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G R A P H I C A L A B S T R A C T
� Gene prostaglandin-endoperoxide syn-
thase 2 (PTGS2) is a potential prognostic
biomarker of small cell lung cancer
(SCLC).

� Resting memory CD4þ T cells might be
the predominant infiltrating immune
cells in SCLC.

� Hub genes and tumor-infiltrating im-
mune cells may be the molecular mech-
anisms underlying the development of
SCLC.
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Background: Small cell lung cancer (SCLC) is a highly malignant and aggressive neuroendocrine tumor. With the rise
of immunotherapy, it has provided a new direction for SCLC. However, due to the lack of prognostic biomarkers, the
median overall survival of SCLC is still to be improved. This study aimed to explore novel biomarkers and tumor-
infiltrating immune cell characteristics that may serve as potential diagnostic and prognostic markers in SCLC.
Methods: Gene expression profiles from patients with SCLC were downloaded from the Gene Expression Omnibus
(GEO) database, and tumor microenvironment (TME) infiltration profile data were obtained using CIBERSORT. The
robust rank aggregation (RRA)methodwas utilized to integrate three SCLCmicroarray datasets downloaded from the
GEO database and identify robust differentially expressed genes (DEGs) between normal and tumor tissue samples.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to
explore the functions of the robust DEGs. Subsequently, protein–protein interaction networks and key modules were
constructed by Cytoscape, and hub geneswere selected from thewhole network using the plugin cytoHubba. Survival
analysis of hub genes was performed by Kaplan–Meier plotter in 18 patients with extensive-stage SCLC.
Results: A total of 312 robust DEGs, including 55 upregulated and 257 downregulated genes, were screened from
129 SCLC tissue samples and 44 normal tissue samples. GO and KEGG enrichment analyses revealed that the
robust DEGs were predominantly involved in human T-cell leukemia virus 1 infection, focal adhesion, comple-
ment and coagulation cascades, tumor necrosis factor (TNF) signaling pathway, and ECM-receptor interaction,
which are closely associated with the development and progression of SCLC. Subsequently, three DEGs modules
and six hub genes (ITGA10, DUSP12, PTGS2, FOS, TGFBR2, and ICAM1) were identified through screening with
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the Cytoscape plugins MCODE and cytoHubba, respectively. Immune cell infiltration analysis by the CIBERSORT
algorithm revealed that resting memory CD4þ T cells were the predominant infiltrating immune cells in SCLC. In
addition, Kaplan–Meier plotter revealed that the gene prostaglandin-endoperoxide synthase 2 (PTGS2) was a
potential prognostic biomarker of SCLC.
Conclusions: Hub genes and tumor-infiltrating immune cells may be the molecular mechanisms underlying the
development of SCLC, and this finding could contribute to the formulation of individualized immunotherapy
strategies for SCLC.
Introduction

Small cell lung cancer (SCLC) is a highly malignant and aggressive
neuroendocrine tumor characterized by rapid growth and early metas-
tasis, and accounts for approximately 10–15% of lung cancers.1,2

Platinum-etoposide chemotherapy is the first-line treatment for SCLC,
but most patients experience drug resistance or disease recurrence. Me-
dian overall survival in extensive SCLC is approximately 8–10 months,
with a 2-year survival rate of only 8% and a 5-year survival rate of
<1%.3,4 Immune checkpoint inhibitors combined with chemotherapy
improved themedian overall survival (OS) in SCLC to 12.3–13months,5,6

a milestone event in the treatment of SCLC.
The molecular basis of SCLC development is relatively complex

and involves various molecular biological events such as chromosome
instability, oncogene activation, tumor suppressor gene inactivation,
disorder of molecular signaling systems, and loss of DNA mismatch
repair function.7 The most common gene mutations in SCLC are
double allele inactivation of tumor suppressor genes Tumor Protein 53
(TP53) and RetinoBlastoma 1 (RB1), increased copy number of mye-
locytomatosis (MYC) family members, and alterations in enzymes and
kinase signaling pathways involved in chromatin remodeling.8 How-
ever, there are currently limited targeted agents with significant
antitumor activity in SCLC.9 To improve the efficacy of SCLC thera-
peutics, it is essential to elucidate genomic changes in SCLC, under-
stand SCLC at the molecular level, and identify biomarkers associated
with prognosis. Immune escape mechanisms are crucial in the devel-
opment and progression of SCLC. Immune checkpoint inhibitors have
produced significant and durable clinical effects in approximately 20%
of patients with non-small cell lung cancer (NSCLC), and
tumor-infiltrating immune cells have been found to serve as prog-
nostic biomarkers.10,11 Therefore, it is urgent to further explore the
molecular mechanisms of SCLC and potential biomarkers for early
screening and targeted therapy for SCLC. Gene microarray technology
and bioinformatics analyses have been widely used in genomics
studies in recent years. However, due to the characteristics of SCLC,
relevant gene microarray data are scarce. Rohrbeck et al.12 analyzed
messenger RNA (mRNA) expression in SCLC and found that abnormal
expression of genes such as cyclin-dependent kinase (CDK), neural cell
adhesion molecule 1 (NCAM1), and drosophila Eph kinase (DEK) was
associated with the development of SCLC.

