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We propose several modifications to an existing computational model of stochastic
vesicle release in inner hair cell ribbon synapses, with the aim of producing simulated
auditory nerve fiber spiking data that more closely matches empirical data. Specifically,
we studied the inter-spike-interval (ISI) distribution, and long and short term ISI correlations
in spontaneous spiking in post-synaptic auditory nerve fibers. We introduced short term
plasticity to the pre-synaptic release probability, in a manner analogous to standard
stochastic models of cortical short term synaptic depression. This modification resulted
in a similar distribution of vesicle release intervals to that estimated from empirical data.
We also introduced a biophysical stochastic model of calcium channel opening and closing,
but showed that this model is insufficient for generating a match with empirically observed
spike correlations. However, by combining a phenomenological model of channel noise
and our short term depression model, we generated short and long term correlations in
auditory nerve spontaneous activity that qualitatively match empirical data.
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1. INTRODUCTION
In the vertebrate auditory pathway, the inner hair cell and audi-
tory nerve (IHC-AN) complex is the principal structure for the
transduction of basilar membrane motion to stochastic trains of
action potentials (Mulroy et al., 1974; Glowatzki and Fuchs, 2002;
Johnson et al., 2009; Matthews and Fuchs, 2010). A computa-
tional model of the IHC-AN complex was proposed by Meddis
(1986), and later modified by Sumner et al. (2002) to become
a component in a larger computational model of the transfor-
mations of sounds by the middle ear. Unlike the Meddis (1986)
model, in the Sumner et al. (2002) model, vesicle release from
the IHC to the cleft was conceptualized as quantal and accruing
with a probability that had a third power dependence on pre-
synaptic calcium concentration. Later, the Sumner et al. (2002)
model was modified by Meddis (2006) to take into account more
physiological functions.

Here, we present a revised version of the Meddis (2006) model
of the IHC-AN complex, with the aim of enhancing understand-
ing of the biophysical sources of stochastic variability in the IHC-
AN complex, by generating auditory nerve spontaneous spiking
that provides an improved statistical match with empirical data.

The Meddis (2006) model includes a probabilistic “rela-
tive refractoriness” component, which is designed to replicate
observed variation in the minimum time between spikes in AN
fibers. Here we propose a pre-synaptic physiological explana-
tion as the cause for what is attributed to post-synaptic relative
refractoriness (note that we do not alter the original model’s
“absolute refractory” period, which models spike generation
and membrane potential recovery). Specifically, we introduce a
model of short term depression in pre-synaptic vesicle release,

similar to short term plasticity models developed for corti-
cal synapses (Tsodyks and Markram, 1997; Scott et al., 2012;
Hennig, 2013; McDonnell et al., 2013). Unlike most such mod-
els, the conceptual model here is that there is a temporarily
reduced probability of pre-synaptic vesicle release, following
each actual release. Also unlike those models, the input to the
synapse is not discrete spiking events, but instead the contin-
uously valued membrane potential of the inner hair cell. The
reason our model is suitable for capturing phenomena that
have traditionally been attributed to post-synaptic relative refrac-
toriness is that it introduces variability in the time between
vesicle releases, which in turn leads to variability in the mini-
mum time between post synaptic spikes. Our reasons for seeking
this alternative conceptual model are given in the Discussion
section.

We compare the resulting auditory nerve spontaneous firing
statistics of our model with the firing statistics published by Heil
et al. (2007). For spontaneous neural activity in auditory nerve
fibers, inter-spike interval (ISI) distributions have been shown
by Heil et al. (2007) to match empirical data better if the vesicle
release inter-event interval (IEI) distribution was assumed to be a
mixture of an exponential function and a gamma function with
shape factor 2, both having the same scale parameters. We show
that the probability density function (PDF) of ISI data obtained
by Heil et al. (2007) fits PDF of ISI data obtained from our simu-
lation if the time constant of short term depression is assumed to
be around 2.5 ms.

Short and long term correlations have been observed in the
spontaneous activity of auditory nerves (Teich, 1989; Lowen and
Teich, 1992; Teich and Lowen, 1994). For individual auditory
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nerve fibers, it was shown that the Fano factor for spike counts
increases for time scales from around 100 ms to tens of seconds
indicating positive long term correlation and decreases slightly
for time scales of around tens of milliseconds indicating short
term negative correlation (Teich, 1989; Lowen and Teich, 1992;
Teich and Lowen, 1994). Here we include a calcium channel noise
model in the Meddis (2006) model. We show that for sponta-
neous activity, this biophysical noise model does not generate the
short and long term correlations observed in the Teich and Lowen
(1994) Fano factor curves.

However, we also modify the Meddis (2006) model to include
a combination of a phenomenological model of IHC calcium
channel noise and our model of short term depression in vesicle
release. Using this model, for auditory nerve spontaneous activ-
ity, we generate Fano factor time curves that qualitatively match
empirical Fano factor time curves of Teich and Lowen (1994);
Teich (1989); Lowen and Teich (1992).

2. MATERIALS AND METHODS
Firstly, in Section 2.1, we review the previous models that our
research is built upon:

• The inner hair cell model of Meddis (2006).
• The deterministic, stochastic and phenomenological synapse

models of Meddis (1986), Meddis (2006), and Zilany et al.
(2014).

• The vesicle-release-to-AN-spike-conversion models of Meddis
(1986), Meddis (2006), Sumner et al. (2002) and Zilany et al.
(2014).

Then in Section 2.2, we provide a review of previous statistical
analysis of empirical auditory nerve spontaneous activity data
including research published by Heil et al. (2007), Teich and
Lowen (1994), Teich (1989) and Lowen and Teich (1992). The
final models we describe in Section 2.3 are our modifications to
the Meddis (2006) model. These are designed to enhance under-
standing of the biophysical origin of stochastic variability in AN
spiking, and to generate auditory nerve spontaneous spiking that
provides an improved statistical match with empirical results, as
described in Section 2.2.

