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Abstract

Motivation: Despite rapid progress in sequencing technology, assembling de novo the genomes of

new species as well as reconstructing complex metagenomes remains major technological chal-

lenges. New synthetic long read (SLR) technologies promise significant advances towards these

goals; however, their applicability is limited by high sequencing requirements and the inability of

current assembly paradigms to cope with combinations of short and long reads.

Results: Here, we introduce Architect, a new de novo scaffolder aimed at SLR technologies. Unlike

previous assembly strategies, Architect does not require a costly subassembly step; instead it as-

sembles genomes directly from the SLR’s underlying short reads, which we refer to as read clouds.

This enables a 4- to 20-fold reduction in sequencing requirements and a 5-fold increase in assembly

contiguity on both genomic and metagenomic datasets relative to state-of-the-art assembly strat-

egies aimed directly at fully subassembled long reads.

Availability and Implementation: Our source code is freely available at https://github.com/kule

shov/architect.

Contact: kuleshov@stanford.edu

1 Introduction

Genome sequencing technology has had an enormous impact on

modern science and medicine. Information gleaned from the genome

has become a crucial ingredient in numerous industrial and medical

applications, such as breeding disease-resistant crops, identifying in-

fectious microbes or diagnosing human health problems. Yet, des-

pite rapid progress in sequencing technology, fully reconstructing

de novo the genomes of new organisms or complex metagenomes

still remains a major technological challenge.

The main obstacle in de novo genome assembly remains sequenc-

ing read length. Current technologies can only read short hundred-

base substrings of the genome; recovering the original sequence from

these substrings is impossible, as they fundamentally cannot resolve

the true position of repetitive sequences that are longer than their own

length. This results in highly fragmented assemblies that need to be

further improved with more sophisticated and expensive techniques.

Recently, new synthetic long read (SLR) technologies have

offered great promise towards making inexpensive and accurate

de novo assembly a reality. These technologies exhibit read lengths

in the tens of kilobases and theoretically have the power to recon-

struct a large fraction of an organism’s genome.

Nonetheless, SLRs have not yet realized their full potential.

Most existing approaches involve a two-stage process in which long

fragments are first assembled from short reads, and then the genome

is assembled from the long fragments. Such strategies typically re-

quire prohibitively large amounts of short-read sequencing for each

long fragment; in some cases, attaining this high level of coverage

may not even be feasible. In addition, long reads often must be com-

plemented by short reads (e.g. to compensate for sequencing bias);

yet, there are currently very few assemblers that can effectively han-

dle both types of data.

Here, we introduce Architect, a new de novo scaffolder for SLR

technologies that aims to address these shortcomings. Unlike previ-

ous assembly strategies, Architect does not require a costly subas-

sembly step; instead it assembles genomes directly from the SLR’s

underlying short reads. Moreover, by dealing only with short reads,

it avoids difficulties that arise from jointly assembling reads of

highly differing lengths.

In practice, Architect leads to a 4- to 20-fold reduction in

sequencing requirements and up to a 5-fold increase in assembly

contiguity compared with current state-of-the-art assembly strat-

egies aimed directly at fully subassembled long reads. We demon-

strate the improvements offered by Architect on the genomes of

Drosophila melanogaster and Caenorhabditis elegans as well as on

two metagenomic samples: the synthetic mock community from the

human microbiome project, and a bona fide human gut metagenome

from a healthy male individual. Our results suggest that Architect

may lower the cost of accurate de novo assembly and facilitate the
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analysis of long-range genomic features in metagenomic samples,

for example long operons or strain haplotypes.

2 Background

2.1 De novo assembly
The goal of de novo assembly is to reconstruct a target genome

(viewed as a string of up to several billion letters) from sequencing

reads, which can be viewed as random substrings of the genome.

Assembly paradigms. There exist two main approaches to de

novo assembly and each is best suited to a particular type of data.

The Ovelap-Layout-Consensus (OLC) paradigm (Myers et al.,

2000) works best with long reads (>1 kp); it involves computing

overlaps between all pairs of reads and simplifying the resulting

overlap graph until we obtain long, contiguous subsequences of the

genome called contigs. Contigs may be further assembled into scaf-

folds using paired-end or mate-pair read data. The main shortcom-

ings of OLC assemblers are high computational requirements for

computing overlaps between a very large number of short-read pairs

(<200 bp). The alternative De Brujn graph (DBG) paradigm

(Pevzner et al., 2001) addresses this problem by first breaking reads

into k-mers (with k < 127) and then linking them in a graph. This

reduces the number of vertices to consider, but loses important con-

tiguity signal encoded in longer reads.

