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Background
Biomedical researchers frequently seek to determine which gene pathways or ontologies 
are affected by a treatment or involved in biological processes that influence a particular 
phenotype or clinical outcome. Genes act cooperatively in pathways to influence biologi-
cal processes and subsequently clinical outcomes. There are several public resources that 

Abstract 

Background:  Identifying sets of related genes (gene sets) that are empirically associ-
ated with a treatment or phenotype often yields valuable biological insights. Several 
methods effectively identify gene sets in which individual genes have simple mono-
tonic relationships with categorical, quantitative, or censored event-time variables. 
Some distance-based methods, such as distance correlations, may detect complex 
non-monotone associations of a gene-set with a quantitative variable that elude other 
methods. However, the distance correlations have yet to be generalized to associate 
gene-sets with categorical and censored event-time endpoints. Also, there is a need to 
determine which genes empirically drive the significance of an association of a gene 
set with an endpoint.

Results:  We develop gene-set distance analysis (GSDA) by generalizing distance corre-
lations to evaluate the association of a gene set with categorical and censored event-
time variables. We also develop a backward elimination procedure to identify a subset 
of genes that empirically drive significant associations. In simulation studies, GSDA 
more effectively identified complex non-monotone gene-set associations than did six 
other published methods. In the analysis of a pediatric acute myeloid leukemia (AML) 
data set, GSDA was the only method to discover that event-free survival (EFS) was asso-
ciated with the 56-gene AML pathway gene-set, narrow that result down to 5 genes, 
and confirm the association of those 5 genes with EFS in a separate validation cohort. 
These results indicate that GSDA effectively identifies and characterizes complex non-
monotonic gene-set associations that are missed by other methods.

Conclusion:  GSDA is a powerful and flexible method to detect gene-set association 
with categorical, quantitative, or censored event-time variables, especially to detect 
complex non-monotonic gene-set associations. Available at https://​CRAN.R-​proje​ct.​
org/​packa​ge=​GSDA.

Keywords:  Gene profiling, Gene set, Distance correlation

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Cao and Pounds ﻿BMC Bioinformatics          (2021) 22:207  
https://doi.org/10.1186/s12859-021-04110-x

*Correspondence:   
stanley.pounds@stjude.org 
2 Department of Biostatistics, 
St Jude Children’s Research 
Hospital, Memphis 38105, 
USA
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-9167-2114
https://CRAN.R-project.org/package=GSDA
https://CRAN.R-project.org/package=GSDA
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04110-x&domain=pdf


Page 2 of 22Cao and Pounds ﻿BMC Bioinformatics          (2021) 22:207 

annotate genes to specific pathways and other biological processes or functions. Several 
analysis methods that combine gene annotations with statistical analysis results to eval-
uate the association of sets of genes with specific biological annotations with a treatment 
or outcome have been used to make many scientific discoveries. Maciejewski   [1] has 
reviewed several of those methods.

Virtaneva et  al.  [2] first used the significance and function of expression (SAFE) 
method in a study of acute myeloid leukemia (AML) and then Barry et al.   [3, 4] more 
fully described SAFE as an analysis method. First, for each gene, SAFE computes a sta-
tistic measuring differential expression across two groups. SAFE then ranks individual 
genes according to that statistic and computes a Wilcoxon rank-sum statistic to compare 
the ranks of gene-set genes to those of other genes. Finally, the statistical significance 
(p value) of the individual differential expression statistics and the gene-set statistic is 
determined by repeating the analysis for a series of data sets in which the assignment 
of group labels to expression profiles has been permuted. SAFE has also been general-
ized to evaluate associations of gene sets with other phenotypes or endpoints, includ-
ing quantitative variables and censored event-time variables, such as survival times in 
oncology studies.

Mootha et al. [5] first used the gene-set enrichment analysis (GSEA) method in a study 
of diabetes, and then Subramanian et al.  [6] more fully described GSEA as an analysis 
method. The GSEA framework is very similar to that of SAFE, except that GSEA uses an 
enrichment statistic in place of the Wilcoxon rank-sum statistic in SAFE. GSEA has been 
generalized to evaluate associations with several types of endpoints and been widely 
used with much success in the biomedical research literature. Efron and Tibshirani [7] 
developed the gene-set association (GSA) method by modifying the form of the GSEA 
enrichment statistic. SAFE, GSEA, and GSA are all methods that compare gene-level 
association statistics of genes annotated to a gene set with those of other genes and per-
mute the assignment of genomic data to treatment or endpoint data to determine the 
statistical significance of that comparison.

Goeman et al.  [8] proposed the global test (GT) as a different type of gene-set asso-
ciation analysis method. For a given gene set, GT models the contributions of individ-
ual member genes as random effects and tests whether the variability of those random 
effects equals zero. In this way, GT builds upon standard theory for random effects in 
generalized linear models and can be used to evaluate association of gene-sets with 
many different treatments, phenotypes, or endpoints. Goeman and Bühlmann [9] also 
note that SAFE, GSEA, and GSA are competitive testing procedures that compare the 
individual gene-association statistics of genes annotated to the gene set with those of 
other genes, whereas GT is a self-contained test that is a function solely of the gene-set 
genes and the treatment, phenotype, or endpoint. By building upon generalized linear 
models, GT is a very powerful method for detection of general linear associations, but 
its power to detect other forms of association is not well understood.

Irizarry et al. [10] and Ackermann and Strimmer [11] suggest that the total of test sta-
tistics (TOTS) or total of squared test statistics for individual genes be used as a gene-set 
association statistic and its significance be determined by permutation. This approach 
is a self-contained method like GT but uses permutation like SAFE, GSEA, and GSA. 
The TOTS framework can be used in conjunction with general linear modeling or 
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proportional hazards modeling and thus can be used to evaluate the association of a 
gene set with many different variable types, including categorical, quantitative, and cen-
sored event times.

Nettleton et  al.  [12] proposed the multiresponse permutation procedure (MRPP) to 
evaluate the association of a gene-set with a set of treatments or a categorical endpoint 
or phenotype. MRPP measures the association of a gene-set with a categorical treatment 
or endpoint variable by computing the sum of distances between each pair of subjects 
belonging to the same group. The distance is computed using the data for genes belong-
ing to the gene set. A lesser value of this distance-based association statistic indicates 
the subjects belonging to the same group have very similar profiles for genes in the gene 
set and thus indicates a stronger association. The statistical significance (p value) of the 
distance-based association statistic is determined by permutation of the assignment of 
gene profile data to the categorical labels.