2.1. PREVIOUS MODELS
2.1.1. Inner hair cell model
Meddis (2006) describes a deterministic calcium-dependent
model for converting the membrane potential of an inner hair
cell, v(t), to a vesicle release rate, k(t). We use c(t) to describe
the intra-cellular calcium concentration (relative to its rest con-
centration) as a function of time. In the model, the release-rate
for available vesicles, k(t), is proportional to the cube of c(t). The
calcium concentration depends on four constants, τc, Gc, Ec, ν,
on the membrane potential, v(t), and on an additional variable,
m(t), where m3(t) represents the fraction of open channels at time
t as well as the probability of a calcium channel to be open. This
depends on three constants, γ , β and τm, and on v(t). Note that
m3(t) is bounded to the interval [0, 1], which is essential for it to
physically represent a fraction of open channels. The maximum
value of 1 occurs when v(t) is large and positive and the minimum
value of 0 occurs when v(t) is large and negative.

In summary, the model has the following parameters:

• b is a parameter that can be varied to match data.
• Ec is the calcium reversal potential.
• Gc is the maximum calcium conductance.
• τc is the time constant of calcium clearance.
• τm, γ and β are constants that describe the voltage-dependent

calcium current flow.
• ν is the unit correction constant.

The values of these parameters are summarized in Table 1. The
equations describing conversion from v(t) to k(t) are

k(t) = max(0, bc3(t)), (1)

dc(t)

dt
= − c(t)

τc
+ νGcm3(t)(Ec − v(t)), (2)

dm(t)

dt
= −m(t)

τm
+ 1

τm

(
1 + e−γ v(t)

β

) , (3)

where k(t) has units of releases per second. We have modified
the Meddis (2006) and Sumner et al. (2002) models by introduc-
ing a constant ν with units of MA−1s−1 to ensure all terms in
Equation (2) have units of Ms−1, where M is the unit of molar
concentration. By fitting to the saccular hair cells of the bull-frog
data, it has been shown (Hudspeth and Lewis, 1988) that

ν = L

2FCvζ
, (4)

where F is Faraday constant, Cv is the cell volume, ζ is the
fraction of cell volume where calcium is accumulated to and L
is the proportion of free calcium in the neuron. The values of
these parameters are summarized in Table 2, with the result that
ν = 2.3 × 109 MA−1s−1.

To confirm that our proposed model enhancements have no
effect on previously established model features, in the Results sec-
tion we compare the average vesicle release rates obtained from
simulation of the proposed model to the average vesicle release

Table 1 | Parameters for inner hair cell calcium levels.

Parameter Description Value

Ec (V ) Calcium reversal potential 0.066

Gc (S) Maximum calcium conductance 1.4 × 10−8

τc (s) Calcium clearance time constant 240 × 10−6

τm (s) Time constant of calcium current 5 × 10−5

γ (V −1) 100

β 400

gc (S) Single calcium conductance 15 × 10−12

v (V ) Intracellular inner hair cell potential −0.0605

The value of gc was obtained from Zampini et al. (2013). The value of v was

obtained by running MAP BS with no stimulus present. All other values are

identical to those used in publicly available Matlab source code MAP BS at

http:// www .essexpsychology .macmate.me/ HearingLab/ modelling.html.
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Table 2 | Parameters for calculating ν = L
2F Cv ζ

.

ν L ζ Cv

(MA−1s−1) (pl)

2.3 × 109 0.02 3.4 × 10−5 1.25

Values obtained from Hudspeth and Lewis (1988).

rate obtained from simulation of the Meddis (2006) model. We
introduce the notation k as the simulated average vesicle release
rate. We show that the changes that we make to Meddis (2006)
model result in k that are close to k obtained from the origi-
nal model of Meddis (2006). The parameter k for the various
proposed models are summarized in the tables.

A positive calcium current is required to increase the calcium
concentration but in the Meddis (2006) and Sumner et al. (2002)
models, calcium current is negative (i.e., inward) when v(t) < Ec.
Therefore, we have used (Ec − v(t)) in Equation (2) instead of
(v(t) − Ec) used in the Sumner et al. (2002) and Meddis (2006)
models. The max( · ) function is included in Equation (1) since
although it is possible for c(t) < 0 in the model (which represents
calcium concentration less than its rest value), the rate k(t) can-
not be negative. Note that the final term in Equation (2) has the
form of the deterministic Hodgkin and Huxley (1952) voltage-
gated ion channel current model. Later, we replace this with a
model of stochastically opening and closing ion channels.

2.1.2. Deterministic synapse model
The input to the deterministic synapse model of Meddis (1986)
is the rate at which the neurotransmitter is released to the cleft,
k(t). There are three continuous-time-dependent variables that
describe transport between a vesicle “factory,” an “immediate
store,” the synaptic cleft, and a vesicle “recycling pool”:

• the amount of releasable neurotransmitter, x(t) ∈ [0, M];
where M is the maximum amount of neurotransmitter in the
immediate store.

• the amount of neurotransmitter in the cleft, y(t).
• the amount of neurotransmitter being recycled, z(t).

There are four parameters that have units of rate:

• r1 is the rate of manufacture of neurotransmitter from the
“factory.”

• r2 is the rate of restoration of neurotransmitter from the
recycling pool.

• r3 is the rate at which neurotransmitter is lost in the cleft.
• r4 is the rate at which neurotransmitter is moved from the cleft

to the recycling pool.

The values of these parameters are summarized in Table 3. The
deterministic Meddis (1986) synapse model is of the following
form

dx(t)

dt
= A(t)x(t) + B, (5)

where

Table 3 | Parameters for neurotransmitter release with values

identical to those used in publicly available Matlab source code

MAP BS at http://www.essexpsychology.macmate.me/HearingLab/

modelling.html.

