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We show that many ideal observer models used to decode neural activity can be
generalized to a conceptually and analytically simple form. This enables us to study the
statistical properties of this class of ideal observer models in a unified manner. We
consider in detail the problem of estimating the performance of this class of models.
We formulate the problem de novo by deriving two equivalent expressions for the
performance and introducing the corresponding estimators. We obtain a lower bound on
the number of observations (N) required for the estimate of the model performance to
lie within a specified confidence interval at a specified confidence level. We show that
these estimators are unbiased and consistent, with variance approaching zero at the rate
of 1/N. We find that the maximum likelihood estimator for the model performance is not
guaranteed to be the minimum variance estimator even for some simple parametric forms
(e.g., exponential) of the underlying probability distributions. We discuss the application of
these results for designing and interpreting neurophysiological experiments that employ
specific instances of this ideal observer model.
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INTRODUCTION
Ideal observer models are an important tool in the effort to under-
stand the neural bases of perception and behavior (FitzHugh,
1957; Ratliff, 1962; De Valois et al., 1967; Ratliff et al., 1968;
Talbot et al., 1968; Barlow and Levick, 1969; Barlow et al., 1971;
Mountcastle et al., 1972; Johansson and Vallbo, 1979; Bradley
et al., 1987; Newsome et al., 1989; Vogels and Orban, 1990;
Geisler, 2001). Ideal observer analysis can be applied to the organ-
ism as a whole, as in psychophysical studies, or to a specific stage
of information processing within the visual system of the organ-
ism, as is often done in neurophysiological studies (sometimes
referred to as “sequential ideal observer analysis,” see Geisler,
1989). Here we focus exclusively on ideal observer models that
arise in the analysis and interpretation of neurophysiological data.
In this context, we define an ideal “observer” model as a set of
operations and processes by which the experimenter optimally
decodes stimuli, perceptual decisions, or behavioral outcomes
from sensory neural activity (Green and Swets, 1966; Geisler,
1989, 2001, 2004). In the early stages of a sensory system, such
an ideal “observer” model can be used to study the efficiency of
a neuron. For example, Barlow et al. (1971) used an ideal detec-
tor model to compute detection probability from the number of
photons absorbed by photoreceptors and related the results to
retinal ganglion cell responses. In this manner, they were able to
estimate the average number of impulses emitted by a retinal gan-
glion cell per quantum of light absorbed by photoreceptors. They
concluded ganglion cells are efficient and sensitive. In the inter-
mediate stages of sensorimotor transformation, ideal observer
models are often used to optimally decode behavioral choice

related information from the responses of a single sensory neu-
ron (Celebrini and Newsome, 1994; Britten et al., 1996). Such
analyses associate neural responses with perceptual decisions (rev.
Parker and Newsome, 1998). Ideal observer analysis can also be
applied to optically imaged cortical signals to assess neural pop-
ulation sensitivity for detection or discrimination (Chen et al.,
2006, 2008; Purushothaman et al., 2009; see also rev: Cohen et al.,
2011).

The statistical properties of an ideal observer model impact the
results. For example, an ideal observer typically yields an unbi-
ased estimate of performance and increasing the number of trials
will decrease the variance of this estimate. These assumptions are
generally valid when the underlying probability distributions take
certain parametric forms but deviations from these assumptions
can influence the results. Furthermore, it is not always straight-
forward to take into account confidence intervals for model per-
formance in interpreting the results. Statistically valid methods
of computing confidence intervals are known for some applica-
tions (e.g., Agarwal et al., 2005; Sarma et al., 2011) but this is not
true in general. Therefore, heuristic or Monte-Carlo simulations
are used to compute confidence intervals of ideal observer perfor-
mance where necessary (e.g., Purushothaman et al., 2009). The
main goal of this paper is to investigate the statistical properties
and limitations of ideal observer models commonly used in the
analyses of neurophysiological data. To achieve this goal, we first
generalize four common forms of such ideal observer models.

The first of these was used in studies of the absolute visual
detection threshold (Hecht et al., 1942; Hartline et al., 1947;
Ratliff, 1962). Hecht et al. (1942) showed that the probability
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with which human observers detected flashes of light, that pre-
sumably delivered a certain average number of quanta of energy
(a) to the retina, closely followed the probability of drawing a
“threshold” number of n or more quanta from a Poisson distribu-
tion with mean arrival rate a. Analysis of the electrophysiological
data of Hartline et al. (1947) from the Limulus eye showed that
the frequency with which a neuron emitted at least a criterion
number (NC) of impulses also closely followed the probability
of drawing NC or more impulses from the Poisson distribution
with arrival rate equal to a (Ratliff, 1962). Implicit in this analy-
sis is the linking hypothesis that the neuron signals to the animal
the presence of an external stimulus whenever the number of
impulses emitted by the neuron is greater than or equal to NC

(Teller, 1984). Given this hypothesis, the ideal observer model
estimates the maximum detection probability for a set of neural
responses. It can be said that the criterion NC is chosen in this
model to fit detection probabilities but without regard to the false
alarm rate. Since the “maintained” or “background” discharge
rate of the neuron also fluctuates (Ratliff et al., 1968; Barlow and
Levick, 1969), in some trials, the number of impulses emitted by
the neuron will equal or exceed NC simply due to this random
fluctuation and the ideal observer will falsely signal the presence
of a stimulus. This false alarm rate is not incorporated into this
model.