Finally, when using paired-end or mate-pair reads, it is common

to further extend the de novo assembly via a scaffolding process.

The term ‘scaffold’ refers to a genomic sequence containing subse-

quences of unknown nucleotides (usually denoted by N) of poten-

tially uncertain lengths. Many assemblers include a scaffolding

module that produces such sequences from paired-end reads (see e.g.

Zerbino et al., 2009); in addition, there exist many standalone scaf-

folding tools, whose performance can often match or exceed that of

more complex assemblers (Hunt et al., 2014).

The importance of read length. The main difficulty faced by ei-

ther paradigm is genomic repeats (Myers et al., 2000). If a genome

contains subsequences ARB and CRD (meaning that R is a repeat

occurring twice; A;B;C;D are unique sequences), and if the length

of sequencing reads is smaller than R, then we cannot determine

whether ARB or ARD is the correct contig ordering. In such cases,

we must report A;B;C;D;R as individual contigs. Thus, read length

is one of the most important factors determining the quality of de

novo assemblies (Chaisson et al., 2009).

2.2 SLR technologies
This work introduces tools targeted at two closely related types of

sequencing technologies: SLRs and read clouds; both types of meth-

ods share a common protocol, which we illustrate in Figure 1.

Synthetic long reads. The first set of technologies aims to produce

‘virtual’ long reads on standard short-read sequencers via a special-

ized library preparation method (Fig. 1). At a high level, input DNA

is first sheared into kilobase-long fragments, which are then ran-

domly distributed across a small number of containers. The frag-

ments are typically diluted such that each container holds a small

fraction (�0.1–2%) of the target genome. The contents of each con-

tainer are then sheared further into shorter fragments and are as-

signed a unique barcode before being pooled together for sequencing.

After sequencing, reads are demultiplexed into their containers

of origin using the barcodes. Each container may be assembled sep-

arately with a short-read assembler, which produces multiple

kilobase-long sequences in each well; this approach is referred to as

subassembly. The resulting sequences correspond to the original

long fragments. In the last step, the target genome is assembled from

the long fragments using an OLC-based method.

There exist multiple instantiations of the protocol described

above. Techniques that produce fully assembled SLRs include fos-

mid pooling (Duitama et al., 2012), long fragment reads (Peters

et al., 2012) and Tru-seq SLRs (Voskoboynik et al., 2013) (TSLR),

which is also one of the few technologies to be commercially avail-

able. SLRs have been applied to a wide range of problems, including

genome phasing (Kuleshov, 2014; Kuleshov et al., 2014), read align-

ment (Bishara et al., 2015) and metagenomic analysis (Kuleshov

et al., 2015; Sharon et al., 2015).

Repeat reduction. The key process that makes subassembly pos-

sible is a reduction in the repeat content of the genome within each

container. Because each container holds only a small fraction

(�0.1–2%) of the target genome, the probability of two copies of

the same repeat R finding themselves in the same container is very

low. Thus, each container can be seen as containing a genome with

no repeats and that is therefore relatively easy to assemble. Once

each container has been assembled separately, we may merge the re-

sulting long fragments into a final genome assembly.

Read cloud technologies. Alternatively, the contents of each con-

tainer may be sequenced at a relatively low coverage, either to lower

Fig. 1. High-level overview of SLR and read cloud technologies. DNA (1) is

sheared into kilobase-long fragments (2), which are then diluted and placed

into multiple containers, typically with 0.1–2% of the genome per container

(3). Within each container, fragments may be amplified before being cut into

short fragments, and barcoded (4). The barcoded fragments are finally pooled

together and sequenced (5); reads can be demultiplexed on a computer into

their original compartment via the barcodes in order to form read clouds or

SLRs
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sequencing requirements, or because the laboratory protocol may

not permit high-coverage sequencing for technical reasons. In such

cases, we only obtain clusters of short reads that originate from long

fragments. We refer to such clusters as read clouds. The term ‘cloud’

comes from the appearance of such reads when aligned to a refer-

ence genome and visualized in a genome browser: they typically

form isolated clusters with an imprecise shape (Fig. 2, top).