Parameter Description Value

r1 (s−1) Manufacturing rate 2

r2 (s−1) Restoration rate 100

r3 (s−1) Loss rate 30

r4 (s−1) Recycling rate 150

A(t) =
⎡
⎣−r1 − k(t) 0 r2

k(t) −r3 − r4 0
0 r4 −r2

⎤
⎦ ,

B =
⎡
⎣ r1M

0
0

⎤
⎦ and x(t) =

⎡
⎣ x(t)

y(t)
z(t)

⎤
⎦ . (6)

2.1.3. Stochastic synapse model
Subsequently, Sumner et al. (2002) and Meddis (2006)
modified Meddis (1986) to build a model where movement
of neurotransmitter is stochastic rather than deterministic and
neurotransmitter in the immediate store is quantal rather than
continuous. The stochastic Meddis (2006) synapse model is of
the following form,

dx

dt
= B(r1, (M − x(t))) + B(r2, �z(t)�) − B(k(t), x(t)), (7)

dy

dt
= B(k(t), x(t)) − r3y(t) − r4y(t), (8)

dz

dt
= r4y(t) − B(r2, �z(t)�). (9)

Stochastic movement of discrete vesicles of neurotransmitter is
described by the binomial random variable, B(ρ, n): if there are
n vesicles available during a small dt, each with equal probability
of moving ρdt, then B(ρ, n) is the number of vesicles moving
during dt. Vesicles in the immediate store are quantal so z(t) is
mapped to the largest previous integer, �z(t)�.

2.1.4. Phenomenological synapse model
It has been shown that by using rate estimates from a frac-
tional Gaussian noise driven Poisson process model, the shape of
published histograms of spontaneous discharge rate (Liberman,
1978) can be reproduced (Jackson and Carney, 2005). This has
been incorporated into a phenomenological model of the synapse
in the IHC-AN complex by Zilany et al. (2009); Zilany and
Carney (2010); Zilany et al. (2014). This synapse model has both
exponential and a power-law adaptation functions. The expo-
nential adaptation is implemented using the diffusion model
of Westerman and Smith (1988). The exponential adaptation path
is followed by two parallel fast and slow power-law adaptation
function. The fractional Gaussian noise is incorporated in the
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slow power-law adaptation path. The input to the synapse model
is the relative membrane potential of the inner hair cell.

2.1.5. Models for converting vesicle release to AN spikes
In the deterministic rate model of Meddis (1986), the amount of
neurotransmitter in the cleft causes a post-synaptic spike at time
t with probability,

pconv(t) = hy(t)dt, (10)

where h is a constant. An absolute refractory period of 1 ms dur-
ing which no spike can occur is applied. A relative refractory
period is not considered.

In the quantal stochastic model of Meddis (2006), each ejected
vesicle to the cleft can generate a spike in the auditory nerve after
an absolute refractory period (ARP) and relative refractory period
(RRP) are considered. If a vesicle is released, a spike in the post-
synaptic AN is generated if pconv(t) is greater than a uniformly
distributed random number between 0 and 1.

pconv(t) =
{

0 if t − tl < tA,

1 − Cre
−(

t − tl − tA
tR

)
if t − tl ≥ tA,

, (11)

where Cr = 1, tR = 0.6 ms is the time constant of relative refrac-
toriness, tA = 0.75 ms is the ARP, t is the current time, and tl is
the time of the previous spike.

The conversion model of Sumner et al. (2002) is very simi-
lar to the conversion model in the Meddis (2006) model. The
differences are that in the Sumner et al. (2002), Cr = 0.55 and
tR = 0.8 ms.

In the Zilany et al. (2009), Zilany and Carney (2010)
and Zilany et al. (2014) spike generator model, spike times in
the auditory nerve are generated by a renewal process that simu-
late a non-homogeneous Poisson process driven by the output of
the synapse model.

2.2. PREVIOUS STATISTICAL ANALYSIS
2.2.1. Empirical vesicle release distribution
Heil et al. (2007) has shown that the empirical ISI distribution
for spontaneous neural activity in cat auditory nerve fibers is bet-
ter described if the IEI distribution for vesicle release events is a
mixture of an exponential distribution and a gamma distribution.
The gamma distribution has a shape parameter equal to two, and
both the gamma distribution and the exponential distribution
have the same scale parameter.

To calculate the ISI parameters, ARP and RRP in the form of
Equation (11) are used. Two additional parameters are involved:

• θ is the scale factor for both the exponential distribution and
the gamma distribution;

• ρ is the fraction of gamma distribution in the mixture.

Heil et al. (2007) obtained the following equation describing the
ISI probability density function (PDF),

D(t) =

⎧⎪⎪⎨
⎪⎪⎩

θ

tR(θ − 1
tR

)
((e

−(
t − tA

tR
) − e−θ(t − tA))(1 − ρ + ρθ

θ− 1
tR

)

−ρθ(t − tA)e−θ(t − tA)) for t ≥ tA,

0 for t < tA,

(12)

2.2.2. Empirical firing correlations
The Fano-factor time curve is a measure of correlation over time.
Fano-factor is dispersion in a variable, as a function of an increas-
ing time-window for obtaining data on which to estimate the
dispersion. For a spike train, the Fano-factor is the variance of
the number of spikes in a time window divided by the mean of
number of spikes from a single spike train in that time window.
We denote:

• T as the size of a specific counting time window.
• F(T) as the Fano-factor for window size T.

Teich and Lowen (1994), Kelly (1994), Teich (1989), Lowen
and Teich (1992) plotted empirical Fano-factor time curves for
neural activity in mammalian auditory nerve fibers as seen in
Figures 1A,B. The Fano-factor is 1 for sufficiently small time win-
dows. It slightly decreases to below 1 over time scales on the order
of tens of ms after which it increases monotonically and reaches
more than 10 for time windows of a few tens of seconds. It has
been shown that negative short term correlation observed in the
Fano factor curve of spontaneous activity of a simulated AN fiber
model with second order refractory behavior matches the data
of Lowen and Teich (1992) for time windows between 15 ms and
100 ms (Gaumond, 2002).