More recently, Cao et  al.  [13] developed projection onto orthogonal statistical tests 
(POST) as a general method to evaluate the association of a gene set. POST first com-
putes an orthogonal decomposition (principal components) of the gene-set data, selects 
a set of components that characterize most of the variation of the original data, and 
computes a test statistic that evaluates the association of each of those components with 
the treatment or endpoint variable of interest. Next, a gene-set association statistic is 
computed as a weighted sum of the components’ squared association statistics. A boot-
strap procedure is then used to compute parameter estimates for a weighted chi-square 
distribution approximation that is used to compute the p value.

Väremo et  al.  [14] developed the platform for integrative analysis of omic (PIANO) 
package that implements eleven gene-set analysis methods that operate on gene-level 
statistics or p values in one computational framework. PIANO can be used to identify 
gene-sets that have non-directional, mixed directional, or distinct directional associa-
tions with the endpoint or phenotype of interest. Additionally, PIANO allows users to 
compute consensus results for multiple methods.

Each of the methods described above has its own unique set of strengths and limita-
tions. Among the methods mentioned above, GT is the only method that does not rely 
on computationally intense permutation or resampling procedures to determine statis-
tical significance. MRPP is the only method that has good power to detect some com-
plex associations, such as gene-sets that show equal mean expression for all genes but 
differential correlation among genes across categorical groups. Methods that can detect 
complex associations without relying on permutation or bootstrapping would have great 
practical value for biological research applications.

Zhu et  al.  [15] review and develop statistical theory and methods to use various 
distance correlations to measure linear, monotonic, and non-monotonic associa-
tions between two quantitative data matrices. Here, we extend the framework of Zhu 
et al. [15] to develop gene-set distance analysis (GSDA) as a method to evaluate the asso-
ciation of a gene-set with a categorical, quantitative, or censored event-time variable by 
adapting distance correlations to those settings. Below, we describe the development of 
GSDA, conceptually compare it with other methods, and evaluate its performance in 
simulation studies and an analysis of a publicly available pediatric acute myeloid leuke-
mia (AML) data set.



Page 4 of 22Cao and Pounds ﻿BMC Bioinformatics          (2021) 22:207 

Methods
The distance correlation framework

Zhu et al. [15] review and develop a distance correlation t-test framework to statistically 
evaluate the association between two quantitative data matrices. They show that dis-
tance correlations can detect non-monotonic associations with small to moderate sam-
ple sizes. These properties indicate that a generalized distance correlation t-test may be 
a statistically robust framework for many practical applications involving gene-set asso-
ciation testing. Below, we briefly describe this distance correlation t-test framework and 
then describe how we adapt it to be applicable in other settings.

First, we introduce some general notation to describe the distance correlation 
framework of Zhu et  al.  [15]. Let X be a n×m matrix of the numeric data values of 
g = 1, . . . ,m variables for each of i = 1, . . . , n individuals such that entry xig has the 
value of numeric variable g for individual i. Let dx(xi, xj) be a metric of the distance 
between any two individuals i and j. Let X⋆ be the n× n matrix of distances between 
each pair of individuals with entries x⋆ij = dx(xi, xj) . Similarly, let Y  be a n× k matrix of 
the numeric data values of a different set of v = 1, . . . , k variables for each of the same 
set of i = 1, . . . , n individuals with entry yiv representing the data value of variable v for 
subject i. Also, let dy(yi, yj) measure the distance between any two individuals i and j and 
let Y ⋆ be the n× n matrix of the distances y⋆ij = dy(yi, yj) for all i, j pairs of individuals.

Next, for any n× n distance matrix A⋆ with n > 2 , the entries ãij of the U-centered dis-
tance matrix Ã are computed as

where a⋆i· =
∑n

j=1 a
⋆
ij is the sum over row i and a⋆·j =

∑n
i=1 a

⋆
ij is the sum over column j of 

the distance matrix A⋆ . Now, for any pair of n× n U-centered distance matrices Ã and B̃ 
with n > 3 , define the inner product as

With these notations and definitions, the distance correlation between the data matrices 
X and Y  is defined and computed as

where X̃ and Ỹ  are the U-centered distance matrices for the data matrices X and Y  . Zhu 
et al. [15] elegantly show that the distance correlation t-statistic

(1)ãij = a⋆ij −
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with n(n− 3)/2− 1 degrees of freedom is a very powerful and well-controlled t-test 
of the null hypothesis that the two numeric data matrices have no association (i.e., the 
mutual information is zero) when Euclidean distance is used for dx(xi, xj) and dy(yi, yj).

The distance correlation t-test of Zhu et al. [15] in Eq. (4) is technically elegant. Also, 
its statistical power and Type I error control are rigorously shown by thorough math-
ematical proofs. It is a statistically rigorous test that can be widely used to evaluate the 
association of two numeric data matrices (such as gene expression and methylation) in 
practice. Below, we provide a general overview of GSDA and then propose specific adap-
tations of the distance correlation t-test to make it useful for evaluating the association 
of a gene-set numeric data matrix X with a quantitative variable, a categorical variable, 
and a censored event-time variable. In each of these three distinct settings, we com-
pute a U-centered data matrix Ỹ  for the variable of interest in a setting-specific man-
ner and then substitute it into Eqs. (3) and (4) to obtain a correlation and t-statistic to 
describe and test the association. We call this family of methods gene-set distance analy-
sis (GSDA) because it uses a distance-testing framework to evaluate the association of a 
gene-set with a treatment, phenotype, or outcome variable of interest.

Overview of gene‑set distance analysis

Figure 1 provides a general overview of gene-set distance analysis (GSDA). The initial 
inputs are a list of genes belonging to the gene set, gene expression matrix, and the end-
point, phenotype, or treatment data which is to be associated with the expression matrix 
(Fig.  1a). The expression data and phenotype/endpoint/treatment data should be col-
lected for the same set of subjects. GSDA then computes a phenotype distance matrix 
(Fig. 1b) and an expression distance matrix for the genes in the gene-set (Fig. 1c). Each 
entry of the distance matrix gives the distance between a pair of subjects in terms of 
the variable for which the distance was computed. Corresponding entries of the dis-
tance matrix are then paired and the correlation of these paired distance matrix entires 
is evaluated with a distance correlation statistic (Fig. 1d). The statistical significance is 
computed using the equations of “The distance correlation framework” section above or 
by permutation as described in “Verifying significant results with permutation” section 
below. Finally, the result may be visualized with a heatmap (Fig. 1e).