Although they do not output long contiguous sequences, read

cloud technologies contain signal which may be used for resolving

genomic repeats; the focus of this work is precisely to extract this

signal. Examples of read cloud methods include contiguity preserv-

ing transposase sequencing (CPT-seq; Amini et al., 2014), which

produces very thin clouds, and the 10X GemCode platform, which

features an adjustable cloud depth.

2.3 Related work
Most applications of SLR and read cloud technologies to de novo as-

sembly have used a subassembly-based strategy. These methods

were used to assemble the genomes of Botryllus schlosseri

(Voskoboynik et al., 2013), D.melanogaster (McCoy et al., 2014),

C.elegans (Li et al., 2015) as well as metagenomic samples from the

human gut (Kuleshov et al., 2015) and from the environment

(Sharon et al., 2015). In all cases, assemblies achieved N50 lengths

below 100 kb, highlighting limitations of subassembly-based

strategies.

Currently, only one method is able to use read clouds for de novo

assembly, and that is FragScaff (Adey et al., 2014), a scaffolder aimed

at extremely low-internal-coverage read clouds obtained via the con-

tiguity preserving transposase sequencing (CPT-seq) technology.

FragScaff produces orderings of contigs by leveraging the same signal

as Architect; it differs mainly in its scaffolding algorithm, which is

optimized for CPT-seq. In particular, FragScaff formulates the scaf-

folding problem as finding the maximum-weight spanning tree (MST)

on the scaffold graph. This formulation was shown to be highly effect-

ive at scaffolding large genomes form CPT-seq data; however, it is

less effective when scaffolding metagenomic data as well as read

clouds obtained from alternative technologies such as TSLR, long

fragment reads or fosmid clones. We further discuss differences be-

tween FragScaff and Architect in Section 5.

There also exist multiple de novo assembly methodologies that

provide an alternative to read clouds. Burton et al. (2013) showed

that contigs can be effectively scaffolded using chromatin-level con-

tact probability maps generated by the high-throughput chromo-

some conformation capture (Hi-C) technology; however, Hi-C has

high input-DNA requirements and its ability to scaffold high-

complexity metagenomes remains relatively limited (Burton et al.,

2014). An alternative technology, single-molecule real-time (SMRT)

sequencing, has been shown to be highly effective at assembling bac-

terial genomes (Koren et al., 2012; Chin et al., 2013) and was re-

cently scaled to handle entire human genomes (Chaisson et al.,

2015). Its shortcomings include requiring specialized sequencing in-

struments as well as significant reagent costs relative to the more

standard Illumina platform; also, SMRT technologies may exhibit

lower accuracy when assembling highly heterozygous genomic re-

gions, especially in the context of metagenomics (Kuleshov et al.,

2015). We further compare SMRT and read cloud technologies in

Section 5.

3 Results

3.1 High-level overview of Architect
Current SLR-based approaches to de novo assembly have several

important shortcomings. First, subassembly requires very deep

sequencing, since each long fragment must be covered to a suffi-

ciently high depth in order to be assembled; in some cases, attaining

this high level of coverage may not even be feasible due to inherent

technical limitations of the library preparation protocol. Secondly,

long reads often work best in combination with standard shotgun

reads; however, neither the OCL nor the DBG assembly paradigm is

effective at assembling the two types of data jointly. Below, we

introduce the Architect scaffolder, which implements a solution to

both of these limitations.

Read clouds. Rather than adopting a two-stage subassembly ap-

proach, Architect attempts to scaffold the genome using low internal

coverage read clouds. Recall that we use the term read cloud to de-

note the set of short reads derived from shearing a long fragment

within a given container (Fig. 2, top).

Local and global coverage. To better explain how our approach

differs from subassembly, we introduce the concepts of local and

global coverage. Local coverage refers to the average coverage of a

long fragment with short reads; it is formally defined as the total

number of base pairs in short reads obtained from sequencing a

given container, divided by the number of total number of base pairs

of genomic content originally placed in the container. Global cover-

age refers to the coverage of the original genome with long frag-

ments. It is obtained by dividing the number of base pairs placed in

all containers by the size of the target genome.