2.3. NEW MODELS
2.3.1. Short-term depression in vesicle release probability (STDv)

In AN spontaneous spike trains, the shortest ISIs occur much
less frequently than the most likely ISIs (Heil et al., 2007).
In Meddis (2006), this feature of ISI statistics is accounted for
by ARP and RRP. Given this model includes variable relative
refractory times in AN fibers, during which pre-synaptic vesi-
cle release is unaffected, this would mean many vesicles are
released that do not give rise to spikes. We therefore seek an
alternative model in which what has been attributed to refrac-
toriness is actually mainly due to pre-synaptic effects, due to
vesicles not being released at all for durations longer than the
absolute refractory period of the ANs. We return to this in
Discussion.

Our hypothesis is that all vesicle releases, apart from any
that occur during the absolute refractory period, cause action
potentials, but that vesicle release is subject to short term
depression. We introduce short term depression to pre-synaptic
release probability in a manner analogous to standard stochas-
tic models of cortical short term depression (Tsodyks and
Markram, 1997; Wang, 1999; Hennig, 2013; McDonnell et al.,
2013). In this model, immediately following release, the prob-
ability of release drops dramatically and then, increases back
to a baseline level over a time frame that matches the spike
data.

There are two additional parameters introduced in this model:
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FIGURE 1 | (A) Time-window dependent Fano-factor for driven and spontaneous activities in the auditory nerve fiber. Figure created from data in Teich and
Lowen (1994), Kelly (1994), Teich (1989). (B) Time-window dependent Fano factor of (A) on linear axes for time windows shorter than 0.1 s.

• τs is the time constant of short term depression.
• a is a fraction indicating an instantaneous decrease in release

probability.

The model for the change of k(t) over time is

dk(t)

dt
= max(0, bc3(t)) − k(t)

τs
+ ak(t)

∑
i

δ(t − tvi ), (13)

where tvi is the time of ith release.

2.3.2. Channel noise in inner hair cell calcium channels
Auditory nerve spike trains show positive long term correla-
tion and usually negative short term correlation (Teich, 1989;
Lowen and Teich, 1992; Kelly, 1994; Teich and Lowen, 1994). We
hypothesize that a possible origin of the correlation is stochastic
variability in the inner hair cell calcium channels. A biophysical
model and a phenomenological model of calcium channel noise
in the inner hair cell are built.

2.3.2.1. Biophysical model. In the Meddis (2006) model, long
term correlation observed in AN fibers can be partially explained
by depletion of readily available vesicles, as explained in the
Results section. In the Results section, we show that the Meddis
(2006) depleted model with readily available vesicles depleted by
decreasing the maximum number of vesicles in the immediate
store, or by increasing the spontaneous rate, both require much
higher vesicle release rate than the non-depleted Meddis (2006)
model.

Other possible origins of the observed long term correlation
have been suggested, including fractal ion channel gating (Teich,
1989; Liebovitch and Toth, 1990), fractal behavior of the spe-
cialized proteins with direct role in exocytosis (Lowen et al.,
1997), self-organized criticality in ion channel gating for example
due to ion-conformational interaction (Kharkyanen et al., 1993;
Brazhe and Maksimov, 2006), and fractal dynamics of transmitter
diffusion in the synaptic junction (Teich, 1989).

An integrate and fire model with renewal point process input
has been suggested to be capable of producing long term cor-
relation that matches empirical data from spike trains of cor-
tical neurons (Jackson, 2004). Unlike cortical neurons, inner

hair cells encode graded input with a graded membrane poten-
tial (Van Steveninck and Laughlin, 1996). We aim to cast light
on the possible biophysical mechanisms in the IHC-AN complex
that can produce renewal point processes and hence long term
correlation in the spike trains of auditory nerves.

Meddis (2006) assumes the calcium concentration dependence
of the release probability to be due to voltage dependent calcium
channels. We hypothesize that a possible biophysical mechanism
of the fractional Gaussian noise in Jackson and Carney (2005);
Zilany et al. (2009); Zilany and Carney (2010); Zilany et al. (2014)
is the random fluctuations in the number of open and closed
calcium ion channels as they are expected to cause variability in
vesicle release probabilities.

We introduce to the Meddis (2006) model a four-state
model of channel gating with standard transition rate formu-
lae (Goldwyn and Shea-Brown, 2011; Schmerl and McDonnell,
2013),

α(v) = 1

τm

(
1 + e−γ v(t)

β

) , (14)

β(v) = 1

τm
− α(v). (15)

Equation (2) therefore changes to

dc(t)

dt
= − c(t)

τc
+ νgcn(t)(Ec − v(t)), (16)

where n(t) is the number of open calcium channels out of total
of N calcium channels and gc is the single calcium channel
conductance.

2.3.2.2. Phenomenological model. We consider a phenomeno-
logical model of calcium channel noise that we add to the Meddis
(2006) model. Instead of modeling discrete channel noise, we
add an Ornstein Uhlenbeck process to the mean fraction of open
calcium channels, m3(t). Equation (2) changes to:

dc(t)

dt
= − c(t)

τc
+ νGc(f (m3(t) + X(t)))(Ec − v(t)), (17)

Frontiers in Computational Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 163 | 5

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Moezzi et al. Auditory nerve spontaneous firing statistics

where f ( · ) := max (0, min (1, ·)) ensures the fraction of open
channels is restricted to the interval [0, 1] and X(t) is a noise
driven from Ornstein Uhlenbeck process; i.e.,

dX(t) = dt

τo
(μo − X(t)) + σodWt, (18)

where Wt denotes the Wiener process and the mean (μo), time
constant (τo) and variance (σo) of the noise are positive constants.

2.3.3. Noise in inner hair cell membrane potential
We also consider an alternative phenomenological model of noise
where the IHC membrane potential is subject to an additive
Ornstein Uhlenbeck process. Equation (2) changes to:

dc(t)

dt
= − c(t)

τc
+ νGcm3(t)(Ec − v(t) − X(t)), (19)

2.3.4. Combination of short term depression in vesicle release
model and phenomenological calcium channel noise model

A possible origin of short term correlation in AN spike trains is a
form of refractoriness (Teich and Lowen, 1994). We introduce a
model that combines short term depression in vesicle release and
phenomenological calcium channel noise as follows

dk(t)

dt
= k1(t) − k(t)

τs
+ ak(t)

∑
i

δ(t − tvi ), (20)

where k1(t) is the vesicle release rate when Ornstein Uhlenbeck
noise is added as calcium channel noise in the Meddis (2006)
model.