Associating a gene‑set with one quantitative variable

Evaluating the association of the gene-set matrix X with one quantitative variable Y  is a 
special case of the distance correlation framework described in “The distance correlation 
framework” section above. The quantitative variable can be represented as a data matrix 
Y  with exactly v = 1 one column of data. For this setting, GSDA uses Euclidean distance 
to performs all calculations exactly as described above to obtain rd of Eq. (3) and td of 
Eq. (4).

Associating a gene‑set with one categorical variable

To evaluate the association of a gene-set data matrix X with one categorical variable Y  
(one column with the category label for each subject), GSDA first computes each (i,  j) 
entry of initial distance matrix Y ⋆ for Y as
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where yi and yj are the values of the categorical variable for individuals i and j, respec-
tively, and I(·) is the indicator function that equals 1 if the enclosed statement is true and 
equals 0 if the enclosed statement is false. In other words, for the categorical variable 
Y, the distance between each pair of individuals in the same category is zero and the 
distance between any pair of individuals in different categories is 1. The initial distance 
matrix Y ⋆ is then U-centered according to Eq. 1 and the resulting U-centered distance 
matrix Ỹ  is substituted into Eqs.  (3) and (4) to obtain the distance correlation rd and 
t-statistic td.

(5)y⋆ij = I(yi �= yj)
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Fig. 1  Overview of the gene-set distance analysis (GSDA) method. a A color bar of a quantiative phenotype 
aligned with a heatmap of a gene expression matrix. In both the color bar and heatmap, rows represent 
variables, colums represent subjects, blue represents low values, and red represents high values. A black box 
is drawn around the portion of the gene expression heatmap corresponding to a predefined gene-set of 
scientific interest. The columns are ordered by the phenotype data values. b A heatmap of the phenotype 
distance matrix with blue indicating short distance and red indicating long distance. c A similarly colored 
heatmap of the gene-set gene expression distance matrix. d A scatterplot of the gene-set distance and 
phenotype distance in which each point represents these two distances for one pair of subjects. The 
GSDA method computes a p value of 0.0274 for the association in this illustrative example. e Illustrates the 
association with a dendrogram based on gene expression distance, a color bar for the phenotype data, and a 
heatmap for the expression data of the gene set
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Associating a gene‑set with one event‑time endpoint

Similarly, GSDA evaluates the association of a numeric gene-set matrix X with one cen-
sored event-time endpoint by computing an initial distance matrix Y ⋆ , then U-centering 
it according to Eq. (1) to obtain the U-centered distance matrix Ỹ  and finally substituting 
the U-centered distance matrix into Eqs.  (3) and (4) to compute the distance correla-
tion rd and td . For each individual i = 1, . . . , n , the censored event-time data is repre-
sented as a pair ( oi,si ) with the observation time and event status of the individual. For 
each individual that has experienced the event of interest, the event status si = 1 and the 
observation time oi is the time elapsed from baseline until the event occurred. For each 
individual that has not yet experienced the event of interest, the event status si = 0 and 
the observation time oi is the time elapsed from baseline until the most recent determi-
nation of that individual’s event status. Also, let l = 1, . . . , ś index the unique observation 
times u1 < u2 < · · · < uś for the events. Given this information, GSDA computes the 
initial distance matrix Y ⋆ for the censored event-time variable as

For each pair of individuals i and j that have both not yet experienced an event 
( si = sj = 0 ), this distance metric is zero. For each pair of individuals such that individ-
ual i experiences an event ( si = 1 ) prior to the observation time of individual j ( oi < oj ), 
the distance metric is the number of unique event times that occur between oi and oj . 
This initial distance matrix Y ⋆ is then substituted into Eq. 1 to obtain the U-centered dis-
tance matrix Ỹ  . Finally, the U-centered distance matrix Ỹ  is substituted into Eqs. (3) and 
(4) to obtain the distance correlation rd and its t-statistic td.

The distance metric of Eq.  (6) is computed by categorizing subjects in each risk set 
as being event-free at or having an event prior to each unique event time. Similar tech-
niques in defining and averaging over risk sets are used in classical survival analysis 
methods such as the log-rank test [16]. Also, this distance metric is similar to the dif-
ferences of censor-adjusted ranks in the rank-based survival correlation method of Jung 
et al. [17] and is closely related to the C-index [18].

Verifying significant results with permutation

The distance correlation t-test framework is very useful to quickly identify non-signifi-
cant results and eliminate them from further consideration. The derivation of the t-test 
relies on asymptotic approximations of the null distribution for evaluating the associa-
tion of two data matrices. The t-test approximation is accurate for most of the p value 
range in each of our simulation studies described in “Simulation studies” section below. 
Still, like other asymptotic approximations, the t-test approximation may not give accu-
rate probabilities for the extreme tails. Thus, the GSDA package includes a permutation 
module to evaluate the reliability of significant distance correlation t-test results. The 
permutation procedure is very fast because it operates on the the U-centered distance 
matrices X̃ and Ỹ  . Thus, only Eqs.  (3) and (4) are computed in the permutation itera-
tions. These equations only involve simple arithmetic operations and thus are completed 

(6)ýij =

ś
∑

l=1

I(oj > ul ≥ oi)I(si = 1)+ I(oi > ul ≥ oj)I(sj = 1).
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very quickly. We use this permutation procedure in the illustrative examples and the 
example application below. For applications that involve evaluating the association of 
many gene-sets, we recommend using the t-test of Eq.  (4) to rapidly compute initial p 
values for all gene-sets and then use permutation to ensure that the smallest p values 
do not overstate statistical significance. The t-test p value may also be used to break ties 
among gene sets that have the same permutation p value.

Data transformations and distance metrics

In any distance-based analysis framework, the choice of data transformations and dis-
tance metric(s) are important considerations. GSDA uses Euclidean distance for the 
numeric gene-set data matrix X . In some settings, it may be desirable to transform 
the data so that each gene has similar variance. This may be accomplished by z-score 
transformation (subtracting the mean and then dividing by the standard deviation) or 
commesuration (Nettleton et al. [12]) in which data values are centered and then divided 
by the sum of distances between all pairs of points. These variance-equalizing transfor-
mations will ensure that all genes contribute equally to distance calculations; this may 
be advisable in some applications and not advisable in others. For example, the z-score 
transformation would equalize the contributions of lowly and highly expressed genes 
to the distance calculations. If highly expressed genes are more biologically influential 
in the system under study, then variance-equalizing transformations will obscure this 
effect in the statistical analysis. If highly and lowly expressed genes are both biologically 
important, then variance-equalizing transformations may be beneficial.