The current study aimed to further explore the molecular mechanisms
of SCLC by integrating multiple SCLC gene expression microarray data-
sets from the public gene microarray database (Gene Expression
Omnibus [GEO]), calculating robust differentially expressed genes
(DEGs) by bioinformatics, and then performing functional analysis and
constructing a protein interaction network, as well as characterizing
tumor-infiltrating immune cells.

Methods

Data collection and processing

Gene expression data of SCLC in the GSE40275, GSE43346, and
GSE60052 datasets were obtained from GEO (http://www.ncbi.nlm.nih
.gov/geo/). Matrix files and platform annotation documents of the
three microarray datasets were downloaded. The names of microarray
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probes were converted to gene symbols by Perl (www.perl.org). DEGs
were identified from normal tissue and tumor tissue samples in each
dataset using the limma package13 in R (www.r-project.org) with cutoff
criteria of jlog fold change (FC)j > 1 and P-value < 0.05.

Robust rank aggregation (RRA) analysis

To integrate the three microarray datasets, an RRA approach was
employed to screen robust DEGs. Before RRA analysis, up- and down-
regulated genes were ranked according to their FC-score in each dataset.
Robust DEGs were then obtained based on the ranked genes in the three
datasets using the RobustRankAggreg R package.14 Genes with jlogFCj >
1 and P-value < 0.05 were considered as the significant robust DEGs.

Functional enrichment analysis

To clarify the underlying biological processes of robust DEGs, Gene
Ontology (GO) enrichment results for biological process (BP), cellular
component (CC), and molecular function (MF) were obtained using the
“clusterProfiler” R package.15 Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis of robust DEGs was also performed with the
“clusterProfiler” R package. P-values <0.0001 and < 0.001 for GO and
KEGG analyses, respectively, were considered statistically significant.

Construction of protein–protein interaction (PPI) networks and MCODE
analysis

Robust DEGs were uploaded to the STRING online database (http://
www.string-db.org/) and a confidence level >0.7 was selected as the
screening criteria. Visualization of PPI networks was performed using
Cytoscape (version 3.8.2, www.cytoscape.org) software, a bioinformatics
software platform that enables visualization of molecular interaction
networks by building protein interoperability networks. The Cytoscape
plugin Molecular Complex Detection Technology (MCODE) was used to
screen for significant modules in the PPI networks.

Hub gene identification

The Cytoscape plugin cytoHubba—with algorithms including Degree,
Edge Percolated Component (EPC), Maximum Neighborhood Compo-
nent (MNC), Density of Maximum Neighborhood Component (DMNC),
Maximal Clique Centrality (MCC), BottleNeck (BN), EcCentricity, Radi-
ality, Betweenness, and Closeness—was used to predict and explore the
SCLC hub genes of tumor tissue samples.

Immune infiltration by CIBERSORT analysis

CIBERSORT16 is an inverse convolutional integration algorithm for
human immune cell subtype expression matrix based on linear sup-
port vector regression principles. The algorithm infers the proportion
of immune cell types in tumor tissue sample data of mixed cell types.
CIBERSORT contains 547 genes, and by relying on highly specific and
sensitive gene expression profiles, the algorithm can distinguish 22
human immune cell phenotypes, including B cells (naïve and mem-
ory), T cells (CD8þ T cells, naïve CD4þ T cells, resting memory CD4þ

T cells, activated memory CD4þ T cells, follicular helper T cells,
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regulatory T cells, gamma delta T cells), natural killer (NK) cells
(resting and activated), macrophages (M0, M1, and M2), dendritic
cells (resting and activated), mast cells (resting and activated), plasma
cells, and myeloid subsets (monocytes, eosinophils, neutrophils).
Scores for the 22 immune cells were calculated for samples in
GSE40275, GSE43346, and GSE60052 datasets based on the CIBER-
SORT LM22 gene signature, and the immune cell matrix was filtered
using a P-value <0.05. Relative expression of the 22 immune cells
between normal tissue and tumor tissue samples was identified by R
package, and principal component analysis (PCA) was also performed.

