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Abstract: This work investigated changes in the biochemical parameters of multilayer membrane
structures, emerging at their modification with multiwalled carbon nanotubes (MWCNTs).
The structures were represented by polyelectrolyte microcapsules (PMCs) containing glucose
oxidase (GOx). PMCs were made using sodium polystyrene sulfonate (polyanion) and poly(allylamine
hydrochloride) (polycation). Three compositions were considered: with MWCNTs incorporated
between polyelectrolyte layers; with MWCNTs inserted into the hollow of the microcapsule;
and with MWCNTs incorporated simultaneously into the hollow and between polyelectrolyte layers.
The impedance spectra showed modifications using MWCNTs to cause a significant decrease in the
PMC active resistance from 2560 to 25 kOhm. The cyclic current–voltage curves featured a current
rise at modifications of multilayer MWCNT structures. A PMC-based composition was the basis of a
receptor element of an amperometric biosensor. The sensitivity of glucose detection by the biosensor
was 0.30 and 0.05 µA/mM for PMCs/MWCNTs/GOx and PMCs/GOx compositions, respectively.
The biosensor was insensitive to the presence of ethanol or citric acid in the sample. Polyelectrolyte
microcapsules based on a multilayer membrane incorporating the enzyme and MWCNTs can be
efficient in developing biosensors and microbial fuel cells.

Keywords: multilayer membrane structures; polyelectrolyte microcapsules (PMCs); glucose oxidase;
modification with multiwalled carbon nanotubes; PMC impedance decrease

1. Introduction

Recent research has witnessed an increased interest in developments of micro- and nanostructures to
be used in miniature devices [1]. Microstructures can be developed based on various materials, some
of which are frequently used polyelectrolytes [2,3]. Polyelectrolyte microcapsules (PMCs), fabricated
by alternate layering of oppositely charged polyelectrolytes to nano- and microsize disperse particles,
are subjects of a rapidly developing field of polymer nanotechnology [4–6]. The approach has been
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first described by Decher and coworkers [7,8]. On the whole, polyelectrolyte multilayers/multilayer
membranes are widely used in many applications, including biosensors [9–11], asymmetric membranes for
gas separation [12], and tissue engineering [13]; they have also been used for antibacterial purposes [14,15].

The PMC multilayer membrane has a protective action on objects inside the capsule, this enables
using microcapsules as microcontainers and microreactors in medical [16], light [17,18], and agricultural
industries [19]. Enzymes immobilized into polyelectrolyte microcapsules can be used to develop
biosensors, e.g., for assaying urea [20–22], acetylcholine [23], and glucose [24].

When forming biosensors and microbial fuel cells (MFCs), an important electrical parameter to
be considered is the conductance of measuring electrode material. One of the modern tendencies in
choosing electrode materials for MFCs and biosensors is, at present, the use of nanostructured materials
for modifying electrodes, which is due to their unique physical and chemical properties [25]. It is known
that the modification of the measuring electrode with carbon nanomaterials results in the decrease of
its resistance, as well as in the increase of the active surface of the working electrode [26]. The most
promising materials for developing bioelectrodes in bioelectrochemistry are carbon nanotubes [27],
graphene [28], mesoporous carbon [29], and carbon black [30], owing to their high porosity, surface area,
and conductance [31].

The bulk of works on the modification of polyelectrolyte layers with nanomaterials is related to
the development of biosensors based on glassy carbon electrodes [32]. In several works [33,34],
a composition of glucose oxidase (GOx) and multiwalled carbon nanotubes (MWCNTs) was
immobilized into layers of osmium polymers and used as the base for screen-printed amperometric
glucose biosensors. Those biosensors demonstrated a good stability and low detection limit but
suffered from hindered glucose transport through the multilayers of osmium polymers. As far as we
are aware, modifications with carbon nanotubes of closed multilayer membrane structures represented
by enzyme-containing PMCs have not been carried out.

The aim of this work was to investigate changes in bioelectrochemical parameters of polyelectrolyte
microcapsules formed from multilayer membranes containing the enzyme (GOx) at their modification
with multilayer carbon nanotubes.

