurmser et al., 2004).

NPCs express a number of endothelial cell markers and 
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share common niches within the brain. For instance, Pra-
mel7 was recently identified as a marker and mediator for a 
pre-implantation embryonic stem cell pluripotency ground 
state that has limited replicative self-renewal capacity (Graf 
et al., 2017). In situ RNA hybridization data on adult mouse 
brains available from the Allen Institute for Brain Science 
indicates that Pramel7 is expressed in the meninges, most 
likely in endothelial cells (Lein et al., 2007). Moreover, the 
greatest concentration of positive signal arises from the 
meninges immediately ventral to the substantia nigra (SN). 
This is particularly interesting given that Bifari et al. (2016) 
recently reported that quiescent NPCs generated during em-
bryogenesis migrate from the meninges to differentiate into 
cortical neurons without replication in adult mice. Previous 
work has also shown that DA neurons in the SN express IL-
13RA1, a histological marker for endothelial cells (Morrison 
et al., 2012). Additionally, the discovery of a Nestin+/Sox2- 

DA NPC population in adult mice reported by Albright et 
al. (2016) may indicate an atypical origin for these cells since 
Sox2 is broadly reported as a canonical marker for NPCs. 
Nestin+/Sox2– cells (NeuN–; non-neural) were also described 
by Hendrickson et al. (2011) and reside in a satellite position 
directly neighboring mature neurons in the adult rat brain. 
This suggests that these cells may represent previously un-
characterized NPCs (Hendrickson et al., 2011). In addition, 
Nestin+ endothelial cells are found throughout the body 
(Suzuki et al., 2010). Whether there is a connection between 
Nestin+/Sox2-  DA NPCs and Nestin+ endothelial cells, Nes-
tin+ endothelial precursor cells, or Nestin+ mesenchymal 
stem cells (Pacini and Petrini, 2014) that are known to reg-
ulate endothelial progenitor cell differentiation and which 
might directly transdifferentiate into endothelial cells (Xie et 
al., 2015), could be fundamental toward understanding DA 
neurogenesis. We therefore seek to determine if adult DA 
NPCs are derived from an endothelial cell lineage.  

Materials and Methods
Experimental animals
Procedures and husbandry for studied animals were per-
formed under Boise State University and Boise Veterans 
Affairs Medical Center Institutional Animal Care and Use 
Committee guidelines (Approval number: 006-AC15-018) 
and in accordance with the Guide for the Care and Use of 
Laboratory Animals (National Research Council (US) Com-
mittee for the Update of the Guide for the Care and Use 
of Laboratory Animals, 2011). The THlox mouse line (Jack-
son et al., 2012) used in this study was a kind gift from Dr. 
Martin Darvas and Dr. Richard Palmiter (The University of 
Washington). The VE-cadherin-CREERT2 mice were gener-
ously provided by Dr. Luisa Iruela-Arispe (The University 
of California, Los Angeles, USA). During the course of this 
study, all mice were of a C57Bl/6 lineage that were provided 
food ad libitum and housed with 12-hour day/night cycles. 
Tamoxifen treatment was administered to activate TH gene 
excision in 3-month-old mice (male average weight = 25.2 
± 2.3 g; female average weight = 20.1± 1.7 g) via standard 
rodent chow infused with 400 mg tamoxifen citrate (En-

vigo, Huntingdon, Cambridgeshire, U.K.; TD.130860) per 
kg of chow, which was provided as the only food source 
for 6 weeks. Following treatment, mice were returned to a 
standard chow diet. Male and female mice were utilized in 
all groups at approximately equal ratios. We did not ob-
serve any sex-linked variation in DA neurogenesis (data not 
shown).

Tissue processing and immunohistochemistry
Mice were anesthetized by isoflurane (Piramal, Bethlehem, 
PA, USA) inhalation and transcardially perfused with a 50 
mL phosphate buffer (PB; pH 7.2) containing heparin sodi-
um salt (20 units/mL) followed by 50 mL of 4% paraformal-
dehyde (PFA) in PB solution. Mouse brains were collected 
and placed in 4% PFA/PB overnight at 4°C. The following 
day, the brains were placed in 30% sucrose/PB at 4°C until 
they sunk (~72 hours). Tissue was then rapidly frozen in op-
timal cutting temperature (OCT) compound and stored at 
–80°C until immunohistochemistry (IHC) was performed. 