2.4. PARAMETERS
The parameters in Table 1 (except gc), in Table 3, and for tA and tR

(except in Table 5) were obtained from publicly available Matlab
source code MAP BS at http://www.essexpsychology.macmate.
me/HearingLab/modelling.html. The parameters in Table 2 and
for gc were obtained from the literature (Hudspeth and Lewis,

1988; Zampini et al., 2013). The values of b and bc(t)3 were cho-
sen in order to produce the desired spontaneous rates in AN
fibers. In Table 5, the parameters τs, tR and a were obtained
through parameter searches, in order to obtain a close quantita-
tive fit to the data of Heil et al. (2007), while keeping estimated
values of θ and ρ close to the results of Heil et al. (2007).
The parameters τo, σo and μo were chosen to produce sponta-
neous activity in the auditory nerve that qualitatively matches the
empirical Fano factor data of Teich and Lowen (1994).

The maximum number of readily releasable vesicles in the
immediate store, M, in the Meddis (2006) model is considered
to be 10. Moser and Beutner (2000) suggested the average num-
ber of vesicles in the immediate store to be about 14 vesicles per
active zone. Khimich et al. (2005) suggested a readily release pool
of about 22 docked vesicles in the IHC of mouse. Pangršič et al.
(2010) estimated a readily releasable pool of 12 vesicles per active
zone in the pachanga mouse. We assumed the maximum readily
available pool size, M, to be 20 vesicles per active zone.

3. RESULTS
3.1. PREVIOUS MODELS
Figures 2A (Gray) and 2B (Gray) show the Fano factor time
curve of a spike train generated by the Zilany et al. (2014)
synapse model. These figures are obtained by running the
model code available at http://www.urmc.rochester.edu/labs/
Carney-Lab/publications/auditory-models.cfm, with a relative
membrane voltage input of 0 V. Like the empirical Fano factor
of Figure 2A (Light blue), the Fano factor increases to about 10
for large counting time windows. The Fano factor in Figure 2A
(Gray) does not decrease below one for shorter time windows as
much as the empirical Fano factor shown in Figure 2A (Light
blue) does. The time scales of the correlation do not match
empirical data of Figure 2A (Light blue).

In the Meddis (2006) model, long term correlation observed
in the auditory nerves can be partially explained by depletion of
readily available vesicles in the immediate store. In Figures 2A,B,
the blue trace is the Fano factor time curve for the original Meddis
(2006) model with a maximum number of readily available

FIGURE 2 | Time window dependent Fano factor for spontaneous

activity in the auditory nerve obtained from previous models. (A) Gray:
Fano factor time curve for a spike train generated by the Zilany et al. (2014)
model with SR∼100 spikes per second. Blue, green, red: in the
original Meddis (2006) model, by decreasing the maximum number of
available vesicles from M = 20 with SR∼65 spikes per second (Blue) to M =
6 with SR∼65 spikes per second (Red) or increasing the spontaneous firing

rate from SR∼65 spikes per second with M = 20 to SR∼160 spikes per
second with M = 20 (Green), short term negative correlation starts at smaller
time windows and long term positive correlation is increased. Light blue:
Empirical data from spontaneous activity in auditory nerve with SR∼ 65
spikes per second created from data in Teich and Lowen (1994). (B)

Time-window dependent Fano factor of (A) on linear axes for time windows
shorter than 0.1 s. Parameters are summarized in Table 4.
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vesicles of M = 20 and a spontaneous rate of around 65 spikes
per second. The red trace is the Fano factor time curve for the
original Meddis (2006) model with a maximum number of read-
ily available vesicles of M = 6 and a spontaneous rate of around
65 spikes per second. The green trace is the Fano factor time curve
for the original Meddis (2006) model with a maximum number
of readily available vesicles of M = 20 and a spontaneous rate of
about 160 spikes per second. The Fano factor curves in red and
green increase to higher values than the Fano factor curve in blue
does for large time windows and are a better qualitative match to
the empirical data of Figure 2A (Light blue). The Fano factor does
not reach 10 for sufficiently large time windows. The magnitude
of the decrease in Fano factor below one for shorter time windows
is comparable to the empirical data of Figure 2A (Light blue.)

As shown in Figure 2A, long term correlation in the Meddis
(2006) model can be partially produced if either the maximum
number of releasable vesicles is decreased or the firing rate is
increased, both of which cause depletion of available vesicles in
the immediate store. In this model, low spontaneous rate fibers
are associated with smaller pools of vesicles, and high sponta-
neous rate fibers are associated with larger pools of vesicles. In the
depleted model, the time scales of the correlation do not match
the empirical data of Figure 2A (Light blue). Depletion of vesicles
moves the onset of short and long term correlations to smaller
time windows.

Depletion of available vesicles in the Meddis (2006) model (by
decreasing the maximum number of available vesicles from 20
with SR of about 65 spikes per second to 6 with SR of about
65 spikes per second, or by increasing the spontaneous rate to
around 160 spikes per second with maximum number of avail-
able vesicles of 20) produces an average vesicle release rate, k, of
107 and 55 (s−1) respectively that are both much larger than 5
(s−1), which is the k of the Meddis (2006) model with a maxi-
mum number of available vesicles of 20 and the spontaneous rate
of about 65 spikes per second.

3.2. SHORT-TERM DEPRESSION MODEL
Here we consider the case where the relative refractoriness
component of the Meddis (2006) model is removed and we
use our alternative model of short term depression in vesicle

release probability. That is, the release rate in the Meddis (2006)
model , k(t), as given by Equation (1), was replaced by k(t) of
Equation (13), and relative refractoriness in the auditory nerve
was omitted. Using this model, ISI data for spontaneous activity
in an AN fiber was simulated.