The second ideal observer model we consider takes the false
alarm rate into account [e.g., Barlow and Levick, 1969; rev.
Green and Swets, 1966]. Typically, the probability distribu-
tion of the number of impulses in the maintained discharge
is used to determine NC so that the probability of false alarm
is less than or equal to a predetermined value [e.g., 0.2% in
Barlow and Levick (1969)]. The probability distribution for
the stimulus-induced response will then determine the detec-
tion rate for this criterion. The ideal observer in this analy-
sis performs essentially the same operation as the one above,
signaling the presence of a stimulus whenever the number of
impulses emitted by the neuron exceeds NC . But this crite-
rion value is chosen based on a constraint on the false alarm
rate.

The third model arises in Two-Alternative Forced-Choice (2-
AFC) paradigms employed in detection and discrimination stud-
ies (Green and Swets, 1966). Typically, a reference and a test
stimuli are presented either at two spatial locations (simulta-
neously) or in two temporal intervals (sequentially). The task
of the observer is to indicate the location or the interval in
which the test stimulus occurred. Because decisions are based
on the comparison of two stimuli or neural responses to two
stimuli, there is no need in this case to set a fixed criterion
level. For example, the ideal observer can consistently associate
the larger response with the test stimulus (e.g., Barlow et al.,
1971). Computationally, the experimenter builds two histograms
of neural responses, one each for the reference and test stim-
uli. The correct detection or discrimination probability for the
ideal observer in the 2-AFC task is then the average rate at
which the observer can correctly identify which sample belongs
to which distribution when presented with two random samples,
one drawn from the reference distribution and the other from the
test distribution (Green and Swets, 1966). This probability can

be estimated as the area under the receiver operating character-
istic (ROC) curve for the pair of histograms (Green and Swets,
1966).

The fourth model we consider is computationally similar to
the third model but has an important conceptual difference in
that it is used to predict the choices made by a subject in a
2-AFC task based on the neural responses for near-threshold
stimuli (Johansson and Vallbo, 1979; Celebrini and Newsome,
1994; Britten et al., 1996). This analysis can be used to link
subjective perceptual decisions to single neuron responses (rev.
Parker and Newsome, 1998; Romo, 2001; see also Vallbo and
Johansson, 1980). As a consequence, this ideal observer model
has found wide application recently (Dodd et al., 2001; Cook and
Maunsell, 2002; Romo et al., 2002; Williams et al., 2003; Stoet
and Snyder, 2004; Uka and DeAngelis, 2004; Williams et al., 2004;
Purushothaman and Bradley, 2005; Pessoa and Padmala, 2005;
Gu et al., 2007, 2008; Cohen and Newsome, 2009; Bosking and
Maunsell, 2011).

The main difference between the first two ideal observer mod-
els and the last two is that the latter models are presented with
two observations instead of one, making it possible to render
decisions based on a direct comparison of the given observa-
tions, independent of a free parameter in the form of a con-
stant criterion number. While this makes the two types of ideal
observers different from functional point of view, it is pos-
sible to have a single mathematical framework within which
the performance of both types of models can be quantitatively
described. Consider an ideal observer with two inputs r0 and
r1 and two outputs C0 and C1. Let P(r0) and P(r1) be the
probability distributions of the two input variables. In the fol-
lowing, we show that with appropriate choices for C0, C1 and
P(r0), P(r1), this ideal observer can be used for absolute sen-
sory detection tasks (first two categories described above) as
well as for 2-AFC tasks (last two categories). In this framework,
the performance (i.e., true positive, false positive, true nega-
tive, and false negative rates) of all four types of ideal observers
can be described using the same closed-form expression. We
then address the following questions: 1) How does the perfor-
mance of the generalized ideal observer compare to the area
under the ROC curve? 2) Is it possible to determine a priori
the number of input samples required so that the estimated
value of the observer’s performance will lie within a specified
confidence interval at a specified confidence level? 3) Are these
estimates unbiased and consistent, i.e., does estimation error
decrease with increasing number of observations and at what
rate? 4) Do efficient (minimum variance) estimators exist for
the performance of these ideal observers? 5) Is the standard
method of estimating performance (area under the ROC curve)
efficient? Answers to these questions will facilitate a more effi-
cient design of neurophysiological experiments for ideal observer
analysis.