Read cloud-based scaffolding. The high-level intuition for how

low-local coverage read clouds may be used for scaffolding genomes

is illustrated in Figure 2. Consider a genome with a repeat R flanked

by unique sequences (A, B) and (C, D) (Fig. 2, top). If the length of

Fig. 2. Scaffolding using read clouds. A genome contains a repeat R flanked

by unique sequences (A, B) and (C, D) (top). With short reads, the correct as-

sembly is ambiguous (middle). If two read clouds (marked as red and orange)

map, respectively, to ARB and CRD, this provides signal that may be used to

correctly resolve the repeat structure (bottom).
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R is longer than the read length, the assembly graph will contain a

characteristic X-shaped structure that cannot be resolved (Fig. 2,

middle). However, if there are two read clouds that map to ARB

and CRD in different containers, we can align the clouds to the con-

tigs and observe that read clouds from the same container align to A

and B. This indicates how the contigs should be scaffolded.

Contig orderings. A crucial distinction between Architect and

regular scaffolders is that read clouds provide relatively little signal

about the distance between adjacent contigs. This is partly due to

the greatly varying lengths of read clouds previously reported for

certain technologies. Another cause is the relatively shallow internal

coverage of read clouds, which makes it difficult to estimate where

the cloud starts and ends.

Because of these complications, Architect reports orderings of

contigs instead of scaffolds. The main difference between the two is

that orderings offer no guarantees about the relative distance of two

consecutive contigs. Although the contiguity of assemblies provided

by Architect significantly exceeds that of alternative approaches, the

reader should still keep in mind this important distinction when

evaluating our results.

Algorithm overview. The Architect scaffolder takes as input pre-

assembled scaffolds or contigs from a standard short-read assembler

as well as an alignment of read clouds to these scaffolds. In addition

to read clouds, Architect is also able to leverage paired-end are

mate-pair reads to guide scaffolding in cases where the original as-

sembly is ambiguous. Architect uses alignment of read clouds and

paired-end reads to form a scaffold graph; this graph is then simpli-

fied to produce orderings of scaffolds. The simplification process is

guided by an algorithm which is explained in detail in the next

section.

3.2 Datasets
We evaluated Architect on four publicly available genomic datasets

produced using the commercially available Tru-Seq SLR sequencing

technology from Illumina. We obtained datasets for two genomes

and two metagenomes; in each case, we had access to the sub-

assembled long reads and their underlying raw short reads. We sub-

sampled these to various percentages (from 5% to 25%), and used

them as our ‘read cloud’ dataset. All read cloud datasets were com-

plemented with standard shotgun libraries.

Drosophila melanogaster. We used a dataset previously pub-

lished by McCoy et al. (2014) (SRX447481). We library mol-32-

281c for our analysis (the library contained 212M read pairs, each

read being 100 bp in length), in addition to two short-read datasets

published in an independent study (SRX543254).

Caenorhabditis elegans. We used a dataset made available by

Illumina as part of its TSLR technology demonstration (data are

available on BaseSpace). We used TSLR library no. 1 (out of 2) for

our experiments; we complemented this with a standard shotgun

read dataset used in benchmarking genomic assemblers (Simpson

and Durbin, 2011).

Mock gut metagenome. We tested our ability to assess the accur-

acy of our metagenomic assemblies on the human microbiome pro-

ject staggered mock community (Human Microbiome Project

Consortium, 2012). This synthetic community contains 20 organ-

isms with known reference genomes and is widely used for valid-

ation. We used a recent TSLR dataset (library 1) in addition to the

accompanying short reads. In addition to helping validate the ro-

bustness of Architect to different coverages, this dataset also pro-

vides an indication of the ability of long read clouds to scaffold

bacterial genomes.

Bona fide gut metagenome. Finally, we assemble a bona fide

sample from the gut of a healthy male adult individual (Kuleshov

et al., 2015). This dataset was previously assembled from TSLRs

and was found to be extremely diverse and complex, making it a

realistic and challenging benchmark dataset for Architect. We again

used TSLR libraries 1–3 from the previous study as well as the entir-

ety of the accompanying short reads.