The effect of substituting relative refractoriness in the auditory
nerve with short term depression in vesicle release in the Meddis
(2006) model is more clearly observed in the simulated data when
the absolute refractory period is (unrealistically) assumed to be
zero. Under this assumption, Figure 3A shows that in the Meddis
(2006) model, similar to including relative refractoriness in the
auditory nerve, the alternative model of short term depression in
vesicle release leads to the least probable ISIs being larger than
they would otherwise be.

A distribution fitting application which returns maximum
likelihood estimations of the model parameters was used to esti-
mate the parameters that produce the best fit of the simulated
ISIs to the empirical results. Figure 3B shows that the PDF of
the simulated data for the Meddis (2006) model with AN rel-
ative refractoriness replaced by short term depression in vesicle
release in blue and the best fit to Equation (12) in red. The refrac-
tory time constants, tA and tR, were kept at fixed values. The free
parameters, θ and ρ, were estimated.

The models in Figures 3A,B were fitted to Equation (12), and
the corresponding values of θ and ρ were estimated and sum-
marized in Table 5. Parameters τs and a were obtained through
parameter search in order to obtain a good fit to data while
keeping θ and ρ close to the result of Heil et al. (2007).

In two different neurons, Heil et al. (2007) obtained θ =
0.0988 (ms−1) and ρ = 0.39 for tA = 0.69 ms, and tR = 0.58 ms
when SR = 65 spikes per second and θ = 0.0862 (ms−1) and
ρ = 0.43 for tA = 0.73 ms, and tR = 0.41 ms when SR = 57.1
spikes per second. Using the short term depression in vesicle
release model, we estimated θ and ρ to be 0.05 (ms−1) and 0.37,
respectively. Thus, Heil et al. (2007) scaling factors, θ , and frac-
tion of gamma distribution in the mix, ρ, are comparable to what
we obtained with our model with comparable spontaneous rate.

However, while (Heil et al., 2007) assumed the post-synaptic
refractory period to be less than 1 ms, we obtain our result with
a post-synaptic refractory period of a few milliseconds. Despite

FIGURE 3 | (A) PDF of ISIs for the original Meddis (2006) model with
tA = 0 and tR = 0 (Orange), for the original Meddis (2006) model with
tA = 0 and tR = 3.5 ms (Green) and for Meddis (2006) model with relative
refractoriness in the auditory nerve substituted by short term depression
in vesicle release where tA = 0, τs = 3 ms and bc3 = 6 s−1 (Black). (B)

Fitting PDF of ISI data for Meddis (2006) model with relative
refractoriness in the auditory nerve substituted by short term depression
in vesicle release where tA = 0.75 ms, τs = 2.5 ms and bc3 = 5 s−1 to
Equation (12). In all traces, SR∼65 spikes per second. Parameters are
summarized in Table 5.
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this difference, our model has introduced three features to the
model’s ISI distribution that are common with the data of Heil
et al. (2007): an ISI PDF with a single maxima such that the PDF
increases from zero to its peaks for small ISIs just above the abso-
lute refractory period, a comparable scale factor and a comparable
fraction of gamma distribution in the mix of exponential and
gamma distributions.

3.3. CALCIUM CHANNEL NOISE
3.3.1. Biophysical model
Here we consider the case where the biophysical model of calcium
channel noise is added to the Meddis (2006) model. That is, in
the Meddis (2006) model the state of each of N calcium channels
is simulated, stochastic changes of states based on the state dia-
gram of Figure 4 are permitted, and c(t) given in Equation (2) is
replaced by c(t) given by Equation (16).

Using this model, the time-window dependent Fano factor of
spike counts in the auditory nerve model for different numbers
of calcium channels were obtained and shown in Figures 5A,B.
Unlike the empirical data of Figure 5A (Light blue), the Fano
factor does not increase steadily to a value around 10 for long
time windows. A slight decrease in Fano factor for shorter time
windows is observed.

In the hair cells of a chick’s cochlea, for each hair cell, around
100 calcium channels for short hair cells and 341 for tall hair cells
are suggested (Martinez-Dunst et al., 1997), which in turn sug-
gest quite small numbers of channels per synapse. In our model,
no improvement was seen in long term correlation by decreasing
the number of calcium channels from 200 (Black) to 50 (Green),
10 (Red) and 5 (Blue). We conclude that this calcium channel
model fails to add a long term correlation to the spike trains of the

FIGURE 4 | Diagram of calcium channel states and transition rates.

States 1, 2, 3 and 4, respectively have 0, 1, 2 and 3 open subunits. State 4
is the only conducting state.

auditory nerve in the Meddis (2006) model in a way that matches
experimental observations shown in Figure 5A (Light blue).

Adding the biophysical calcium channel model with parame-
ters summarized in Table 6 to the Meddis (2006) model produces
k of 4, 6, 5 and 4 (s−1) respectively for 5, 10, 50, and 200
calcium channels which are all close to 5 (s−1), the k of the orig-
inal Meddis (2006) model with a spontaneous rate around 65
spikes per second and a maximum number of available vesicles of
M = 20.

3.3.2. Phenomenological model
Here we consider the case where the phenomenological model
of calcium channel noise is added to the Meddis (2006) model.
That is, in the Meddis (2006) model, Equation (2) is replaced by
Equation (17).

Using this model, the time-window dependent Fano factor
of spike counts in the auditory nerve model were obtained and
shown in Figures 6A,B (Blue) . It can be seen in Figure 6A (Blue)
that, like empirical Fano factor of Figure 6A (Light blue), the
Fano factor increases to about 10 for large counting time win-
dows. But, the Fano factor in Figure 6A (Blue) does not decrease
below one for shorter time windows as much as the empirical
Fano factor shown in Figure 6A (Light blue) does.

Adding the phenomenological channel noise with parameters
summarized in Table 7 to the Meddis (2006) model produces k of
7 (s−1) which is close to 5 (s−1), the k of the original Meddis
(2006) model with a spontaneous rate around 65 spikes per
second and maximum number of available vesicles of M = 20.