2. Materials and Methods

2.1. Reagents

Reagents used: sodium chloride, dipotassium hydrogen phosphate trihydrate, sodium hydroxide,
glucose, and acetic acid (Diakon, Russia); iron(III) chloride, potassium chloride, calcium chloride,
and sodium carbonate (Khimmed, Russia); hydrochloric acid, hydrogen peroxide (30% solution), sodium
carbonate, and potassium hexacyanoferrate(III) (HCF) (Reakhim, Russia); chitosan (low molecular
weight), sodium polystyrene sulfonate (PSS, 70 kDa), poly(allylamine hydrochloride) (PAH, 70 kDa),
ethylenediaminetetraacetic acid (EDTA), and 4-aminoantipyrine, phenol, glucose oxidase (EC 1.1.3.4)
from Aspergillus niger (activity, 185000 U/g) (Sigma-Aldrich, USA). Taunit-M multiwalled carbon
nanotubes (NanoTechCentre LLC, Tambov, Russia) were used for modification of the electrode.

Screen-printed three-contact electrodes (Color Electronics, Moscow, Russia) containing Electrodag
6017SS graphite paste (Henkel, Germany) were used.

2.2. Formation of a Prussian Blue-Based Chemical Sensor

Prussian blue was precipitated on the electrode surface from the reaction mixture containing
0.1 M FeCl3 and 0.1 M K3 [Fe(CN)6] in the background electrolyte (0.1 M KCl, 0.1 M HCl). The mixture
was preliminarily kept for 20 min in an Eppendorf test tube in the dark; then it was applied onto
the working electrode. After 15 min, hydrogen peroxide was added into the applied solution to
a concentration of 100 mM in a drop; the produced mixture was held on the electrode for 45 min.
Upon precipitation, the electrode surface was washed with Milli-Q water. After that the electrode
was activated (a potentiodynamic treatment of the Prussian blue electrode in a cyclic mode in the
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background electrolyte from −0.05 up to 0.35 V) in accordance with the method described by Karyakin
and co-authors [35].

In special experiments, the surface of the graphite electrode was modified with MWCNTs prior to
the precipitation of Prussian blue. For this, a suspension of nanotubes (5 mg/mL) was applied onto the
electrode surface and dried for 1 h at 22 ◦C.

2.3. Formation of CaCO3-Protein Microspherolites

For the preparation of microcapsules, an equal volume of a sodium carbonate solution (0.33 M) was
added to a 0.33 M calcium chloride solution and intensively stirred on a magnetic mixer. The mixing
was continued for 30 s, after which the suspension was kept up to the complete sedimentation of
formed particles [36]. Maturation of microspherolites was monitored by a light microscope. Then the
solution was filtered from the supernatant, the sediment was washed with distilled water and used to
produce PMCs.

For the preparation of microcapsules containing GOx, an equal volume of a sodium carbonate
solution (0.33 M) was added to a 0.33 M calcium chloride solution containing 3 mg/mL GOx and
intensively stirred on a magnetic mixer.

To produce microcapsules containing MWCNTs in the hollow, a suspension of nanotubes was
mixed with a solution of CaCl2.

To produce microcapsules containing MWCNTs in the hollow and GOx simultaneously,
a suspension of nanotubes was mixed with a solution of Na2CO3, and an enzyme solution was
mixed with a solution of CaCl2. Further on, from these mixtures we formed composite microspherolites
of various structures (CaCO3; CaCO3/GOx; CaCO3/MWCNTs; CaCO3/GOx/MWCNTs) by the
above-described technique.

2.4. Preparation of PMCs

Polyelectrolyte microcapsules were obtained by alternate adsorption of oppositely charged
polyelectrolytes on disperse microparticles (cores) with subsequent dissolution of the cores. Alternate
adsorption of PAH and PSS on the surfaces of CaCO3 microspherolites was carried out in polyelectrolyte
solutions (2 mg/ml) containing 0.5 M NaCl. Each adsorption step was followed by a triple washing
of fabricated capsules with a 0.5 M NaCl solution, which was required to discard nonadsorbed
polymer molecules. The supernatant was centrifuged to separate the particles. After the required
number of layers was deposited, carbonate cores were dissolved for 12 h in a 0.2 M solution of EDTA.
Polyelectrolyte capsules were rinsed three times with Milli-Q to remove cores’ components. Capsules
contained six polyelectrolyte layers because capsules with fewer layers were unstable. The suspension
of capsules was stored in bidistilled water at a temperature of 4 ◦C.

For the preparation of PMCs/MWCNTs between layers of the polyelectrolytes, microspherolites
with two layers of PAH and one layer of PSS were put into a suspension of nanotubes. After 5 min,
the microspherolites were washed three times in a 0.5 M NaCl solution, then the remaining three layers
of PAH and PSS were added.