RESULTS
GENERALIZED IDEAL OBSERVER EQUATIONS
In the notation introduced above, consider an ideal observer
model with inputs r0 and r1. Let S0 and S1 be the two exper-
imental conditions associated with r0 and r1, respectively. The
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probability distributions P0(r0) and P1(r1) are given by the con-
ditional distributions P0(r0) = P0(r0|S0) and P1(r1) = P1(r1|S1).
The ideal observer, who has no a priori knowledge of which
input sample comes from which condition, makes a prediction
to that effect using a “decision rule”. If the observer predicts
that r0 comes from the condition S0 (or, equivalently, from the
distribution P0(r0|S0)) and that r1 comes from S1 (i.e., from
P1(r1|S1)), then the observer will be correct. The opposite asso-
ciation will be incorrect. The variables r0 and r1 may represent
the frequency of impulses emitted by the neuron. Without loss
of generality, assume that the values of r0 and r1 lie within
the upper right quadrant of the real plane, i.e., the sample
space consists of all points �r = (r0, r1) ∈ �+ × �+. The deci-
sion region D ⊂ �+ × �+ consists of all values of r0 and r1

for which the ideal observer makes a correct prediction. Then
the probability of correct prediction for this ideal observer is
given by

P =
∫

D
p(r0, r1)d�r, (1)

where p(r0, r1) is the joint probability density function cor-
responding to the joint probability distribution P(r0, r1). In
many experiments, the responses to the two conditions are inde-
pendent random variables. Hence P(r0, r1) = P0(r0|S0)P1(r1|S1).
Furthermore, the optimal decision variable (e.g., the likelihood
ratio) or its sufficient statistic, involve monotone functions of
the two variables r0 and r1 thereby resulting in a partition
of the sample space �+ × �+ into a decision region of the
form D = {(r0, r1) ∈ �+ × �+|r1 ≥ r0}. Substituting this inte-
gration region into Equation (1) and choosing the summation
of the elemental areas along the two possible directions yields
two equivalent expressions for the performance of the ideal
observer as

P
(
p0(r0), p1(r1)

) �=
∫ ∞

0
p1(r1)

{∫ r1

0
p0(r0)dr0

}
dr1

= Ep1
[P0 ] (2)

and

P
(
p0(r0), p1(r1)

) �=
∫ ∞

0
p0(r0)

{∫ ∞

r0

p1(r1)dr1

}
dr0

= 1 − Ep0 [P1] (3)

where Ef (x)[G(x)] = ∫
G(x)f (x)dx denotes the expectation of the

function G with respect to the probability density function f , and
pi(ri), i = 0, 1 are the marginal probability density functions. It is
important to note that P

(
p0(r0), p1(r1)

) = 1 − P
(
p1(r1), p0(r0)

)
and therefore the order of the two distribution in the argument of
P(., .) cannot be exchanged.

This general ideal observer gives rise to the four spe-
cific ideal observers described above. In simple detection
tasks, the two stimulus conditions are typically S1 =
“Stimulus present” and S0 = “Stimulus absent.” Choose
p0(r0) = δ(r0 − NC) where δ(x) is the Dirac delta function such

that
∫∞
−∞ δ(x) = 1 and δ(x) = 0 ∀x 	= 0. Then Equation (2)

simplifies to

P
(
p0(r0), p1(r1)

)
=
∫ ∞

0
p1(r1)

{∫ r1

0
p0(r0)dr0

}
dr1

=
∫ ∞

0
p1(r1)

{∫ N−
C

0
δ(r0 − NC)dr0+

∫ r1

NC

δ(r0 − NC)dr0

}
dr1

=
∫ ∞

NC

p1(r1)dr1

which is the probability P1(r1 > NC), the hit rate in the detec-
tion task. Thus, for the choice of p0(r0) = δ(r0 − NC), the general
ideal observer model simplifies to the first category of ideal
observers that signal the presence of a stimulus whenever the
response of the neuron under consideration equals or exceeds
the fixed criterion number NC . The second category of ideal
observers used in detection tasks differs from the first only in
the choice of the criterion number NC . Therefore these mod-
els can be derived using p0(r0) = δ(r0 − NC) where NC is now
determined using the inequality

∫∞
NC

p0(r0)dr0 ≤ α. It is also
clear that the general observer fully describes the third cate-
gory of ideal observers used to quantify neural detection and
discrimination performance in 2-AFC tasks. Finally, for the
fourth category of ideal observers, the two “stimulus” condi-
tions need to be replaced with the two “choices” available to
the subject. Thus, this general ideal observer provides a com-
plete description of the four types of ideal observers consid-
ered above. We should note that this generalization does not
imply that all four categories of ideal observers are functionally
or physiologically equivalent. This generalization is just math-
ematical and provides a unified framework for the following
analyses.