3.4. COMBINING SHORT-TERM DEPRESSION AND CALCIUM CHANNEL
NOISE

Here we consider a combination of short term depression in
vesicle release with the phenomenological model of channel
noise within the Meddis (2006) model. That is, in the Meddis
(2006) model, k(t) from Equation (1) was replaced by k(t) from
Equation (20) and relative refractoriness in the auditory nerve in
the AN fiber was omitted.

Figures 6A,B (Green) show the time-window dependent Fano
factor for auditory nerve fiber spike counts for this model. The
Fano factor for this model increases steadily to about 10 for large

FIGURE 5 | (A) Time-window dependent Fano factor for spontaneous activity
in an auditory nerve fiber model using the biophysical model of calcium
channel noise in the IHC-AN complex applied to the Meddis (2006) model for
different numbers of calcium channels, N. Light blue: Empirical data from

spontaneous activity in auditory nerve with SR∼65 spikes per second
created from data in Teich and Lowen (1994). (B) Time-window dependent
Fano factor of (A) on linear axes for time windows shorter than 0.1 s.
Parameters are summarized in Table 6.
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FIGURE 6 | (A) Time-window dependent Fano factor for spontaneous activity
in an auditory nerve model using Red: phenomenological model of membrane
potential noise in IHC-AN complex applied to the Meddis (2006) model. Blue:
Phenomenological calcium channel noise model applied to the Meddis (2006)
model. Green: adding a combination model of the phenomenological channel
noise and short term depression in vesicle release to Meddis (2006) model.
Light blue: Empirical data from spontaneous activity in an auditory nerve fiber
with SR∼65 spikes per second created from data in Teich and Lowen (1994).
(B) Time-window dependent Fano-factor of (A) on linear axes for time
windows shorter than 0.1 s. (C) Fano factor for the Meddis (2006) model with

the combination of phenomenological channel noise and short term
depression in vesicle release for different maximum numbers of vesicles in
the immediate store on linear axes for time windows shorter than 0.1 s. (D)

Vesicle release rate for (A). The color representations are the same as in (A).
The two subfigures in (D) are for different time scales, i.e., the bottom
subfigure is a zoom into the top subfigure. The rapid decreases in the green
trace in the (D) bottom plot for the combination model of phenomenological
channel noise and short term depression in vesicle release are due to actual
vesicle release while remaining fluctuations are due to channel noise.
Parameter are summarized in Tables 7, 8.

counting time windows. It can be seen in Figure 6B (Green) that
for counting time windows of a few milliseconds, Fano factor
decrease is slightly more than that of Figure 6A (Blue) and hence
a better match to the empirical data of Figure 6A (Light blue).

Adding the combination model of phenomenological channel
noise and short term depression in vesicle release with parameters
summarized in Table 7 to the Meddis (2006) model produces k of
5 (s−1) which is the same as the k of the original Meddis (2006)
model with a spontaneous rate around 65 spikes per second and
maximum number of available vesicles of M = 20.

As the maximum number of available vesicles in the immediate
store decreases, as shown in Figure 6C, the corresponding
minima in the Fano factor curve for shorter time windows
increases and the short and long term correlations compare
quantitatively to the results from the Zilany et al. (2014)
model. k = 10 remains close to the k = 5 from the origi-
nal Meddis (2006) model with a spontaneous rate around 65
spikes per second and a maximum number of available vesicles
of M = 20.

This combination model produces a release rate for which the
baseline level is mainly controlled by Ornstein Uhlenbeck noise
and the post release behavior is mainly controlled by short term
depression in vesicle release as shown in Figure 6D (Green).

3.5. COMPARISON OF CALCIUM CHANNEL NOISE WITH MEMBRANE
POTENTIAL NOISE

Here we consider the inclusion of the phenomenological model of
noise in the inner hair cell membrane potential model in (Meddis,
2006) model. That is, in the Meddis (2006) model, Equation (2)
is replaced by Equation (19).

The time-window dependent Fano factor for AN spike counts
in this model is shown in Figures 6A,B (Red). Like the situa-
tion of Figure 6A (Blue) where the Ornstein-Uhlenbeck noise
is instead included as calcium channel noise, the Fano factor
increases steadily to 10 for larger counting time windows, but
it decreases below unity less than the empirical Fano factor of
Figure 6A (Light blue) for smaller counting time windows.

Adding the phenomenological membrane potential noise with
parameters summarized in Table 7 to the Meddis (2006) model
produces k of 5 (s−1) which is the same as the k of the origi-
nal Meddis (2006) model with a spontaneous rate around 65
spikes per second and a maximum number of available vesicles
of M = 20.

4. DISCUSSION
We have shown that adding a combination of short term depres-
sion in vesicle release, and time-correlated channel noise, to the
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existing model of Meddis (2006) results in qualitatively similar
results for spontaneous inter-spike interval correlations observed
in empirical data. We make the case that it is the qualitative
features of the Fano factor curve (namely the occurrence of pos-
itive and negative correlations, and the order of magnitude of
the positive correlation) that are of most interest. Our model
generates auditory nerve spontaneous spike trains for which the
spike-count Fano-factor matches empirical data at short and long
time scales qualitatively. The qualitative features of the Fano factor
curve obtained from the proposed models are summarized in the
last columns of Tables 4, 6–8. However, the time scales of max-
imum negative correlation, and the onset of positive correlation
do not exactly match the data. Moreover, the long term corre-
lation in the biophysical model of IHC calcium channel noise
does not match empirical data. There are several reasons for these
discrepancies. First, the simulation data is only as good as the
overall model, which omits many details of the complex calcium
channel dynamics of ribbon synapses. We have seen, for exam-
ple, that a standard biophysical model of channel noise does not
induce long-term correlations, while replacing that model with
a phenomenological model based on Ornstein-Uhlenbeck noise
does so. We suggest that a more biophysically detailed model
of calcium channel noise can improve the long term correla-
tion to match empirical data. For example, a model where a
single calcium channel controls vesicle release at each docking
site (Weber et al., 2010) could potentially lead to a more compli-
cated release dynamics and might produce long term correlation
in the auditory nerve spontaneous spiking activity. A second rea-
son might be that the parameters we used (including parameters
in the Meddis (2006) model) need to be better tuned to match the
empirical data. We left this for future work.