Formation of PMCs around the enzyme is shown schematically in Figure 1.
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2.5. Formation of Glucose Biosensors

Polyelectrolyte microcapsules, in the amount of 5 µL with incorporated GOx, were applied
onto the surface of a Prussian blue electrode and dried at 22 ◦C for 30 min. Between measurements,
the biosensors were stored at a temperature of 4 ◦C in the dark. The measurements were carried out at
a temperature of 22 ◦C in a 1-ml cell at constant stirring. The measurements were performed on an
IPC-Micro galvanopotentiostat (Kronas Ltd, Russia). Glucose solutions were prepared in a 25 mM
sodium–potassium–phosphate buffer solution (pH 6.5) with the addition of 20 mM NaCl.

The voltammetric and impedance measurements were carried out with a VersaSTAT 4 potentiostat
galvanostat (Ametek Inc., USA) in the same solution with the addition of 5 mM [Fe(CN)6]3. A scanning
rate of 40 mV/s was used for voltammetric measurements. A 100 mV constant potential (40 kHz–0.02 Hz
frequency range) and a voltage modulation of 10 mV were used to obtain impedance spectra. The correct
equivalent circuit for every system was picked using ZSimpWin software (EChem Software, USA).
The measurements were carried out with constant stirring of solutions.

2.6. Optical Microscopy

The optical microscopy examination of PMCs was conducted in the phase contrast mode using
a Nikon Eclipse Ci microscope (Nikon, Japan) with an image registration camera ProgRes SpeedXT
core5 (Jenoptik, Germany). The size of microcapsules was calculated from the average measured sizes
of 100 capsules.

2.7. Scanning Electron Microscopy

PMCs were dehydrated in a series of alcohols of increasing concentrations (from 50 up to 100%)
for 20 min at each stage. Then they were suspended in tert-butanol (Sigma-Aldrich) two times for
20 min each at 26 ◦C. Further on, the PMCs were held in tert-butanol for 12 h at 4 ◦C. The specimens
were then freeze-dried (JFD-320, JEOL, Japan). An adhesive tape was used for the preparation of
open capsules.

The dried specimens of both types were fixed on aluminium disks by means of a current-conducting
tape and coated with gold using a vacuum sputtering equipment JFC-1100 (JEOL, Japan) for better
resolution. The specimens were examined in a JSM-6510LV scanning electron microscope (JEOL, Japan).

2.8. Atomic Force Microscopy

Freshly cleaved supports from highly oriented pyrolytic graphite (HOPG) were used to investigate
PMCs by atomic force microscopy (AFM) methods. The upper layers of HOPG were cleaved directly in
a PMC-containing solution. The studies were carried out by a Solver P47 H scanning probe microscope
(NT-MDT, Russia) in the semicontact mode in air using a diamond cantilever.

3. Results

3.1. Characterization of PMCs by AFM and SEM

Micrographs of structures that characterize the composite-electrode material are shown in Figure 2.
Figure 2a presents a PMC layer applied to the freshly cleaved surface of HOPG, where both single and
aggregated PMCs are seen. The shape and profile of a single microcapsule are shown in Figure 2b,c,
respectively. The size of a single PMC was of the order of 2.5 ± 0.6 µm (based on 30 measurements).

PMC micrographs obtained by phase-contrast and scanning electron microscopies are shown in
Figure 3.
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Figure 3. PMC micrographs obtained by phase-contrast microscopy (a) and scanning electron
microscopy ((b) intact capsules and (c) open capsules). Scale bars are 10 µm (a) or 1 µm (b,c).

The size of a single microcapsule was of the order of 2.8 ± 0.5 µm (based on 50 measurements).
This estimate coincides with that for a single microcapsule shown in Figure 2b. It is seen in Figure 3a that
a minor conjugation of PMCs takes place. Figure 3b,c gives an idea of the PMC structure. The thickness
of the multilayer membrane consisting of six layers of oppositely charged polyelectrolytes was
37 ± 3 nm (each layer was ~6 nm) as described by Kazakova and co-authors [37]. Noteworthy is the
spatial arrangement of MWCNT threads. Figure 3c shows a case when MWCNTs were incorporated
simultaneously between layers of polyelectrolytes and into the hollow of a microcapsule. MWCNT
threads partially protruding to the PMC surface are seen.