For IHC, OCT-embedded brains were equilibrated to 
a cryostat (Leica CM1950) at –20°C overnight. Sections 
were then cut at a thickness of 35 µm, placed into 12 well 
plates containing PB, and processed by free-floating IHC. 
Endogenous horseradish peroxidase (HRP) activity was 
quenched with a 3% H2O2/10% methanol/PB solution in-
cubated for 15 minutes at room temperature. Sections were 
then blocked and permeabilized with 0.5% bovine serum 
albumin (BSA)/0.25% Triton X100/PB. Rabbit anti-tyrosine 
hydroxylase (TH) antibody (Millipore; AB152) was used at 
1:2,000 in 0.5% BSA/PB, 4°C overnight. A biotinylated goat 
anti-rabbit secondary antibody (JacksonImmuno Research, 
West Grove, PA, USA; BA-1000) solution (1:500) was then 
added and incubated at room temperature for 1 hour. Next, 
streptavidin-HRP was added according to manufacturer 
instructions (Vector Labs, Burlingame, CA, USA; PK-6200). 
Wash steps were performed using PB. TH labeling was 
visualized using 50 mg/mL 3,3′-diaminobenzidine tetrahy-
drochloride hydrate (DAB; VWR cat # AAJ62216-09) in PB. 
Sections were dried overnight, placed on slides, and then 
coverslips were mounted with Vectamount (Vector Labs; 
H-5000). 

Quantification of DA neurons in the SN
DAB-labeled DA neurons were visualized by bright-field 
microscopy (OMAX microscope, Gyeonggi-do, Korea). 
For counting purposes, the left hemisphere was marked 
by piercing with a 20-gauge needle prior to sectioning the 
SN. Each tissue section containing SN from the right brain 
hemisphere was quantified following IHC. The SN was rep-
resented in an average of 38.9 sections/hemisphere across 
all samples. DA neuron counts included the substantia nigra 
pars compacta and excluded TH+ neurons located in the ad-
joining ventral tegmental area.

Isolation of endothelial cells and assessment of TH 
excision
Primary mouse endothelial cells were obtained by magnet-
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ic-activated cell sorting (MACS) as previously described 
(Shi et al., 1999). Briefly, 6-month-old mice treated with or 
without tamoxifen citrate chow (400 mg/kg) for 6 weeks 
were sacrificed, one liver lobe harvested, and placed in 
DMEM on ice. Livers were then minced using sterile razor 
blades. Each diced liver sample was then transferred to a 
tube containing 100 mg type I collagenase (Rockland Immu-
nochemical, Limerick, PA, USA; MB-118-0100) in 25 mL of 
HBSS (+calcium, +magnesium, +1% BSA). Tubes were in-
cubated with occasional mixing in a 37°C water bath for 60 

minutes. Samples were then filtered through a 70 µm sterile 
cell strainer and centrifuged at 300 × g for 5 minutes at 4°C. 
Supernatants were discarded and pellets washed once with 
0.1% BSA/PBS and centrifuged at 300 × g for 5 minutes at 
4°C. Supernatants were aspirated and pellets resuspended in 
0.5% BSA/PBS with 2 mM ethylenediaminetetraacetic acid 
(EDTA). MACS was performed according to the manufac-
turer’s (MiltenyiBiotec, Auburn, CA, USA) protocol using 
positive selection with CD31 microbeads and MS columns. 
Following endothelial cell isolation, DNA was extracted 
using a mouse tissue DNA extraction kit (Biopioneer, San 
Diego, CA, USA; MAQ-1). PCR was performed using the 
following primers: TAG GGA GAT GCC AAA GGC TA; 
CAG GAC CCA ACA GAA GCA TT. Thermocycling was 
done using the following parameters: annealing temperature 
= 62°C, 30 seconds; extension time = 30 seconds; cycles = 
35. PCR products were labeled with SYBR safe and resolved 
on a 1.5% agarose gel.