ESTIMATORS FOR THE PERFORMANCE OF THE IDEAL OBSERVER
Suppose R1 = [r11r12 . . . r1i . . . r1N ] and R0 =
[r01r02 . . . r0k . . . r0N ] are two sets of N samples each obtained
in the experiment from the conditions S1 and S0, respectively.
In the above notation, the elements of R1 are independent
and identically distributed as P1 and those of R0 are similarly
drawn from P0. I[0, x](y) is the indicator function of y on
the closed interval [0, x] such that I[0, x](y) = 1 iff y ∈ [0, x]
and 0 otherwise. Then, based on Equation (2), an estima-
tor of the performance of the generalized ideal observer as
a function of the samples R0 for given a value of r1i can be
proposed as

P̂(R0|r1i) = 1

N

N∑
k = 1

I[0, r1i](r0k).

This provides an estimate for the inner integral in Equation (2),
given a value of r1. Using all 2N samples of both R1 and R0,
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P can be estimated as

P̂(R0, R1) = 1

N2

N∑
i = 1

N∑
k = 1

I[0, r1i](r0k). (4)

The estimator based on Equation (3) can be similarly
obtained as

P̂(R0, R1) = 1

N

N∑
k = 1

P̂(R1|r0k) = 1

N2

N∑
k = 1

N∑
i = 1

I[r0k, ∞](r1i). (5)

Equation (4) provides one simple way to estimate the perfor-
mance of the generalized ideal observer. We pick one sample
from R1, say r1i, and count the number of samples of R0 that
are less than or equal to r1i. We repeat this for all samples in
R1 and divide the result by N2. Equation (5) provides a sim-
ilar method. Computationally, this sequence of operations can
be rearranged to resemble the operations involved in comput-
ing the area under the ROC curve for the normalized frequency
histograms constructed from R0 and R1. Thus, there are at least
3 different methods to estimate the performance of this ideal
observer. We show below that all three methods compute the
area under the ROC curve, empirically constructed from R0

and R1.

RELATIONSHIP TO THE AREA UNDER THE ROC CURVE
For a fixed criterion T, the hit rate (β) and false alarm rate (α) are

β(T) =
∫ ∞

T
p1(r1)dr1 (6)

and

α(T) =
∫ ∞

T
p0(r0)dr0. (7)

Using Equation (6), we can rewrite the expression for the perfor-
mance of the ideal observer in Equation (3) as

P
(
p0(r0), p1(r1)

) =
∫ ∞

0
p0(r0)

{∫ ∞

r0

p1(r1)dr1

}
dr0

=
∫ ∞

0
p0(r0)β(r0)dr0

=
∫ ∞

0
β(r0)dP0(r0)

Using Equation (7) in the above, we have the performance of the
ideal observer as

P
(
p0(r0), p1(r1)

) =
∫ ∞

0
β(r0)dP0(r0) =

∫
βdα. (8)

Since the ROC curve is the plot of β against α as the criterion
varies from 0 to ∞, the quantity

∫
βdα is the area under the

ROC curve (Figure 1A). Therefore, estimates of the quantities in
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FIGURE 1 | Relationship of the derived estimators to the area under

the ROC curve. (A) Area under the ROC curve
∫

βdα has the equivalent
definitions given Equations (2) and (3) and admits the estimators given in
Equations (4) and (5). (B) Single estimates of the area under the ROC curve
and Equations (4) and (5) are shown comparatively for a progressively
increasing difference in the mean firing rates for Gaussian distributions. The
points are predominantly coincident. (C) The percent error for single
estimates lies within 2%. (D) When 100 such trial estimates are averaged
together, the percent error falls close to 0%. These differences in the
estimates are not systematic and are entirely due to numerical errors. (E,F)

Same as (C,D) but for Poisson distributions. In this case the errors
decrease monotonically from about 5 to close to 0%.

Equations (2) and (3) are also estimators of the area under the
ROC curve.

Figures 1, 2 numerically illustrate the fact that estimators (4)
and (5) are equivalent to the conventional estimate of perfor-
mance as the area under the ROC curve. For Figure 1, we assumed
Gaussian distributions for P0 and P1 with the mean of P1 greater
than that for P0. A random set of 100 samples were drawn from
each distribution and the area under the ROC curve was esti-
mated. Performance was also estimated using Equations (4) and
(5). The difference between the mean values of Gaussian distri-
butions was then increased in the range [0.5, 25] in steps of 0.5.
The variances were set to 1.28 × mean1.2 to mimic the firing rate
statistics of MT neurons (Britten et al., 1992; Purushothaman
and Bradley, 2005). The estimates were computed for this entire
range of mean values (Figure 1B). The deviation of the estima-
tors (4) and (5) from the area under the ROC curve (computed in
the traditional manner), was evaluated as Percent error = 100 ×
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FIGURE 2 | Derived estimators and area under ROC curve as a function

of variances. (A) Single estimates of the area under the ROC curve and
Equations (4) and (5) are compared for progressively increasing ratio of
variances for Gaussian distributions. The points are predominantly
coincident. (B) The percent error for single estimates lies within 2%. (C)

When 100 such trial estimates are averaged together, the percent error falls
close to 0%.