Also, power and logarithmic transformations of X will also profoundly impact GSDA; 
these transformations may be advisable in some applications but not in others. For a 
quantitative Y  , GSDA also uses Euclidean distance and thus the same principles apply. 
For a categorical Y  , GSDA uses the categorical distance of Eq. 5, which is impacted by 
combining groups. For a censored survival time variable Y  , GSDA uses the rank-based 
metric that is not affected by monotone transformations of the observation times oi . In 
this work, Euclidean distance is used for numerical variables and the distance metrics 
for categorical and censored event-time variables are defined above. Future research 
should explore the how the statistical performance of GSDA is affected by incorporat-
ing various other distance metrics (such as cosine distance) and transformations into its 
calculations.

Multiple‑testing adjustments

The sections above describe how GSDA evaluates the association of one gene-set with 
one quantitative, one categorical, or one censored event-time variable. The t-test of 
Eq. 4 computes a p value for the association of the gene-set with the variable of interest. 
Frequently in practice one wishes to evaluate the association of each of many gene-sets 
with the variable of interest. In these settings, GSDA may be applied as described above 
to evaluate the association of each gene-set with the variable of interest. This will yield 
many p values and require a multiple testing adjustment. In most settings, it will be most 
reasonable to use these p values to estimate or control the false discovery rate (FDR) 
developed by Benjamini and Hochberg  [19]. Several FDR methods are available for 
this purpose, including those developed by Benjamini and Hochberg  [19], Storey  [20], 
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and Pounds and Cheng [21]. Pounds [22], Cheng and Pounds [23], and Benjamini [24] 
have reviewed many of these methods and provided guidance on how to select the best 
FDR method for particular applications. We recommend users consider those works to 
choose the best FDR method for their particular applications.

Comparison with other methods

Several methods have been proposed and used to evaluate the association of a gene-set 
with a variable of interest, including significance and function of expression (SAFE [2–
4]), gene-set enrichment analysis (GSEA [5, 6]), gene-set analysis (GSA [7]), the global 
test (GT [8, 9]), the total of test statistics (TOTS [10, 11]), the multi-response permuta-
tion procedure (MRPP [12]), and projection onto orthogonal statistical tests (POST [13]) 
as briefly described in the introduction. As shown in Table 1 and described in greater 
detail below, these methods can be characterized in terms of various properties that 
have been described in the literature, including the ability to detect linear, monotone, 
and non-monotone associations; the ability to evaluate associations with quantitative, 
categorical, or event-time endpoints; being a self-contained or competitive testing proce-
dure; reliance on statistical model fitting; and use of resampling methods (permutation 
or bootstrap) to determine statistical significance. GSDA is unique in that it is the only 
self-contained method that does not use resampling, does not rely on model fitting, can 
detect many different forms of association, and can evaluate associations with categori-
cal, quantitative, and censored event-time variables. The advantages and limitations of 
this unique combination of properties are discussed in greater detail below.

GSDA is a self-contained procedure. For each gene-set, the p value is a function of the 
endpoint and only the genes in the gene-set. For competitive gene-set testing methods, 
the p value of a gene-set is a function of the endpoint and all genes. Competitive proce-
dures compare the associations of gene-set genes with the endpoint to the associations 
of other genes with the endpoint. Competitive testing procedures seek to find gene-sets 
for which member genes are more strongly associated with the endpoint of interest than 
are other genes. Goeman and Bühlmann  [9] discuss the advantages and limitations of 
competitive and self-testing procedures in depth. Briefly, competitive testing procedures 
can sometimes be difficult to interpret because their results are function of all genes, not 
just gene-set genes. Also, competitive testing procedures can have less statistical power 

Table 1  Properties of some gene-set testing methods

GS(E)A refers to GSEA and GSA

Property GSDA GS(E)A+SAFE GT+TOTS+POST MRPP

Linear � � � �

Non-linear � �

Non-monotone � �

Categorical � � � �

Quantitative � � �

Event-time � � �

Self-contained � � �

Competitive �

Model-fitting � �

Resampling � � � �
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than self-contained procedures. In many settings, the improved statistical power of self-
contained procedures can be advantageous. However, in some settings, self-contained 
procedures can be “overpowered” in the sense that so many gene-sets are identified as 
significant that it doesn’t really help the investigator to identify a few gene-sets to more 
thoroughly evaluate in future research.

GSDA does not require resampling methods such as permutation or bootstraping to 
compute p values. It is well-known that resampling methods dramatically increase the 
computational time and burden of an analysis because these methods require repeating 
an analysis procedure for each of many data sets generated by resampling. Bootstrap-
ping and permutation are useful techniques to accurately evaluate significance for some 
analysis procedures for settings that have no known mathematical formula to accu-
rately compute statistical significance. GSDA uses the formula derived by Zhu et al. [15] 
and therefore does not need to use resampling to compute p values. This dramatically 
reduces the computational burden of GSDA in practice. The t-test can eliminate non-
significant gene-sets from consideration very quickly. The t-test approximation to the 
null distribution may not be accurate in the extreme tails in all applications. Therefore, 
the GSDA R package includes a module to perform a rapid permutation test to evalu-
ate the accuracy of the most significant p values. We used permutation procedure in 
the example application below and recommend using it to follow-up significant distance 
correlation t-test p values.

GSDA also does not rely on fitting statistical models. This can be an advantage in 
some settings and a limitation in others. If the question of scientific interest requires 
evaluating the association of the gene-set with the variable of interest after adjusting for 
some other factor, then some methods that fit statistical models may be able to more 
rigorously and easily perform an adjusted analysis by simply including an adjustment 
term in the model. GT, POST and SAFE can incorporate covariate adjustments in their 
modeling frameworks. However, if the question does not require adjustment for another 
factor, then the statistical model fitting can introduce additional computational com-
plexity that can be cumbersome. Fitting many statistical models requires numerically 
optimizing a likelihood or other criterion. In some data sets, the criterion may not have 
an optimum; for example, a monotone likelihood can occur when fitting Cox or logis-
tic regression models to some data sets as described by Heinze and Shemper [25, 26]. 
The non-existance of an optimum leads to non-convergence of numerical optimization 
routines and can cause an analysis script to crash. In our experience in research of rare 
diseases with small sample sizes and relatively good outcomes, this occurs fairly often 
when fitting many statistical models with many different variables. The correlation and 
t-statistics of GSDA are computed by a series of simple arithmetic operations (addition, 
subtraction, multiplication, and division). Thus, non-convergence of model-fitting is not 
a concern. Division by zero is the only mathematically problematic situation that can 
arise with GSDA. These situations can be identified and avoided prospectively by flag-
ging any gene-sets for which (X̃ · X̃) = 0 or (Ỹ · Ỹ ) = 0 and lead to division by zero in 
Eq. (3). These conditions can only occur in the setting that all distances are zero, which 
would not be a case of scientific interest in most settings anyway.
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Identifying the empirical drivers of an association