Statistical analysis
DA neuron counts were analyzed for significance (P < 0.05) 
among groups using a multiple-way analysis of variance 
(ANOVA) in conjunction with a post hoc Tukey’s test using 
GraphPad Prism 6 software (GraphPad, La Jolla, CA, USA). 
Means are shown and the standard error of the mean is rep-
resented by error bars. 

Tamoxifen (Tam) citrate-laden chow (400 mg/kg 
food pellet) was fed ad libitum to 3-month-old 
transgenic mice (A). Brains were harvested, im-
munohistochemistry was performed for tyrosine 
hydroxylase (TH) immunoreactivity, and dopami-
nergic (DA) neurons quantified at 13 and 26 weeks 
following tamoxifen administration. No difference 
was observed among groups at 13 weeks following 
tamoxifen treatment (B). However, at 26 weeks 
post-treatment, VE-cadherinCRE-ERT2:THlox/THlox 
mice showed significantly reduced DA neurons in 
the substantia nigra compared with control groups 
(C). Every tissue section in the right hemisphere 
containing substantia nigra was counted. Statis-
tical analysis was performed using multiple-way 
analysis of variance in conjunction with post hoc 
Tukey’s test (6 mice/group; error bars = SEM; *P < 
0.05, vs. all other groups). Nigral DA neurons were 
observed by immunohistochemistry using a tyro-
sine hydroxylase (TH) antibody (3′-diaminoben-
zidine staining). Representative images are shown 
for mice at 26 weeks post tamoxifen treatment 
(scale bars: 500 µm) (D). 

Figure 3 Endothelial tyrosine hydroxylase (TH) gene excision from 
VE-cadherinCRE-ERT2:THlox/THlox transgenic mice treated with tamoxifen.
Endothelial cells were isolated by magnetic cell sorting (CD31-conjugated 
beads) from livers harvested from untreated or tamoxifen (TAM)-treated 
(400 mg/kg chow, 6 weeks) mice. DNA was then extracted and PCR was 
performed to verify excision of TH gene in endothelial cells. WT: Wild 
type.  

Figure 2 Adult nigral dopaminergic (DA) neurogenesis by VE-cadherin+ progenitor cells.

Figure 1 Inducible transgenic mouse model for adult 
dopaminergic neurogenesis assessment.
Three-month-old mice expressing CRE-ERT2 under the 
control of a VE-cadherin promoter were given tamoxifen 
(TAM)-laden chow, resulting in excision and silencing of 
the loxP-containing tyrosine hydroxylase (TH) gene (ho-
mozygous) in VE-cadherin-positive cells. 
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Results
Nigral dopaminergic NPCs express VE-cadherin
To test whether DA neurons arise from an endothelial cell 
lineage in adult animals, we generated the transgenic mouse 
shown in Figure 1 where, in effect, the TH gene is being 
utilized as a genetic cell lineage tracing marker. A Vascular 
Endothelial Cadherin promoter was used to drive expres-
sion of a tamoxifen-activatable CRE recombinase (VE-cad-
herin CREERT2) in endothelial cells (Monvoisin et al., 2006). 
Upon activation of CRE activity by tamoxifen treatment in 
adult mice (three months of age), the TH gene was silenced by 
excision in VE-cadherin positive cells. Twenty-six weeks af-
ter initiation of a 6-week tamoxifen treatment, the mice were 
assessed for loss of nigral DA (TH+) neurons (Figure 2A). 
Interestingly, VE-cadherinCRE-ERT2 mice receiving tamoxifen 
displayed a reduction in DA neurons within the SN (Figure 
2C). To verify whether this loss resulted from TH excision 
in DA progenitors or from existing mature DA neurons, we 
assessed DA neurons in a cohort of VE-cadherinCRE-ERT2:THlox/
THlox mice 13 weeks after tamoxifen administration (Figure 
2B). We observed no loss in nigral DA neurons in this group, 
indicating that TH excision occurred in cells other than in 
mature DA neurons. In addition, we confirmed successful 
TH excision from endothelial cells isolated from tamoxifen 
treated VE-cadherinCRE-ERT2:THlox/THlox mice (Figure 3).