3.3 Assembly strategies
We compared Architect to four alternative assembly strategies.

Shotgun reads were assembled using a standard short-read as-

sembler into contigs or scaffolds. In our experiments, we used

SPAdes 3.5.0 (Bankevich et al., 2012) on the D.melanogaster dataset

and Soapdenovo2 rc240 (Luo et al., 2012) on the other three data-

sets (we found this choice to produce the highest quality contigs).

Overall, these two assemblers have been shown in previous studies

to achieve state-of-the-art performance on a variety of genomes

(Salzberg et al., 2012).

Long reads. Next, we used the Celera assembler (Myers et al.,

2000) directly on subassembled SLRs. The Celera assembler has

been previously used to obtain high-quality assemblies from TSLRs

on both genomes and metagenomes (Voskoboynik et al., 2013).

Shotgun and long reads were jointly assembled using SPAdes

3.5.0 for the D.melanogaster and C.elegans datasets and Minimus2

(Sommer et al., 2007) for the metagenomic datasets. Minimus2 is a

tool that merges independent shotgun and long read assemblies in a

post-processing stage; we found that it assembled two times more se-

quence that SPAdes on both metagenomic datasets.

Shotgun reads and read clouds were assembled with Architect.

We aligned shotgun and raw TSLR short-read libraries to contigs

assembled from shotgun reads (using the first strategy above);

Architect used this data to produce long scaffold orderings.

FragScaff. Finally, we compared Architect with an alternative

scaffolding program that uses a different algorithm to perform scaf-

folding based on the same type of data (Adey et al., 2014). We ran

FragScaff multiple times varying the two parameters specified in the

documentation to have the largest effect on assembly quality; we re-

port the best results obtained across these runs.

The exact scripts used for running our experiments are available

in the GitHub repository of Architect.

3.4 Evaluation metrics
We evaluated performance using standard metrics reported by

Quast 3.1, a popular tool for assessing the quality of genome and

metagenome assemblies (Gurevich et al., 2013). The N50 length of a

set of contigs is a measure of assembly contiguity: we say that con-

tigs have an N50 of x if at least 50% of the total assembled sequence

is in contigs of length x or longer. The genome NA50 is defined as

the N50 of scaffolds that have been broken at every major misas-

sembly. Major misassemblies are said to occur when a contig sub-

string aligns 1 kb away or further from its neighbouring sequence.

We refer the reader to the documentation of Quast for more details.

3.5 Results
3.5.1 Assembly quality

A summary of our results can be found in Table 1. At a high level,

Architect outperforms alternative assembly strategies and produces

genome assemblies that are up to five times longer than approaches

based on shotgun and subassembled SLRs. Moreover, Architect

achieves this performance with only 25% of the sequencing require-

ments of standard long read-based methods.
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As an example, on the Drosophila dataset, Architect produces

scaffolds of 253 kb in length, compared with a 124 kb SPAdes as-

sembly of shotgun and long reads. Relative to subassembled long

read sequencing, the output of Architect contains about 23% more

errors; this indicates that assembling short reads separately in each

container is less error-prone than assembling them jointly. However,

note that the number of misassemblies produced by Architect is es-

sentially the same as that of the purely short-read assembly (¡4% dif-

ference), indicating that the errors are primarily introduced during

the initial short-read assembly stage, rather than during Architect

scaffolding. Similar observations can be made for other genomes as

well.

On the mock metagenomic data, we observed a 5-fold increase

in N50 from 35 kb to more than 170. This suggests that Architect is

robust to variation in coverage across scaffolds. Our approach also

improved performance on the bona fide gut metagenome, with

Architect matching the performance of the strategies involving full

subassembly. Although the resulting scaffolds are still much shorter

than ones obtained on the mock metagenome data, they are of a suf-

ficient length to capture many interesting long-range genomic fea-

tures such as operons or strain haplotypes.

All of the above findings suggest that the potential of SLRs is not

fully realized using existing joint assembly strategies. Architect is

able to use the signal from read clouds more efficiently, as it side-

steps the difficulties of working with different classes of read data.

Another advantage of our approach relative is that it can leverage

fragments that could not be subassembled (e.g. due to sequencing

biases introducing gaps in internal coverage). More generally, it is

applicable to read cloud technologies that subsequence long frag-

ments to very shallow depths, and where subassembly cannot be

performed in principle.