It can be difficult to provide a meaningful biological interpretation of a significant asso-
ciation of a gene-set with a treatment or outcome variable because the significant asso-
ciation may exist only for a subset of the gene-set. The t-test can be rapidly computed so 
it is feasible to incorporate it into a backwards elimination procedure to identify a subset 
of genes that are the empirical drivers of a significant association result. The procedure 
first computes the t-test p value for the gene-set with each gene excluded and identifies 
which gene to eliminate to yield the smallest p value. This procedure is then repeated 
until only one variable remains. This procedure gives a series of subsets of the original 
gene-set and the GSDA p value for each subset. The subset with the best GSDA p value 
may then be considered the empirical drivers of the significant association result and 
evaluated more carefully in follow-up laboratory research.

When interpreting the results of this exploratory follow-up analysis, it is important 
to recall that the classical interpretation of the p value for the selected subset may not 
hold because the hypothesis was not pre-specified. In this follow-up analysis, the p 
value of the best subset should be viewed simply as a subset selection criterion, not a 
rigorous Type I error control metric. Nevertheless, the procedure can help identify the 
most important genes within a gene-set. When strict Type I error control is necessary, 
one may embed this backwards elimination procedure within a permutation testing 
framework.

Illustrative examples

The primary statistical advantage of GSDA is its ability to detect complex forms of asso-
ciation that are not detectable by most other methods. GSDA can detect non-monotone 
relationships of one or more genes with a categorical treatment or trait, a quantitative 
trait, or a censored event-time endpoint. Figure  2 gives a few simulated examples of 
complex associations that many other methods have difficulty detecting as statistically 
significant. Each of these illustrative examples is described in greater detail below.

Figure  2a–c illustrate a setting in which two genes have differential correlation (but 
equal mean expression) across two categories. Hu et al. [27] described differential cor-
relation of several pairs of genes between two subtypes of acute lymphoblastic leukemia. 
Nettleton et al.  [12] also described a differential correlation of a gene-set with knock-
out of myostatin in a comparison of myostatin-knockout and wild type mice. Figure 2a 
clearly shows that expression of the two genes are positively correlated in the category 
represented by gold dots and are negatively correlated in the category represented by 
cyan dots. Figure 2b shows that neither gene has differential median expression across 
the two categories according to the Wilcoxon rank sum test. Figure 2c shows that GSDA 
finds that this gene-set of two genes is very significantly associated with the category 
(GSDA t-test p = 1.41× 10−33 , permutation p < 10−6 ). Five major clades of the den-
drogram are numerically indexed in Fig. 2c and the mean position of these five clades is 
indicated in Fig. 2c. Four of the five clades correspond to groups that have low or high 
expression for each of the two genes ( 2× 2 = 4 and the fifth clade corresponds to a 
group with intermediate expression for both genes. The distance correlation test identi-
fies this association.
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Figure 2d–f illustrate a setting in which both genes have an association with a numeric 
variable Y that is more complex than what is represented by simple linear models. Fig-
ure 2d shows a V-shaped scatterplot for the numeric variable Y and the expression of 
gene 1. Figure 2e shows a scatterplot of the numeric variable Y versus the expression of 
gene 2 in which the points fall along two parallel lines with negative slope. From Fig. 2e, 
f, it is apparent that the association of Y and gene 1 depends on the expression of gene 
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Fig. 2  Simulated examples of associations more easily detected by GSDA than by other methods. a A 
scatterplot of the expression of two genes colored cyan or gold by the value of a categorical variable. b 
Boxplots for each of these two genes by category level with the Wilcoxon rank-sum test p value for each 
gene (p = 0.13 and 0.24 for genes 1 and 2, respectively). c A dendrogram for hierarchical clustering of these 
two genes on Euclidean distance on the expression data by Ward’s criteria with a color bar for the categorical 
variable value (GSDA t-test p = 1.41× 10

−33 , permutation p < 10
−6 ). Five branches of the dendrogram 

are numerically indexed and the means of those five branches are shown by the positions of the numeric 
indices in a. d A scatterplot of a numeric variable Y and the expression of gene 1 (Spearman p = 0.36 ). The 
numeric variable Y is also indicated by a blue–purple–red color scale. e A scatterplot of a numeric variable Y 
and the expression of gene 2 (Spearman p = 0.00052 ). f Dendrogram for hierarhical clustering on genes 1 
and 2 by Ward’s criteria with a blue–purple–red color bar for the numeric variable Y (GSDA p = 5.28× 10

−41 , 
permutation p < 10

−6 ). g A scatterplot of the expression of genes 1 and 2 with plotting character showing 
event status (red x = event, blue o = censored). h A scatterplot of gene 1 expression versus observation 
time with the same plotting characters showing event status (Cox regression p = 0.87 ). i A dendrogram for 
hierarchical clustering of the expression of genes 1 and 2 by Ward’s criteria with a color bar indicating event 
status (blue indicates event before year 4, gray indicates censor before year 4, red indicates event after year 4; 
GSDA t-test p = 6.1× 10

−13 , permutation p = 0.000111)
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2. Y and gene 1 are positively correlated when gene 2 is highly expressed and they are 
negatively correlated when gene 2 is lowly expressed. This is an example of a liquid asso-
ciation described by Ho [28] which they discovered among several triplets of genes with 
liquid associations in a cell-cycle experiment. In our illustrative example, Spearman’s 
test does not give a significant result for gene 1 (Fig. 2d, p = 0.36 ) but gets a significant 
result for gene 2 (Fig. 2e, p = 0.00052 ). Figure 2f shows that GSDA gives a very signifi-
cant result for this two-gene gene-set ( p = 5.28× 10−41 , permutation p < 10−6 ). The 
color bar for the numeric phenotype Y in Fig. 2f shows a clear association with the clades 
of the dendrogram based on gene expression distance.