Survival analysis

The relationship between expression levels of hub genes and prog-
nosis was analyzed using the Kaplan–Meier method in 18 patients with
extensive-stage SCLC, and survival curves were plotted.

Results

Identification of DEGs

The SCLC microarray datasets GSE40275, GSE43346, and GSE60052
were collected and analyzed using the limma package in R. The
GSE40275 dataset contains 14 normal tissue samples and 8 SCLC tumor
tissue samples, calculated on Affymetrix microarrays (Human Exon 1.0
ST Array). The GSE43346 dataset contains 23 normal tissue samples and
42 SCLC tumor tissue samples, detected on the Affymetrix Human
Genome U133 Plus 2.0 Array platform. The GSE60052 dataset contains
seven normal tissue samples and 79 SCLC tumor tissue samples, pro-
cessed by Illumina HiSeq 2000 sequencing. Thus, the current study
comprised 129 SCLC tumor tissue samples and 44 normal tissue samples;
the overall workflow is illustrated in Supplementary Figure 1. Using
Figure 1. Identification of DEGs and robust DEGs by RRA. (A–C) Volcano plots of
datasets. The y-axis represents the negative log of the P-value and the x-axis represen
upregulated DEGs, downregulated DEGs, and non-DEGs, respectively. (D–F) Heatmap
GSE60052 (F) datasets. The horizontal axis represents the samples, the upper horizon
the left vertical axis shows the DEGs clusters. Red denotes upregulated genes and gree
tumor samples (red) and normal samples (blue) are plotted along the axis of the first t
robust DEGs and downregulated robust DEGs identified by RRA. Red represents high
Differentially expressed genes; FC: Fold change; PCA: Principal components analysis
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thresholds of FDR <0.05 and jlogFCj > 1, it could be ascertained that
there were 3991 DEGs in the GSE40275 dataset (1948 downregulated
genes and 2043 upregulated genes), 1890 DEGs in the GSE43346 dataset
(895 downregulated and 995 upregulated), and 3442 DEGs in the
GSE60052 dataset (2263 downregulated and 1178 upregulated) between
normal tissue and tumor tissue samples [volcano plots in Figure 1A–C;
heatmaps in Figure 1D–F]. PCA in GSE40274, GSE43346, and GSE60052,
respectively, showed that tumor tissue samples could be distinguished
from normal samples based on the expression levels of DEGs in each
dataset [Figure 1G–I]. To reduce bias, the three datasets were integrated
by the RRA method and a total of 312 robust DEGs were identified,
including 257 downregulated genes and 55 upregulated genes
[Figure 1J].

Functional enrichment analysis

The biological functions and pathways of the 312 robust DEGs were
determined using the clusterProfiler package in R. A total of 94 GO terms
and six KEGG pathways were enriched (P-values <0.0001 and < 0.001,
respectively). The highest ranked GO terms in BP, CC, and MF were
“regulation of inflammatory response,” “membrane raft,” and “cytokine
binding,” respectively. The top 10 GO terms are depicted as bar and
bubble plots [Figure 2A,C] In KEGG enrichment analysis, the most highly
correlated signaling pathway was complement and coagulation cascades
[Figure 2B,D].

PPI network construction and module identification

A protein interaction network of the 312 robust DEGs was constructed
through the STRING database with a confidence level >0.7 and hiding
the disconnected nodes [Figure 3A]. A visualized PPI network was
created by Cytoscape [Figure 3B]. In the final network, 194 nodes and
the distribution of DEGs in GSE40275 (A), GSE43346 (B), and GSE60052 (C)
ts the log of FC. Each point represents a gene. Red, green, and black dots denote
plots of the differentially expressed DEGs in GSE40275 (D), GSE43346 (E), and
tal axis represents the sample clusters, the vertical axis represents the DEGs, and
n denotes downregulated genes. (G–I) PCA plots of the DEGs in each dataset. The
wo principal components (PC1 and PC2). (J) Heatmap of the top 30 upregulated
expression robust DEGs and green represents low expression robust DEGs. DEGs:
; RRA: Robust rank aggregation.