3.2. Impedance Characteristics of Various Types of Electrodes

The impedance of the electrode depends on a multitude of factors; herewith, it changes at
the application of any substance onto the electrode surface. Measurements were carried out using
electrochemical impedance spectroscopy by the three-electrode scheme in the presence of 5 mM
hexacyanoferrate at an applied potential of 100 mV. The composition of the solution remained
invariable, so any changes in the impedance spectra were related only to the modification of the
electrode surface. The impedance spectra for the control states (a nonmodified screen-printed electrode
without any coating or electrodes with a coating of PMCs, GOx, PMCs/GOx, and MWCNTs) and
MWCNT-modified (PMCs/MWCNTs in the hollow of the PMCs and between polyelectrolyte layers,
PMCs containing MWCNTs between polyelectrolyte layers, PMCs containing MWCNTs in the hollow,
PMCs containing GOx, and MWCNTs in the hollow) are presented in Figure 4. For convenience of
comparison, the frequency impedance curves are given in logarithmic coordinates. The impedance
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spectra were processed using a Randles modified scheme with a constant phase element (CPE) replacing
the capacitance of the electrical layer (Figure 4, Inset A). It should be noted that the typical form of the
frequency impedance curves changed when a PMC layer was present on the surface of the electrode.
We observed two semicircles, each of which featured a separate pair of CPEs and a charge-transfer
resistance Rct, instead of one semicircle on the frequency curve (Figure 4, Inset B).
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Figure 4. Impedance spectra for electrodes with various surface modifications: 1, a nonmodified
electrode; 2, with PMCs; 3, glucose oxidase (GOx); 4, PMCs containing multiwalled carbon nanotubes
(MWCNTs) in the hollow and between polyelectrolyte layers; 5, PMCs containing MWCNTs between
polyelectrolyte layers; 6, PMCs containing MWCNTs in the hollow; 7, PMCs with GOx; 8, MWCNTs;
and 9, PMCs with GOx and MWCNTs in the hollow. Inset shows the equivalent electric circuits used
for electrodes without MWCNTs (A) and for electrodes with MWCNTs (B).

The values of active resistances obtained for each modification of the electrode are given in
Table 1. The highest resistance values were obtained for screen-printed electrodes without applying any
coatings, as well as for electrodes modified separately by the enzyme and PMCs. The lowest value of
the resistance was observed for a composition including PMCs, GOx, and MWCNTs in the hollow and
between polyelectrolyte layers. Herewith, the resistance was found to decrease from 120 to 25 kOhm
as compared with the composition with PMCs/GOx without MWCNTs. Thus, it can be concluded that
the incorporation of MWCNTs into PMCs contributes to a better electron transfer in the system, which,
in turn, has a positive effect on the characteristics of biosensors based on PMCs/GOx/MWCNTs.

Table 1. Active resistances of screen-printed electrodes with various modifications of the surface.

Graphite Electrodes Modified with Various Components Total Resistance, kOhm

Nonmodified screen-printed electrodes 4200 ± 200

PMCs 2560 ± 170

PMCs/MWCNTs in the hollow 172 ± 8

PMCs/MWCNTs between layers of polyelectrolytes 181 ± 6

PMCs/MWCNTs in the hollow and between layers of polyelectrolytes 162 ± 6

GOx 1200 ± 30

MWCNTs 34 ± 1

PMCs with GOx 120 ± 4

PMCs with GOx and MWCNTs in the hollow and between layers of
polyelectrolytes 25 ± 1

Note: the mean values of five measurements and a mean root square deviation for the total active resistances
are given.
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3.3. Cyclic Voltammograms of Modified Electrodes

For each modification of the electrode surface cyclic voltammograms were recorded (Figure 5).
As the recordings show (Figure 5b, curves 1–6), modifications of the graphite electrode with PMCs at
an addition of MWCNTs, both in the hollow and between polyelectrolyte layers, has no significant
effect on the cyclic voltammogram shapes. Modification of PMCs with the enzyme has no effect on the
voltammograms either. Their shape changes significantly at a modification of the electrode surface
with MWCNTs (Figure 5a, curve 8). The changes are due to the emergence of characteristic redox
peaks. The values of the peaks decrease significantly at the modification of the electrode surface with
PMCs with the enzyme (curve 7); they rise again—but fail to reach the initial value—at addition of
microcapsules with enzyme-containing MWCNTs into the hollow (curve 9). Thus, the electrochemical
measurements prove a decrease of resistance in the system at its modification with nanotubes. This is
supported by both the impedance data and the cyclic voltammograms of the considered electrodes.
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Figure 5. Cyclic voltammograms of modified electrodes: 1, a nonmodified electrode; 2, with PMCs,
3, GOx; 4, PMCs containing MWCNTs in the hollow and between polyelectrolyte layers; 5, PMCs
containing MWCNTs between polyelectrolyte layers; 6, PMCs containing MWCNTs in the hollow; 7,
PMCs with GOx; 8, MWCNTs; and 9, PMCs with GOx and MWCNTs in the hollow. Measurements
were carried out with the addition of 5 mM HCF. For comparison, a shows all types of dependences,
while b represents the zoom of curves 1–6.