(Area under ROC − estimate)/estimate. The three estimates dif-
fered by less than 1.5% from each other (Figure 1C). When
the estimates were averaged over 100 repetitions, the errors
became negligible (Figure 1D). Simulations with Poisson distri-
butions showed errors in the range of 0 − 5% (Figures 1E,F).
For Figure 2, we again assumed Gaussian distributions for P0

and P1 with the mean of P1 greater than that for P0. However,
in these simulations, the difference between the mean values
were held constant while the ratio of the variance of P1 to
that of P0 was increased in the range [1, 25]. The percent error
was computed as above. These simulations also showed that
the estimates averaged over 100 repetitions had negligible error
(Figure 2C).

UNBIASED ESTIMATION OF THE IDEAL OBSERVER PERFORMANCE
It is easy to verify that the estimators given in Equations (4)
and (5) are unbiased, i.e., their expected values are equal to the
true value to be estimated (Van Trees, 1966, pp. 65–73). We

note that P̂(R0, R1) is a joint transformation of the independent
random variables r0k and r1i, i, k = 1, 2, . . . , N and that rik, k =
1, 2, . . . , N are identically distributed for each i. Therefore
the expected value of the estimator in Equation (4) can be
computed as

E[̂P] =
∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0
P̂(R0, R1)(

N∏
k = 1

p0(r0k)dr0k

)(
N∏

i = 1

p1(r1i)dr1i

)
. (9)

Substituting Equation (4) into the above equation,
we get

E[̂P(R0, R1)] = 1

N2

N∑
i = 1

N∑
k = 1

∫ ∞

0
p1(r1i)

(∫ ∞

0
I[0, r1i](r0k)p0(r0k)dr0k

)
dr1i

= 1

N2

N∑
i = 1

N∑
k = 1

∫ ∞

0
p1(r1i)

(∫ r1i

0
p0(r0k)dr0k

)
dr1i

= P(P0, P1).

Therefore, P̂ in Equation (4) is an unbiased estimator of P.
Similarly, it can be shown that the estimator of Equation (5) is
also unbiased.

VARIANCE OF THE ESTIMATOR
The variances of the estimators in Equations (4) and (5) can be
computed by first subtracting P from both sides of Equation (4)
and squaring them :

N4(̂P − P)2 =
(

N∑
i = 1

N∑
k = 1

(
I[0, r1i](r0k) − P

))2

=
N∑

i = 1

N∑
k = 1

(
I[0, r1i](r0k) − P

)2+
N∑

i = 1

N∑
k = 1

N∑
l = 1

N∑
m = 1

(l, m) 	= (i, k)(
I[0, r1i](r0k) − P

) (
I[0, r1l](r0m) − P

)
= S1 + S2 (10)

Expanding the summand of S1 as
(
I[0, r1i](r0k) − P

)2 =
I[0, r1i](r0k) + P2 − 2 P I[0, r1i](r0k) and noting that E[I[0, r1i]
(r0k)] = P, we obtain for the expectation of the first term,
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E[S1] = N2P(1 − P). Next, we rewrite the second sum as

S2 =
N∑

i = 1

N∑
j = 1
j 	= i

N∑
k = 1

(
I[0, r1i](r0k) − P

) (
I[0, r1j](r0k) − P

)

+
N∑

i = 1

N∑
k = 1

N∑
m = 1
m 	= k

(
I[0, r1i](r0k) − P

) (
I[0, r1i](r0m) − P

)

+
N∑

i = 1

N∑
k = 1

N∑
l = 1
l 	= i

N∑
m = 1
m 	= k

(
I[0, r1i](r0k) − P

) (
I[0, r1l](r0m) − P

)

= S21 + S22 + S23 (11)

Consider the first sum on the right side of Equation (11) above.
We compute the expectation of the product I[0, r1i](r0k)I[0, r1j](r0k)

for j 	= i as

E
[

I[0, r1i](r0k)I[0, r1j](r0k)
]

=
∫ ∞

0

∫ ∞

0
p1(r1i)p1(r1j)

(∫ ∞

0
I[0, r1i](r0k)I[0, r1j](r0k)p0(r0k)dr0k

)
dr1idr1j

=
∫ ∞

0

∫ ∞

0
p1(r1i)p1(r1j)

(∫ min(r1i, r1j)

0
p0(r0k)dr0k

)
dr1idr1j. (12)

Since min(r1i, r1j) ≤ r1i, we get the following bound:

E
[

I[0, r1i](r0k)I[0, r1j](r0k)
]

≤
∫ ∞

0

∫ ∞

0
p1(r1i)p1(r1j)

(∫ r1i

0
p0(r0k)dr0k

)
dr1idr1j

=
∫ ∞

0
p1(r1i)

(∫ r1i

0
p0(r0k)dr0k

)
dr1i = P. (13)

Therefore, we have for the expectation of the first term on the
right side of Equation (11) the bound E[S21] ≤ N2(N − 1)[P(1 −

P)]. Now consider the second sum. The expectation of the prod-
uct I[0, r1i](r0k)I[0, r1i](r0m) for m 	= k is given by