Discussion
Determining whether DA neurons undergo adult neuro-
genesis is very important to understand fundamental brain 
physiology as well as develop potential therapies to combat 
their loss. Our current study has presented evidence in favor 
of dopaminergic neuron regeneration in adult mice through 
VE-cadherin-expressing NPCs. This finding builds upon 
previous work demonstrating that Nestin+/Sox2- NPCs in 
the adult mouse brain regenerate nigral DA neurons in a 
slow, progressive manner (Albright et al., 2016). These re-
sults are also consistent with the possibility of an endothelial 
cell-derived DA NPC population in adult mice. 

The data presented here might also explain the mounting 
evidence linking DA neuron and endothelial physiology. In 
addition to the ability to produce and respond to dopamine, 
endothelial cells exhibit acute sensitivity to inflammatory 
response and oxidative stress (Pober and Sessa, 2007). In-
terestingly, oxidative stress has been shown to cause mes-
enchymal transdifferentiation of endothelial cells in vivo, 
providing further support for the plasticity of endothelial 
cells (Montorfano et al., 2014). If DA neurons share a close 
lineage with endothelial cells, our findings offer an explana-
tion for the unique sensitivity of DA neurons toward oxida-
tive and inflammatory response-based systemic insults.  For 
example, peripheral administration of the potent oxidizing 
agent paraquat has been reported to cause the specific loss 
of nigrostriatal DA neurons (McCormack et al., 2002). In 
addition, systemic (intraperitoneal) administration of bacte-
rial lipopolysaccharide twice weekly for 6 months results in 
chronic inflammatory response and in a selective, slow, and 

progressive loss of DA neurons in the SN (Qin et al., 2007; 
Frank-Cannon et al., 2008). Furthermore, the neurotoxic ef-
fect of MPTP on DA neurons can be completely halted with 
anti-inflammatory therapy (Aubin et al., 1998; Nomura et 
al., 2011). Similarly, NSAID use, particularly ibuprofen, has 
been correlated with a reduced incidence for PD suggesting 
the presence of an inflammatory instigator in human dis-
ease that targets these neurons (Chen et al., 2003; Gao et al., 
2011). Therefore, a growing body of data indicates that DA 
neurons experience heightened sensitivity, compared with 
other neural populations, to insults that could, in part, be 
explained by physiology shared with endothelial cells. 

Recent work by multiple groups in diverse systems has 
revealed the existence of replication-independent adult 
neurogenesis (Nishimura et al., 2011; Barbosa et al., 2015; 
Fuentealba et al., 2015; Bifari et al., 2016). These studies have 
shown that quiescent NPCs, produced and expanded during 
embryogenesis, directly differentiate into neurons as needed 
in the adult animals. If a similar mechanism is responsible 
for the generation of DA neurons in adults, it would provide 
an explanation for an inability to detect DA neurogenesis 
using assays that rely upon nucleotide analog incorporation 
(e.g., BrdU) (Frielingsdorf et al., 2004). Additionally, pre-
vious studies employing a nucleotide labeling strategy have 
utilized a relatively short post-labeling period before brain 
harvesting, ranging from 8 hours to 6 weeks (Kay and Blum, 
2000; Zhao et al., 2003; Frielingsdorf et al., 2004; Aponso et 
al., 2008). This approach could dramatically limit the abili-
ty to detect DA neurogenesis if, as our results suggest, this 
process occurs at a very slow rate and is, using our method, 
undetectable at 13 weeks post-labeling. If a replicative pop-
ulation of DA NPCs exists, then it will be essential to allow 
enough time for differentiation into a TH+ neuron to occur 
before assessment. Therefore, further investigations using 
alternative strategies, like the one demonstrated here, are 
warranted to identify the precise source of DA NPCs and 
characterize this regenerative process so that it can be har-
nessed for therapeutic benefit. 
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