Figure 2g–i illustrate an association between two genes and a censored survival time 
endpoint that is more complex than what is represented by simple Cox regression mod-
els. Figure 2g shows a scatterplot of the expression of genes 1 and 2 and indicates the 
survival status by the plotting character (x = dead; o = alive). It is clear that these genes 
are negatively correlated in those patients who survived longer and positively correlated 
in those patients who died relatively quickly. This is another example of a liquid asso-
ciation. Figure 2h plots the expression of gene 1 versus the survival time and indicates 
survival status by the plotting character. A single-predictor Cox regression model does 
not find a significant association for gene 1 ( p = 0.67 , Fig. 2h) or gene 2 ( p = 0.83 , data 
not shown). GSDA finds this complex association to be statistically significant (Figure 2I, 
t-test p = 6.1× 10−13 , permutation p = 0.000111 ). Again, the color bar for survival out-
come shows differences across the clades of the dendrogram computed by gene expres-
sion distance.

These illustrative examples show some complex forms of associations that violate 
the assumptions of the classical statistical methods such as the t-test, linear regression, 
Spearman correlation, logistic regression, Cox regression, etc that are utilized by widely 
used gene-set association testing methods such as SAFE, GT, and GSEA. These classical 
statistical methods are very powerful for detecting associations that are linear or mono-
tone on some scale. The examples above illustrate some complex associations that have 
X-shaped, V-shaped, or other patterns that are not accurately modeled by a monotonic 
relationship. These complex associations may occur when there are unrecognized latent 
subgroups in the analysis. This may be the case for some complex human diseases, par-
ticularly human malignancies, in which unrecognized molecular subgroups may be pre-
sent and impact the association. These non-monotonic relationships are still apparent in 
distance correlations and may be detected by GSDA.

Results
Simulation studies

We performed a series of simulation studies to evaluate the performance of the proposed 
GSDA method, GSEA, GSA, SAFE, GT, TOTS, and POST in simple settings involving a 
categorical, numeric, and survival outcome (SC, SN, and SS), complex settings involving 
categorical, numeric, and survival outcome (CC, CN, and CS). We also evaluated each 
of these settings with two different collections of gene sets. For gene set collection A, 
there were 100 genes (10 associated, 90 null) assigned into 60 gene sets with 8–10 genes 
each; 10 gene sets included at least one gene associated with the outcome and the other 
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50 gene sets had no gene associated with the outcome. For gene set collection B, there 
were 1000 genes (10 associated, 990 null) assigned into 100 gene sets with 10–100 genes 
each; 20 gene sets had at least one gene associated with the outcome and 80 gene sets 
had no gene associated with the outcome. We evaluated sample sizes of 10, 25, 50, and 
100 subjects in each of two groups for categorical associations. For numeric and survival 
endpoints, we evaluated sample sizes of 10, 25, 50, and 100 subjects total. We evaluated 
the level and power of each method at the p = 0.05 threshold.

Data were generated so that genes had no association, simple associations, or complex 
associations with the endpoints. For genes with no association, expression values were 
independently and identically distributed (iid) standard normal values. A latent numeric 
variable was used in the generation of data for endpoints and associated genes. End-
point data were generated as simple functions of a latent vector of iid standard normal 
values and some additional random variation. For genes with a simple association with 
endpoints, expression values were generated by multiplying the latent variable by a coef-
ficient and then adding iid standard normal errors. For genes with a complex association 
with endpoints, a latent binary vector was generated and used to reverse the signs of the 
coefficients for multiplication by the numeric latent variable. In the statistical literature, 
latent variables are unobserved variables that are used to more effectively model or sim-
ulate complex association settings. The reversal of signs by a latent binary vector in these 
simulations mimics the differential correlations described in “Illustrative examples” sec-
tion and shown in Fig. 2a. These association patterns are similar to the complex differen-
tial expression of nucleotidyltransferase activity genes between myostatin knock-out and 
wildtype mice described by Nettleton et al. [12] and the liquid associations among mul-
tiple gene-triplets that Ho et al. [28] discovered in cell cycle data. Briefly, the expression 
correlation for a pair of genes depends on the expression of a third gene. For example, 
the expressions of genes A and B ar positively correlated when gene C is underexpressed 
and the expression of genes A and B are negatively correlated when gene C is overex-
pressed. The Additional file  1: simulation-structure.pdf provides a detailed narrative 
description of simulation with illustrative schema figures.

Figure 3 shows each method’s average level over all null gene sets and average power 
over all associated gene sets in each simulation setting. All methods maintained Type I 
error controlless than 6% except that POST failed to do so in a few small sample size set-
tings. For each setting, the method with the greatest power among those methods with 
average empirical level less than 6% was designated as the best performer. GT was the 
best performer in 23 of 24 simple association settings and one of the 24 simple associa-
tion settings. GSEA was the best performer in five of 24 complex association settings; 
those five settings had small sample sizes (10 or 25). TOTS was the best performer in 
the simple survival association setting with100 genes and 60 gene-set and a sample size 
100. In that setting, POST, GT and GSDA had only slightly less power. GSDA was the 
best performer in 18 of 24 complex association settings; those settings had sample sizes 
of 10 to 100. In 10 of these 18 settings, the power of GSDA exceeded that of all other 
methods by 20% or more. In complex survival association settings with n = 100 subjects, 
the power of GSDA exceeded that of all other methods by at least 39%. Also, the power 
of GSDA was similar to that of GT in most of the simple association settings. Complete 
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simulation results are provided in the Additional file  3: simulation-boxplots.pdf and 
Additional file 4: simulation-results.xlsx.

We also used the simulation results to more fully understand the statistical prop-
erties of the GSDA distance correlation t-test p values by examining empirical 
distribution function (EDF) plots of those p values. The Additional file 2: simulation-
EDF-plots.pdf includes p value EDF plots for each simulation. In all cases, the GSDA 
p values of associated gene-sets show a much greater concentration near zero than do 
those of null gene-sets. This observation is consistent with GSDA maintaining level 
and increasing power with sample size in the results reported above. Additionally, 
consistent with the theoretical derivations of Zhu et al.  [15], the GSDA p values for 
null gene sets are approximately uniform over most of the p value range from 0 to 1. 
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The GSDA p values for null gene sets tend to be slightly stochastically greater than 
uniform for p > 0.04 and slightly stochastically less than uniform for p < 0.04 . This 
suggests that the GSDA distance correlation t-test of Eq.  (4) may tend to overstate 
statistical significance when it gives p < 0.04 . Therefore, we recommend using the 
permutation procedure of “Verifying significant results with permutation” section to 
evaluate the accuracy of significant distance correlation t-test results as we have done 
in the illustrative examples of “2.11” section above and in the example application 
immediately below.