E
[
I[0, r1i](r0k)I[0, r1i](r0m)

]
=
∫ ∞

0
p1(r1i)

(∫ ∞

0
I[0, r1i](r0k)p0(r0k)dr0k

)
(∫ ∞

0
I[0, r1i](r0m)p0(r0m)dr0m

)
dr1i

=
∫ ∞

0
p1(r1i)

(∫ r1i

0
(r0k)p0(r0k)dr0k

)
(∫ r1i

0
(r0m)p0(r0m)dr0m

)
dr1i (14)

≤
∫ ∞

0
p1(r1i)

(∫ r1i

0
(r0k)p0(r0k)dr0k

)
dr1i

= P, (15)

where we used the bound
∫ r1i

0 (r0m)p0(r0m)dr0m ≤ 1 in Equation
(14). Therefore, we have for the expectation of S22 the bound
E[S22] ≤ N2(N − 1)[P(1 − P)]. Finally, we note that in the last
term S23, the summand

(
I[0, r1i](r0k) − P

) (
I[0, r1l](r0m) − P

)
is the

product of two independent and zero-mean random variables for
(i, k) 	= (l, m). Hence the variance of the estimator in Equation
(4) has the bound

E(̂P − P)2 ≤ P(1 − P)

[
1

N2
+ 2(N − 1)

N2

]
= P(1 − P)

[
2N − 1

N2

]
.

Similar calculations yield the same bound for the variance of the
estimator in Equation (5).

CONSISTENCY OF THE ESTIMATOR
Next, we verify if the estimators are consistent, i.e., if the estimates
progressively converge to the true value as the number of observa-
tions is increased (Van Trees, 1966, pp. 65–73). To do so, we first
apply the Tchebycheff-Bienayme inequality to P̂. For any ε > 0,
we have

Prob{|̂P − P| ≥ ε} ≤ Var(̂P)

ε2

≤ P(1 − P)

ε2

[
2N − 1

N2

]
. (16)

Thus P̂ converges to P in probability as N → ∞ and is a consis-
tent estimator of P.

DEVIATION OF AN ESTIMATE FROM THE TRUE VALUE
The above analyses showed that the proposed estimators give an
unbiased estimate of the performance of the ideal observer and
that as the number of observations increases, the error of esti-
mation (i.e., the variance of the estimator) decreases at the rate
of 1/N. In addition to establishing these properties, the above
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analyses also give us tools for designing the ideal observer model.
Suppose the experiment has been performed and an estimate of
the performance of the ideal observer has been obtained for a
neuron. It is desirable to determine the likelihood that the true
value of the performance lies within a known range of the esti-
mate obtained, i.e., we would like to state a confidence interval
for the estimate at a given significance level. Currently, this confi-
dence interval, when reported, is obtained using bootstrapping or
other empirical methods. The above analyses provides a tool for
quantifying the deviation of a performance estimate from its true
value in a simpler and more rigorous manner. Equation (16) can
be used for this purpose. Suppose we require the percent error
in the estimate, 100 × |P − P̂|/̂P, to be less than 5%. This gives
ε = 0.05 × P̂, from which the probability that the true value lies
outside this error range can be computed as

Prob

[
100 × |P − P̂|

P̂
≥ 5%

]
= Prob

[|P − P̂| ≥ 0.05 × P̂
]

≤ P(1 − P)(
0.05 × P̂

)2

[
2N − 1

N2

]
. (17)

Thus, the quantity α
�= P(1 − P)

(0.05 × P̂)
2

[
2N − 1

N2

]
gives the significance

level for the desired confidence interval. We note that since |P −
P̂| ≥ ε, α does not necessarily depend upon the unknown P. For

large N, 2N >> 1. Hence α ≈ 2P(1 − P)/N
(
0.05 × P̂

)2
.

We investigated the tightness of this bound using a series of
simulations (Figure 3). We simulated N trials by drawing N sam-
ples of R0 and R1, each, from Gaussian distributions whose mean
values differed by progressively increasing amounts so that the
true value of the ideal observer performance varied from 0.5 to
1.0. For each set (R0, R1), we obtained one estimate of P. We
performed this simulation 1000 times and computed the maxi-
mum deviation of the estimate from the true value, the average
deviation and the minimum deviation for the 1000 estimates.
We repeated all of these simulations for Gamma distributions.
The results are shown superimposed on the corresponding values
of ε for α values of 0.01 and 0.05 (Figure 3). The same pattern
of results were obtained for Poisson and scaled Poisson distri-
butions. These simulations show that for small values of N(≤
100) and α(= 0.01), the actual difference between the true and
estimated values is much smaller than the theoretical bound ε.
At α = 0.05 and for higher values of N, the theoretical devia-
tion approaches the maximum empirical deviation obtained in
the simulations. The implications of the varying tightness of the
theoretical bound for experimental design are discussed below.