Microcapsules with the enzyme were immobilized by sorption on the graphite-electrode surface.
The upper layer of polyelectrolyte covering the capsule carries a negative charge and sorbs well on the
surface of the graphite electrode owing to Coulomb interaction. To investigate the characteristics of
glucose biosensors, the electrode surface was preliminarily modified with Prussian blue. Prussian blue
is an electrocatalyst of the reduction of hydrogen peroxide [38,39], which evolves during the oxidation
of substrate (glucose) by the enzyme and reflects the catalytic activity of the immobilized enzyme [35].

3.4. Determination of Kinetic Parameters of PMC/GOx and PMC/GOx/MWCNTs Biosensors

We investigated the characteristics of biosensors based on electrodes with Prussian blue, modified
with enzyme-containing PMCs. Capsules with and without MWCNTs in their composition were used.
For comparison, we used GOx immobilized by simple sorption on the surface of the electrode. Figure 6
shows the obtained calibration dependences for the biosensors, Table 2 presents the numerical values
of the main characteristics. Introduction of MWCNTs into the capsules leads to higher sensitivity
of the biosensor to glucose (0.30 µA/mM vs. 0.05 µA/mM) at the same concentration of the enzyme
on the electrode (Figure 6, curves 2 and 3). Additional modification of the electrode surface with
nanotubes leads to a further increase of biosensor signals (Figure 6, curve 4) and a significant (up to
0.94 µA/mM) assay sensitivity increase. This is due to an increase of the conductivity of the system
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and a possible facilitated transfer of electrons from the nanotubes to the electrode, which is also
supported by the data of impedance measurements. Besides, a modification of the electrode with
MWCNTs changes the glucose detection range (Table 2). The lower range of detection is shifted towards
lower concentrations, which are 0.05 mM, which enables assaying lower concentrations of glucose.
Table 3 presents an overview of GOx-based biosensors for glucose detection. The attained results,
coupled with the relative simplicity of the biosensor construction, compare favorably with previously
reported biosensors. No study regarding glucose quantification based on PMC/GOx/MWCNTs s-based
biosensors was found.
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Figure 6. Calibration dependences of biosensor signals vs. glucose concentrations at various
modifications of the electrode: 1, PMCs/GOx/MWCNTs in the hollow; 2, PMCs/GOx; 3, GOx; and 4,
PMCs/GOx/MWCNTs in the hollow plus an additional modification of the electrode with MWCNTs
(see explanations in the text).

Table 2. Basic analytical characteristics of biosensors.

Parameter
Composition of Biocatalyst PMCs/GOx/MWCNTs * PMCs/GOx/MWCNTs PMCs/GOx GOx

Equation describing the calibration
dependence

V = VmaxSh

Kh
M+Sh

Parameter values of the calibration
dependence

Vmax = 2.560;
h = 1.667;

Km= 1.203;
R2 = 0.99

Vmax = 1.938;
h = 1.050;

Km = 3.194;
R2 = 0.99

Vmax = 1.639;
h = 1.238;

Km = 16.393;
R2 = 0.99

Vmax = 0.959;
h = 0.865;

Km = 86.692;
R2 = 0.99

Linear range of detection, mM 0.05–2 0.2–2.7 1–15 0.5–7

Regression equation for the linear segment,
correlation coefficient R2

y = 0.9443x + 0.0193,
R2 = 0.99

y = 0.2966x − 0.1161,
R2 = 0.99

y = 0.0524x +
0.0293,

R2 = 0.99

y = 0.0149x +
0.0029,

R2 = 0.99

Sensitivity coefficient, µA/mM 0.94 0.30 0.05 0.01

Minimal range of detection, mM 0.05 0.05 1 0.5

Detection range, mM 0.05–3 0.05–6 1–25 0.5–25

* For this type of electrode the surface was additionally modified with MWCNTs (see methods).