There are several justifications for replacing auditory nerve rel-
ative refractoriness with short term depression in vesicle release
probability in the model. First, extensive neurotransmitter release

Table 4 | Values for depletion of available vesicles as a possible

source of long term correlation in the original Meddis (2006) model.

M SR Trace k Short term Long term

(spikes.s−1) (s−1) correlation correlation

20 ∼65 Blue 5 Slight No

6 ∼65 Red 107 Yes Partial

20 ∼160 Green 55 Yes Partial

can be toxic to neural tissues and cleaning up the excessive trans-
mitters by glia cells requires a large amount of energy (Glowatzki
et al., 2006). Short term depression in vesicle release will reduce
the number of vesicles released, which in turn will reduce poten-
tial for toxicity and energy usage. Moreover, since it is thought
that single vesicle produces spikes in AN fibers, for energetics rea-
sons it is wasteful to release vesicles during the refractory period
when spikes cannot occur.

A possible mechanism for short term depression in vesicle
release could be the presence of auto-inhibitory metabotropic
receptors called auto-receptors (Billups et al., 2005). To our
knowledge, however, there is no evidence either for or against the
presence of such auto-receptors in inner hair cells. Alternatively,
it is possible that complex intra-cellular calcium dynamics and its
relationship to vesicle exocytosis could cause such effects.

We hypothesize that observations of variable minimum time
between spikes attributed to “relative refractoriness” above) in
the IHC-AN complex is mainly due to pre-synaptic effects,
namely that vesicle release sometimes doe not occur for a period
longer than are the absolute refractory period. However, it is
also possible that actual relative refractoriness in auditory nerve
recovery following a spike (Cartee et al., 2000), and short term
depression in vesicle release probability in the ribbon synapse
could co-exist.

To obtain a fit close to the data of Heil et al. (2007), we have
chosen the time constant of short term depression in the vesi-
cle release to be 2.5 ms. Short term depression in vesicle release
has been observed in synapses other than the ribbon synapse of
inner hair cells (e.g., Stevens and Wang, 1995; Hjelmstad et al.,
1997). Whole cell recordings from hippocampal pyramidal neu-
rons showed that a 20 ms refractory period was required between

Table 6 | Parameters of Meddis (2006) model with biophysical calcium

channel noise.

N Trace k Short term Long term

(s−1) correlation correlation

5 Blue 4 Slight No

10 Red 6 Slight No

50 Green 5 Slight No

200 Black 4 Slight No

M = 20 and SR∼65 spikes per second.

Table 5 | Comparison of the original Meddis (2006) model and Meddis (2006) model with relative refractoriness in the auditoy nerve

substituted by short term depression in vesicle release.

Model Trace tA tR τ s bc3 a θ ρ Log

(ms) (ms) (ms) (s−1) (ms−1) likelihood

Original Meddis Orange 0 0 NA NA NA 0.04 0 −1.11×105

Original Meddis Green 0 3.5 NA NA NA 0.05 0.44 −1.08×105

Meddis with STDv Black 0 NA 3 6 0.001 0.05 0.37 −1.08×105

Meddis with STDv Blue 0.75 NA 2.5 5 0.001 0.05 0.37 −1.08×105

M = 20 and SR∼65 spikes per second. For fitting to Equation (12), in the Equation (12) tA = 0.75 ms and tR = 3.5 ms were used. Log likelihood was used as a

measure of goodness of fit.
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Table 7 | Parameters for the phenomenological models of stochastic variability in the IHC-AN complex.

Meddis model with trace τo σo μo k τ s bc3 a Short term Long term

(s) (s−1) (ms) (ms) correlation correlation

OU noise added to m3 Blue 1.2 0.3 0.38 7 NA NA NA Slight Yes

OU noise added to v Red 2 0.04 0 5 NA NA NA Slight Yes

STDv and OU in m3 Green 1.2 0.3 0.38 5 2.5 8.5 0.001 Slight Yes

M = 20, and SR∼65 spikes per second.

Table 8 | Parameters of the combination model of phenomenological

channel noise and short term depression in vesicle release probability

with various maximum numbers of vesicles in the available store.

M Trace bc3 k Short term

(s−1) (s−1) correlation

12 Purple 5 10 More than M = 20

20 Green 8.5 5 Slight

27 Brown 8.5 3 Less than M = 20

τo = 1.2 ms, σo = 0.3, μo = 0.38, τs = 2.5 ms, a = 0.001 and SR∼65 spikes per

second.

vesicle releases (Stevens and Wang, 1995). In a different experi-
ment, Hjelmstad et al. (1997) observed a 6–7 ms period following
release during which the synapse was incapable of transmission.
Consequently, the time-scale of 2.5 ms is potentially biologically
plausible.

In this paper we aimed to simulate auditory nerve spontaneous
spiking patterns that provided an improved statistical match to
empirical data. We modified a revised version of the Meddis
(2006) model to develop a more biophysically detailed descrip-
tion of stochastic variability in the IHC-AN complex. It has been
suggested (Morse and Evans, 1996; McDonnell et al., 2008) that
significantly decreased stochastic variability in AN spiking gen-
erated by cochlear implants is a contributing factor to imperfect
performance of these implants. A potential application of our
model, therefore, is as a component in a larger model of the audi-
tory system designed to predict differences in neural activity in
higher brain regions, such as the cochlear nucleus, due to electri-
cal stimulation by cochlear implants, in comparison with natural
acoustic stimulation.

Based on our findings it will be interesting for future work
to build on our study with a more detailed model of the cal-
cium dynamics of the ribbon synapse in inner hair cells. Such a
model might be capable of explaining both pre-synaptic short-
term depression in vesicle release, and long-term correlations due
to calcium fluctuations.
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