DESIGNING EXPERIMENTS FOR RELIABLE ESTIMATION OF IDEAL
OBSERVER PERFORMANCE
Some previous studies have empirically investigated the num-
ber of trials required to obtain a reliable estimate of the ideal
observer’s performance. For example, Britten et al. (1996) com-
puted “choice probability” separately for odd and even numbered
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FIGURE 3 | Tightness of the bound in Equation (17). Results are shown for
Gaussian (top row) and Gamma (bottom row) distributions. The difference
between the mean values were progressively increased so that the true value
of the ideal observer performance varied from 0.5 to 1.0. This performance is
plotted on the X -axis. The performance was estimated 1000 times and the

maximum deviation of the estimate from the true value, the average deviation,
and the minimum deviation were computed. The corresponding values of e are
also plotted on all the graphs. The effect of varying (α = 0.01 and 0.05) for a fixed
(N = 100) isshown in the left andmiddlecolumns.Theeffectofvarying (N = 100
and 250) for a fixed (α = 0.05) is shown in the middle and right columns.
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trials. This allowed them to compute a measure of the random
dispersion of the probability values. One goal of that investiga-
tion was to test whether or not the population average choice
probability was significantly different from chance. For the pop-
ulation average choice probability of 0.55, at least 100 trials were
required for the odd and even estimates to differ by less than 0.05
(i.e., 0.55–0.5). A different empirical approach was required to
estimate the number of trials required to significantly reduce esti-
mation errors in the ROC analysis of optically imaged intrinsic
signals (Purushothaman et al., 2009).

From the results obtained in the previous section, we can arrive
at a general formula for systematically determining the number
trials required for the estimate of the performance of the gener-
alized ideal observer to reach a desired confidence interval. From
Equation (16) above, we have, ∀ε > 0,

Prob{|̂P − P| ≥ ε} ≤ P(1 − P)

ε2

[
2N − 1

N2

]
. (18)

First, as an example, we consider the Britten et al. (1996) study.
Assume that the true value of choice probability in that study
was 0.55. Suppose we require that the estimate should lie within
±0.05 of the true value at an alpha (or significance) level of 0.05,
i.e., we require P{|̂P − P| ≥ 0.05} ≤ 0.05 so that, in concordance
with the empirical test performed by Britten et al. (1996), the dis-
persion in the choice probability estimate reliably excludes the
chance value of 0.5. Then the number of trials N should be at
least 2

√
0.55(1 − 0.55)/(0.052 × 0.05) ≈ 89. The empirical test

by Britten et al. (1996) yielded N ≈ 100, quite close to this value.
However, the above formula also allows us to determine N at
other significance levels. At a significance level of 0.01, we get
N ≥ 198.

While many studies that followed Britten et al. (1996) have
used this “100 trials” rule to determine N, our analysis shows that
fewer trials suffice when higher values are expected for the per-
formance of the ideal observer. For example, multistable percepts
are linked to fluctuations in neural activity quite strongly (Dodd
et al., 2002) and neurons in higher brain areas also show a strong
link between their activity and perceptual decisions (Shadlen and
Newsome, 2001). Using Table 1 and Equation (18), it is pos-
sible to estimate the required value of N during experimental
design. It is also possible to estimate confidence intervals (i.e., ε)
for a given value of N during data analysis without resorting to
numerical simulations. Table 1 provides a look-up of ε and N
for various values of P. As mentioned above, our simulations
showed that at a given value of N and α, the actual deviation
between the true and estimated values was much smaller than
the theoretical bound set at ε (Figure 1). Therefore, the values of
N shown in Table 1 are likely to be overestimates, i.e., fewer tri-
als might suffice to reach the desired confidence interval in some
cases.

EFFICIENT ESTIMATORS OF IDEAL OBSERVER PERFORMANCE
MAY NOT EXIST
Since the performance of the ideal observer can be estimated in
more than one way, it is natural to ask if some of these methods

Table 1 | The confidence interval (ε) and the number of trials (N) are

shown for various true values of P.

P ε N

α = 0.01 α = 0.05

0.525 10% of P 96 43

0.550 10% of P 91 41

0.575 10% of P 86 38

0.6 10% of P 82 37

0.525 5% of P 191 85

0.550 5% of P 181 81

0.575 5% of P 172 77

0.6 5% of P 164 73

0.625 10% of P 78 35

0.650 10% of P 73 33

0.675 10% of P 70 31

0.7 10% of I 66 29

0.625 5% of P 155 70

0.650 5% of P 146 65

0.675 5% of P 139 63

0.7 5% of P 131 59

The expression for obtaining the number of trials required to reach a given confi-

dence interval ε at a significance level α is N ≈
√

P(1 − P)

ε2 ×α
. Alternatively, for given

values N and α, the confidence interval can be computed as ε ≈
√

P(1 − P)

N2 × α
.

are “better” than others. In addition to requiring that estima-
tors be unbiased and consistent, it is also required that estimators
should be “efficient” when possible (Van Trees, 1966, pp. 66–
73). An efficient estimator has the minimum possible variance
among all unbiased estimators for a quantity and therefore will
yield the lowest possible error for a given number of observations,
on average. Under some conditions, maximum likelihood (ML)
estimators are minimum variance estimators. Therefore, it is nat-
ural to seek for ML estimators for the performance of the ideal
observer model. In this section, we first show that P̂(R0, R1) is
“efficient” in a limited sense. We then present a counter-example
to show that the maximum-likelihood (ML) estimator for the per-
formance of an ideal observer is not guaranteed to be minimum
variance.