One of the important characteristics of the assay is its specificity. To assess a partial specificity of
the receptor element for a biosensor based on MWCNTs-modified electrodes, we examined signals for
citric acid (within the concentration range of 0.06 to 0.90 mM) and ethanol (within the concentration
range of 0.1 to 2.0 M). As shown in Figure 7, these compounds evoked no generation of useful signals.
This is due, first, to the specificity of the enzyme we used, and, second, to the fact that the measurements
were carried out at a zero potential of the measuring electrode.
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Table 3. Sensitivity and limit of detection for some glucose biosensors based on GOx.

Biosensor Composition Limit of Detection, µM Sensivity References

Nafion/GOx/ZnO/ITO 50 3.87 µA/mM·cm2 [40]

PEC/AuNPs/GOx/Au 5 283.9 µA/log[glucose] [41]

Poly(3,4-ethylenedioxythiophene)
nanofiber based glucose biosensor 67.8 272.58 µA/mM cm2 [42]

GOx/AgNPs/HNTs 200 5.1 µA/mM cm2 [43]

rGO/PDA/MOF/GOx 0.3 9.6 µA/mM cm2 [44]

p-MAA/Nafion/GOx 10 12.0 µA/mM cm2 [45]

PMCs/MWCNTs/GOx 50 13.4 µA/mM cm2 This work

Note: ITO, indium tin oxide; PEC, polyelectrolyte complex; NP, nanoparticles; HNTs, halloysite nanotubes; rGO,
reduced graphene oxide; PDA, polydopamine; MOF, metal-organic frameworks; p-mAA, poly-methacrylic acid.
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4. Discussion

The performed work aimed to study effects of modulating the bioelectrochemical properties of
PMCs at their contact with MWCNTs. Polyelectrolyte microcapsules are objects of a rapidly developing
field—polymer nanotechnology—and are widely used to form supramolecular structures. PMCs are,
in fact, a structure formed by multilayer membranes that consist of polyelectrolytes.

PMCs are widely used in experimental and applied events. They make it possible to create
containers for incapsulation of proteins, including enzymes, (sub)cellular structures, medicinal
substances, and other high-molecular compounds. The incorporation of enzymes into PMCs leads to
a significant rise in the lifetime of its active state. In this connection, it is topical to investigate their
properties at their contact with a nanomaterial represented by MWCNTs.

This work was the first to show that such characteristics as impedance spectra of PMCs prove to be
highly sensitive to the occurrence of MWCNTs. This sensitivity manifests itself by a significant decrease
of the active constituent of the impedance at a modification with PMCs. On the whole, effects of a
change in the physicochemical properties of multilayer polyelectrolyte membranes have been known for
various electrode materials [46], including for modifications of multilayer polyelectrolyte membranes
using MWCNTs, which make the base of the biosensor [32]. It should be noted that in earlier considered
cases, the modification with MWCNTs was considered either for plane multilayer membranes or
else for membranes formed from other classes of polyelectrolytes, e.g., osmium polymer [33] or
chitosan [47]. The presented work first shows that, using MWCNTs, a significant change of the physical
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chemical properties of closed membrane structures can be obtained. It is shown that the decrease
in the resistance of PMCs due to the inclusion of MWCNTs in its composition leads to an increase
in the sensitivity of glucose biosensors and a decrease in their detection limit. The produced data
of impedance measurements were supported by a study of the cyclic current–voltage dependences.
Studies of a laboratory model of the biosensor enabled in the first approximation to assess the analytical
parameters, which indicate a significant improvement of the characteristics.

We should note an important applied advantage that ensues from the preparation of closed
microstructures as compared with the formation of plane structures. Closed cell-like microstructures
act as a semiproduct, which enables creating a required product, e.g., a receptor element of the
biosensor, from the available stock with minimal time expenses. Technology-wise, the development
of such kinds of items from plane structures appears to be impossible. For this reason, separately
fabricating and storing PMC capsules containing a biocatalyst and MWCNTs and then rapidly using
them is a way of forming biosensors or else microbial fuel cell structures over small time periods,
and does not require additional chemical reagents to treat the electrode surface before and after the
measurement. As our research has shown, the obtained electrode composite demonstrates good
reproducibility of voltammetric responses, as well as a low detection limit and high sensitivity for
measuring glucose. Moreover, GOx is a suitable model biocatalyst for the further development of other
enzyme bioelectrodes containing PMCs and nanomaterials. Composites presented in this paper may
be used as membranes, whose properties can be controlled during production.
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