Additionally, we measured the computing times for each method in our simulation 
(Additional file 5: compute-speeds.pdf ). GT was one of the two fastest methods in all 48 
simulation settings. GSDA was one of the three fastest methods in all 32 settings involv-
ing a numerical or categorical endpoint. GSDA was noticeably slower in evaluating 
survival endpoints. Computing the survival distnace in Eq.  (6) can be time consuming 
because it must perform O(n3) comparisons (compare data for all n(n− 1) pairs at each 
of n timepoints). Nevertheless, it is still computationally feasible to perform GSDA in 
practice; the superior statistical perfomance of GSDA is well worth the additional com-
puting time.

A pediatric leukemia application

We applied these seven analysis methods to the pediatric acute myeloid leukemia (AML) 
data set that is publicly available from the TARGET project website (https://​target-​data.​
nci.​nih.​gov/​Public/​AML/; accessed March 8, 2018). We also applied all eleven methods 
of the R package piano [14] to the data set. We evaluated the association of gene-level 
mRNA-seq expression data with presence/absence of chloroma at diagnosis (a binary 
variable), log white blood cell count (logWBC) at diagnosis (a quantitative variable), and 
event-free survival (a censored event time variable) for the 123 subjects with all of these 
data available. We used these 18 methods to evaluate the association of the expression 
of 56 genes annotated to the KEGG AML pathway (https://​www.​genome.​jp/​kegg-​bin/​
show_​pathw​ay?​hsa05​221) with the presence or absence of chloroma at diagnosis (a 
binary variable), the log of the diagnostic white blood cell count (a numeric variable), 
and event-free survival of patients (a censored event time variable). We also used the 
procedure of “Verifying significant results with permutation” section to compute GSDA 
p values based on one million permutations.

Table 2 provides the results. GSDA and 8 other methods found that the KEGG AML 
pathway was significantly associated with chloroma ( p < 0.04 ); the other 10 methods 
did not find strong evidence of an association ( p > 0.11 ). The AML pathway genes 
were not significantly associated with WBC according to GSA ( p = 0.688 ) or the PAGE 
method of PIANO ( p = 0.096 ), but was significantly associated according to GSDA 
( p < 10−6 ) and all other methods ( p ≤ 0.03 ). GSDA found that the KEGG AML path-
way had a marginally significant association with EFS (t-test p = 0.06 , permutation 
p = 0.050755 ); all other methods obtained p > 0.09 for this association. GSDA obtain-
ing the smallest p value for EFS is consistent with the simulation result showing that 
GSDA has unrivaled power to detect a complex association of a gene-set with a censored 
survival time variable with sample size of 100 (Fig. 3).

https://target-data.nci.nih.gov/Public/AML
https://target-data.nci.nih.gov/Public/AML
https://www.genome.jp/kegg-bin/show_pathway?hsa05221
https://www.genome.jp/kegg-bin/show_pathway?hsa05221
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Figure 4 graphically illustrates the results of GSDA and the backward elimination pro-
cedure of “Identifying the empirical drivers of an association” section. Figure 4a provides 
a heatmap of the expression of the AML pathway genes and a color scales for each of 
three endpoints. The backward elimination procedure identified RUNX1T1, MAPK3, 
PIK3CG, TCF7L1, GRB2, and MTOR as the empirical drivers of the association with 
chloroma (Fig. 4b). Hierarchical clustering of individuals by the expression of these six 
genes with Ward’s criteria [29] defines one cluster of 52 patients with only one of the 17 
chloroma cases (Fig.  4c). The backward elimination procedure identified 25 of the 56 
genes as empirical drivers of the association with logWBC (Fig. 4d). Hierarchical clus-
tering of individuals by the expression of these 25 genes defined two subgroups with 
strong differential logWBC values (Fig.  4). By backward elimination, AKT3, MAPK3, 
PIK3CG, PML, and STAT5A were identified as empirical drivers of the association with 
EFS (Fig. 4f ). Again, hierarchical clustering of subjects by these genes defined subgroups 
with differing EFS (Fig.  4g). We verified this result by using GSDA to test the associ-
ation of these five genes with EFS in the entirely separate AML02 clinical trial cohort 
of 168 patients [30, 31]. In this independent validation cohort, GSDA found this set of 
five genes to be significantly associated with EFS (t-test p = 0.013839 , permutation 
p = 0.024695).

In this example, only GSDA obtained p < 0.09 for the association with EFS in the 
TARGET AML cohort. There are several reasons the other methods did not find 

Table 2  Results for of the pediatric AML analysis

The table shows the p values for each method for the association the expression of the KEGG AML pathway with clinical 
characteristics and survival in pediatric AML

*PIANO was performed with only the gene-level statistics with signifMethod=’nullDist’ for Wilcoxon, Fisher, Stouffer, and 
Reporter methods and signifMethod = ‘geneSampling’ and 999 permutations for the other methods