We will first describe a limited sense in which P̂ is efficient.
Let M(R0, R1) = ∑N

i = 1

∑N
k = 1 I[0, r1i](r0k) so that P̂(R0, R1) =

M(R0, R1)/N2. Then, for a given value of P, the probability
distribution function for M is simply the binomial distribution

PM(M(R0, R1) = m|P) =
(

N2

m

)
(P)m(1 − P)N2−m. (19)

Therefore it can be verified that the calculation

∂ log PM(m|P)

∂ P

|
|P = P̂ml(m) = 0

gives the ML estimator as

P̂ml(m) = m

N2
. (20)
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We note also that

∂ log PM(m|P)

∂P
=
(

N2

P(1 − P)

)( m

N2
− P

)
=
(

N2

P(1 − P)

) (̂
Pml(m) − P

)
,

i.e., P̂ml(m) satisfies the sufficient condition to be an efficient esti-
mator (Van Trees, 1966, pp. 66–73). In addition, EM (̂Pml(m)) =
P. Therefore, P̂ml(m) = m/N2 is an unbiased and efficient esti-
mator of P. However, it is important to note that P̂ml(m) is an
estimator of P as a function of the transformed random variable
M(R0, R1) and not as a function of R0 and R1. The following
counter-example shows that it is not possible to guarantee that
ML estimators of P are minimum variance.

Let the two conditional distributions be exponential, with
p0(r0) = α0 exp(−α0r0) and p1(r1) = α1 exp(−α1r1). We can cal-
culate P for this case using Equation (2) as P(P0, P1) = α0/(α1 +
α0). Let us note that

1. if α1 = α0, then P = 0.5,
2. P → 1 as α0 → ∞ for a given α1 < ∞ (i.e., as the mass in the

tail of the distribution P0 accumulates while that of P1 remains
constant), and

3. P → 0 as α0 → 0 for a given α1 < ∞.

Thus the conditional density of the observed variables for a given
value of P can be written as

p(r0, r1|P) = α0α1 exp

[
−
(

α1
P

1 − P
r0 + α0

1 − P

P
r1

)]
,

which gives

∂ log p(r0, r1|P)

∂P
= α0r1

P2
− α1r0

(1 − P)2
. (21)

Equating the right hand side to 0, we obtain the ML estimator for
P in this case as

P̂ml(r0, r1) = 1

1 + √
(α1r0/α0r1)

.

We now note that equation (21) cannot be put in the form

∂ log p(r0, r1|P)

∂P
= T(P)[̂Pml(r0, r1) − P],

where T(P) is a function of P alone. Therefore, the sufficient con-
dition for P̂ml(r0, r1) to be efficient is not satisfied (e.g., Van Trees,
1966, pp. 66–73). Further, it is also clear that P̂(r0, r1) is a biased
estimator. Hence the ML estimator of P for this case cannot be
guaranteed to be minimum variance.

DISCUSSION
We proposed a general form of an ideal observer for decod-
ing stimulus information and perceptual decisions from neural
responses. We showed that several ideal observer models used
in previous studies are special cases of this general form. We
investigated the statistical properties of this general ideal observer
model. These analyses provide various tools for designing experi-
ments with the goal of using an ideal observer analysis on neural
data. We have provided a lower bound on the number of obser-
vations required for the estimate to lie within a pre-specified
range of its true value (“confidence interval”), within a specified
confidence level.

We also showed that there is not a uniformly “best” (i.e.,
minimum variance) estimator for the performance of the ideal
observer since the existence of such an estimator depends on the
parametric forms of the underlying probability distributions. It is
sometimes argued that computing the area under the ROC curve
offers a non-parametric way of estimating ideal observer perfor-
mance. While it is true that this estimation procedure does not
depend on the parametric forms of the underlying probability
distributions, it is important to note that the resulting estimate
will be invariably influenced by the underlying parametric forms.
Therefore, for some parametric forms and under some condi-
tions, neither the estimators provided in Equations (4) and (5)
nor the area under the ROC curve will be efficient. However,
regardless of which estimator is chosen, the relationship between
the number of trials, the confidence interval and the confidence
level derived in this paper can be used to design the experiment
and validate the results.

It is worth noting that the number of trials required for the
estimate to lie within a confidence interval at a given confidence
level is not the optimum number of trials required for reaching the
decision. Therefore in certain applications other methods, such as
sequential probablity ratio tests, may be more appropriate (Wald,
1945).
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