Figure 2. Functional enrichment analysis of robust DEGs. GO enrichment analysis of robust DEGs is visualized in a bar plot (A) and a bubble plot (C). KEGG
enrichment analysis of robust DEGs is visualized in a bar plot (B) and a bubble plot (D). DEGs: Differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto
Encyclopedia of Genes and Genomes.
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325 edges were screened, comprising 155 downregulated genes and 39
upregulated genes. The top three modules were filtered by a score from
the whole network by using MCODE, a Cytoscape plugin. The DEGs in
Module 1 (score 7) were predominantly enriched in cell cycle and oocyte
meiosis pathways, those in Module 2 (score 6) were mainly enriched in
extracellular matrix (ECM) -receptor interaction and focal adhesion, and
the DEGs in Module 3 (score 4.5) were primarily enriched in tyrosine
metabolism.

Identification of hub genes

The top 50 genes of the entire network were selected using the
cytoHubba plugin in Cytoscape. The intersection of these 50 genes with
10 algorithms (MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCen-
tricity, Closeness, Radiality, and Betweenness) identified six hub genes,
including integrin alpha 10 (ITGA10), dual specificity phosphatase 12
(DUSP12), prostaglandin-endoperoxide synthase 2 (PTGS2), FOS, trans-
forming growth factor beta receptor 2 (TGFBR2), and intercellular
adhesion molecule-1 (ICAM1) [Figure 3C].

Immune cell infiltration analysis

Using the CIBERSORT algorithm, 22 immune cells in tumor tissue and
normal tissue samples were evaluated [Figure 4A]. There were signifi-
cant differences between tumor tissue and normal tissue samples in terms
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of memory B cells, CD8þ T cells, resting memory CD4þ T cells, resting NK
cells, M1 and M2 macrophages, activated dendritic cells, resting mast
cells, and neutrophils [Figure 4B and C]. However, PCA showed that
immune cell infiltration cannot completely distinguish between SCLC
and normal samples [Figure 4D].

Survival analysis

The relationship between the six hub genes and overall survival in 18
patients with extensive-stage SCLC was analyzed using Kaplan–Meier
plotter. High expression of PTGS2 was significantly correlated with
longer overall survival (P-value < 0.05) [Figure 5].

Discussion

A high burden of gene mutations and genomic instability of SCLC
leads to a high incidence of drug resistance and refractory relapses in
patients. TP53 and RB1 are the most frequently mutated genes in
SCLC,17 with mutation frequencies of 85% and 57%,18 respectively,
and these mutations are predictors of poor prognosis. The molecular
mechanisms underlying the development and progression of SCLC are
unclear, and there is an urgent need to identify potential biomarkers
of this disease. Bioinformatics can facilitate the exploration of the
changes that occur at the genetic level in SCLC, help characterize the
tumor microenvironment (TME), and identify potential biomarkers.



Figure 3. Construction of PPI network, analysis of key modules, and identification of hub genes. (A) Protein interaction network of 312 robust DEGs through the
STRING database with a confidence level >0.7 and hiding the disconnected nodes. (B) The whole PPI network. Upregulated robust DEGs are indicated in red, while
downregulated robust DEGs are marked in green. (C) Hub genes were selected by the intersection of 50 genes from 10 algorithms. DEGs: Differentially expressed
genes; PPI: Protein–protein interaction.
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In the present study, three gene microarray datasets – GSE40275,
GSE43346, and GSE60052 – were obtained from the GEO database,
with each dataset containing a small sample of SCLC tumor tissues.
To expand the sample size, explore the mechanisms of SCLC devel-
opment, and identify tumor-infiltrating immune cells, the three
datasets were integrated and then screened for differential genes in
SCLC using a bioinformatics approach. This method yielded 312
DEGs, including 257 downregulated genes and 55 upregulated genes.
These genes were mainly enriched in GO-BP terms involved in
pathways of inflammatory factor secretion, including “response to
molecule of bacterial origin,” “leukocyte proliferation,” and “regula-
tion of inflammatory response.” These pathways regulate cytokine
secretion, chemotaxis, and thus immune cell infiltration in the TME,
while inflammatory factors may promote tumor cell colonization and
metastasis.19 Among them, lipopolysaccharide-induced ReIB and
p100 expression, the dependent mechanism of β1 integrin expression,
and NF-κB is precisely the ReIB nuclear translocation. The NF-κB
signaling pathway is known to play an important role in SCLC
carcinogenesis.20 At the GO-CC level, the robust DEGs were pre-
dominantly enriched in “membrane raft,” “membrane microdomain,”
“membrane region,” and “external side of the plasma membrane.”
Chemokines usually regulate the localization and migration of
22
endogenous cells. Similarly, tumor cells use this property for disor-
derly regulation19 KEGG analysis revealed that the robust DEGs were
enriched in “complement and coagulation cascades,” “human T-cell
leukemia virus 1 infection,” and “ECM-receptor interaction” signaling
pathways. The complement system is an important regulatory
pathway in the immunosuppressive state of primary tumors and
metastatic target organs, and is involved in processes related to in-
flammatory factors and tumorigenesis. Complement can recruit and
induce aggregation of immunosuppressive cells in the TME; further-
more, inhibition of complement expression and blockade of pro-
grammed cell death factors have synergistic antitumor effects that
retarded tumor progression in mouse models of lung cancer21.
“Human T-cell leukemia virus 1 infection” is involved in inflamma-
tory factor-related pathways, while the “ECM-receptor interaction”
pathway activates second messengers18.