Method Chloroma logWBC EFS

GSDA (t-test) 0.020 < 10
−29 0.060

GSDA (perm) 0.029 < 10
−6 0.051

GSEA 0.030 0.008 0.572

GSA 0.512 0.688 0.114

SAFE 0.561 0.014 0.336

GT 0.014 < 10
−5 0.250

TOTS 0.960 < 0.001 0.217

POST 0.027 < 10
−5 0.130

PIANO (Wilcoxon)* 0.804 0.004 0.209

PIANO (Fisher)* 0.0004 < 10
−37 0.092

PIANO (Stouffer)* 0.004 < 10
−27 0.164

PIANO (Reporter)* 0.742 0.004 0.288

PIANO (Tail Strength)* 0.744 0.016 0.239

PIANO (Mean)* 0.836 0.030 0.217

PIANO (Median)* 0.834 0.001 0.316

PIANO (Sum)* 0.858 0.042 0.221

PIANO (MaxMean)* 0.116 0.011 1.000

PIANO (GSEA)* 0.039 0.028 1.000

PIANO (FGSEA)* 0.014 0.029 1.000

PIANO (PAGE)* 0.044 0.096 0.112
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suggestive evidence of this association. Each of the other methods rely on Cox pro-
portional hazards regression to model and evaluate the significance of the associa-
tion. Fitting a single-predictor Cox regression to each gene in the gene-set yields a 
set of p values with a mean of 0.45. Pounds and Cheng [21] have shown that twice 
the average p value is a reasonable estimator of the proportion of tests with a true 
null hypothesis. Thus, an average Cox p value of 0.45 indicates that only 10% of the 
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Fig. 4  Results for the pediatric AML example. a The data for the three phenotypes as color bars and 
expression for all the KEGG AML pathway genes as a heatmap. The dendrogram is obtained by Euclidean 
distance clustering with Ward’s criteria on the expression data. In the color bar for chloroma, red indicates 
chloroma is present and blue indicates that chloroma is absent. The color bar for log WBC shows lower 
counts as blue and greater counts as red. The color bar for EFS shows events before year 4 as blue, censoring 
before year 4 as gray, and event after 4 years as red. b A color bar for chloroma and a heatmap of expression 
for the six genes obtained by the backward selection procedure of “Identifying the empirical drivers of an 
association” section. The dendrogram was determined by clustering on Euclidean distance on the expression 
of those six genes. Two branches of the dendrogram are numerically indexed. c A mosaicplot of chloroma 
and expression subgroup defined by the dendrogram in b. It shows that 16 of 17 choloroma cases belong to 
expression subgroup 2. d The color bar for log WBC and the heatmap of expression for associated genes as 
determined by the backward selection procedure. Two branches of the dendrogram are numerically indexed. 
e A boxplot of log WBC by expression subgroup defined in d. f A color bar of EFS and heatmap of expression 
for the 5 genes chosen by backward selection. Four branches of the dendrogram are numerically indexed. g 
Kaplan–Meier estimates of EFS for the four subgroups defined in f 
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56 genes are associated with EFS. This estimate is also consistent with the back-
wards elimination procedure identifying 5 genes as empirical drivers of the asso-
ciation with EFS. Additionally, we used the method of Grambsch and Therneau [32] 
to evaluate the validity of the proportional hazard assumption for each gene. The 
average p value was 0.41, indicating that 18% of genes in the gene set violate the 
assumption. The other methods did not find the association because a substantial 
proportion of genes violated the modeling assumption and only a small proportion 
were truly associated with EFS.

Discussion
Many scientific discoveries have been made by identifying gene sets that associate with a 
treatment or an endpoint of interest. According to Google Scholar, the gene-set analysis 
methods evaluated in our simulation studies and example analysis have been cumula-
tively cited tens of thousands of times. Several methods have been successfully used for 
this purpose in the literature. Nevertheless, it is important to more fully understand the 
strengths and limitations of these methods in terms of recognizing biological settings for 
which each method has good or poor statistical performance. Our work has confirmed 
that many of the widely used methods perform well in certain settings, particularly in 
identifying gene sets for which most genes have a simple association with the endpoint 
or treatment of interest. Many times, these discoveries are scientifically meaningful; 
thus, the widely used methods can often reveal biological insights necessary to advance 
our understanding and treatment of several diseases.

However, as is the case for many statistical problems, each method has a niche of set-
tings for which it performs well and for which it performs poorly. Nettleton et al.  [12] 
observed that some complex forms of association that are essentially undetectable by 
some of the most widely used methods. Ho [28] also observed complex associations that 
are difficult to detect with methods that assume monotonic relationships between pairs 
of variables. Nettleton  et al.  [12] proposed the MRPP to evaluate the association of a 
gene set with a categorical endpoint or treatment variable. In addition to detecting dif-
ferential average expression across groups, the MRPP can detect differential correlation 
across groups. However, the published MRPP did not evaluate the association of a gene 
set with a quantitative or censored survival time variable. In many disciplines, such as 
oncology, censored survival time variables are of greatest scientific interest.

Zhu et al. [15] developed a distance correlation t-test that can detect complex associa-
tions between two numeric data matrices. The method is appealing in that it can detect 
complex associations without resorting to computationally burdensome resampling pro-
cedures to determine statistical significance. However, in its published form, it is limited 
to evaluating associations between two numeric data matrices. We extended this frame-
work to develop the GSDA method that can also evaluate associations of a numeric data 
matrix with categorical variables and censored event-time variables. GSDA was the best 
performer in 16 of 24 complex association settings and exceeded the power of all other 
methods by 20 percentage points in 11 of those settings. These results indicate that in 
many settings GSDA has much greater power than other methods to detect complex 
associations with a gene-set. In this way, GSDA can effectively make discoveries that 
complement the discoveries made by other gene-set testing methods.
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We also developed methods to follow-up on the most statistically significant and/or 
biologically interesting results of a GSDA analysis. We developed a rapid permutation 
testing procedure for GSDA to confirm the statistical significance of distance correlation 
t-test. We used this procedure to confirm the accuracy of the significant distance corre-
lation t-test in our example application and recommend using it in practice to follow-up 
on the most statistically significant distance correlation t-test results. We also developed 
a backward elimination procedure (“Identifying the empirical drivers of an association” 
section) to provide more focused biological insights by identifying the subset of genes in 
a gene set with the strongest distance correlation with the endpoint of scientific inter-
est. This backward elimination procedure was very useful in the example application. It 
narrowed down the 56 genes in the AML gene set to a subset of 25 genes for association 
with chloroma, 6 genes for association with log WBC, and 5 genes for association with 
EFS. We were able to confirm the EFS association of the 5 genes in a separate clinical 
trial cohort.

Overall, the simulation and example application results have shown that GSDA is a 
useful tool to complement existing gene-set association testing methods. GSDA can 
identify complex associations that are characterized by non-monotonic relationships 
among pairs of variables or that violate other statistical modeling assumptions. These 
types of associations occur in practice and are difficult to detect with other methods. 
GSDA can rapidly complete the analysis of all genes and provide the rigor of a permuta-
tion test for the most significant results. Also, GSDA can provide a more focused biolog-
ical insights by identifying the subset of genes in a gene set that most strongly associated 
with an endpoint of interest.

Future research should explore several intriguing open questions related to the use 
and improvement of GSDA. The use and development of GSDA may be substantially 
advanced by developing new distance measures and guidelines for their use in practice 
and considering different algorithms to find strongly associated subsets of gene sets that 
associate with the outcome or endpoint of scientific interest.

Conclusions
We developed the gene-set distance analysis method and showed that it detects associa-
tions of gene-sets with phenotypes or treatments that are not easily identified by other 
methods. These results indicate that GSDA should compliment the use of other methods 
in data analysis practice to ensure that biologically meaningful associations are discov-
ered that may otherwise be missed. Furthermore, our work suggests that future work 
should develop distnace-based methodologies for other problems and applications in 
the analysis of omics data.
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