This study identified six hub genes: ITGA10, DUSP12, PTGS2, FOS,
TGFBR2, and ICAM1. Among them, PTGS2 is an inducible immediate
response gene that is negative for most cells in a normal physiological
state; however, in pathological responses such as inflammation or
tumors, PTGS2 is affected by certain cytokines, growth factors, in-
flammatory mediators, pro-oncogenic factors, hypoxia, hormones, etc.
Prostaglandins, the main product of the PTGS2 enzyme, have



Figure 4. Immune cell infiltration analysis. (A) Distribution of 22 immune cells between SCLC tumor tissue and normal tissue samples. (B,C) The difference in immune
cell infiltration between SCLC tumor tissue and normal tissue samples was visualized by heatmap (B) and violin plot (C). (D) PCA plot of 22 immune cells. SCLC tumor
samples (red) and normal samples (blue) are plotted along the axis of the first two principal components (PC1 and PC2). PCA: Principal components analysis; SCLC:
Small cell lung cancer.

Figure 5. Survival analysis of hub genes.
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biological activities such as inhibition of cell death, promotion of cell
proliferation, inhibition of immune surveillance, and promotion of
angiogenesis. A study22 has suggested that aspirin, which targets
PTGS2, is a potential therapeutic target for patients with SCLC.

The present study also describes the TME landscape and elaborates on
the infiltration characteristics of 22 immune cell species in SCLC and
23
normal tissue samples. In addition, the immune cell components asso-
ciated with SCLC development were identified. There were significant
differences between SCLC and normal tissue samples in the infiltration
level of memory B cells, CD8þ T cells, resting memory CD4þ T cells,
resting NK cells, M1 and M2 macrophages, activated dendritic cells,
resting mast cells, and neutrophils. Different components of the TME are
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responsible for different clinical outcomes. The immune system prevents
cancer development predominantly by recognizing and killing tumor
cells through cytotoxic T lymphocytes. However, tumor cells often
develop ways to evade immune surveillance, for example, by activating
the programmed cell death 1 (PD-1) receptors. Binding between the PD-1
receptor and its ligand PD-L1 or PD-L2 inhibits the function of other cells
through inducing non-responsiveness, promoting apoptosis, and
reducing proliferation and secretion of inflammatory cytokines such as
interferon (IFN) -γ, interleukin 4, and interleukin 2. Therefore, it is
important to develop biomarkers that can predict whether immune
checkpoint therapies will benefit specific patients with SCLC. In addition,
despite the significant differences in immune cell infiltration between
SCLC and normal tissue samples, PCA could not completely distinguish
between SCLC and normal samples owing to the data batch effect
interfering with gene expression.

In combination with previous studies, the six prognosis-related hub
genes obtained in the present study may help elucidate the molecular
mechanisms of SCLC. However, although the study has indicated po-
tential hub genes and key pathways in SCLC, there are still limitations to
the study. First, the gene modules were mined based on the PPI networks
in the STRING database, where some proteins were based on predictions
rather than molecular experiments. Therefore, the molecular mecha-
nisms of these key pathways and hub genes require further molecular
investigation. Second, this study is purely a bioinformatics analysis, and
consequently, experimental studies are needed to validate the
observations.
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