Another observation to be made is that subassembled long reads

by themselves do not outperform shotgun reads on multiple data-

sets. Past work has attributed this to sequencing biases in the Tru-

seq technology (Kuleshov et al., 2015). This again motivates the

need for an assembly approach like Architect.

3.5.2 Sensitivity to coverage

Next, we measured the effects of internal read cloud coverage on the

quality of assemblies produced by Architect. More specifically, we

subsampled the read cloud library for the D.melanogaster genome

to 5%, 10% and 15% of the original coverage, in addition to the

25% subsampled dataset examined above.

Table 2 shows the results of our subsampling procedure. Even at

very low coverages, accuracy and N50 length do not degrade signifi-

cantly. This indicates that users may trade off internal coverage for

increased external coverage of the genome in applications where this

is necessary, for example when dealing with larger genomes.

Moreover, these results suggest that Architect should scale to alter-

native read cloud technologies whose internal coverage is relatively

sparse.

3.5.3 Running times

Overall, the main computational bottlenecks in our scaffolding pro-

cess are the preprocessing stages: the de novo assembly of the input

contigs and the alignment of reads back to these contigs. For larger

Table 1. Assembly evaluation of Architect on four de novo assembly datasets.

Genome þ sequencing method Scaffolds Largest scaffold (kb) Mb assembled % assembled N50 (kb) NA50 (kb) Misassemblies

Drosophila melanogaster

Shotgun reads 65 510 314.5 143.7 100.0 44.8 43.1 2265

Long reads 5064 341.5 127.5 88.7 45.3 43.2 1742

Shotgun and long reads 29 809 649.4 117.4 81.7 123.9 115.1 2024

FragScaff† 63 018 567.8 55.3 38.6 56.8 55.2 2289

Shotgun and read clouds† 57 567 1767.4 143.7 100.0 262.8 252.2 2341

Caenorhabditis elegans

Shotgun reads 32 092 383.1 100.1 99.9 35.6 31.9 307

Long reads 2345 555.0 96.3 96.4 81.2 76.0 363

Shotgun and long reads 2423 569.0 83.3 83.5 95.6 68.7 771

FragScaff† 29 320 510.2 40.3 40.4 51.1 50.2 321

Shotgun and read clouds† 4235 630.9 99.6 99.7 120.2 113.4 331

Mock metagenome

Shotgun reads 36 081 414.0 34.0 41.1 19.1 18.8 34

Long reads 914 405.1 17.6 21.2 24.6 24.2 29

Shotgun and long reads 22 562 553.3 42.5 51.2 35.1 34.3 113

FragScaff† 33 180 510.1 10.2 12.3 33.2 31.1 37

Shotgun and read clouds† 17 688 743.4 34.0 41.1 173.7 173.7 39

Bona fide metagenome

Shotgun reads 128 131 34.1 230.1 — 5.3 — —

Long reads 12 432 89.2 170.2 — 8.2 — —

Shotgun and long reads 121 319 101.9 289.5 — 15.3 — —

FragScaff† 127 943 40.2 100.3 — 6.2 — —

Shotgun and read clouds† 123 975 91.4 288.1 — 13.3 —

Note: Note that metrics reported for FragScaff and Architect correspond to orderings of contigs rather than scaffolds (this is indicated by a†)

Table 2. Effect cloud sparsity on assembly quality

Subsample Number

of reads (M)

N50

(kb)

NA50

(kb)

Size

(Mb)

Max

(kb)

25% 53.1 262.8 252.2 143.7 1767.4

15% 31.9 261.4 250.8 143.7 1340.2

10% 21.2 242.2 224.5 143.7 961.3

5% 10.6 178.8 160.4 143.7 611.3

Note: Results are reported for orderings of Drosophila input scaffolds pro-

duced by Architect.
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genomes, these may take on the order of days to run. The Architect

algorithm itself runs on the order of tens of minutes; on our ma-

chine, its running times on D.melanogaster, C.elegans, the mock

and the bona fide metagenomes were 7, 6, 13 and 24 min,

respectively.

4 Methods

We now proceed to explain the details of the scaffolding algorithm

implemented in Architect. The algorithm takes as input pre-

assembled contigs or scaffolds from a standard shotgun assembler,

as well as alignments between the scaffolds and two sets of reads:

paired-end shotgun sequences and read clouds. Then, it follows a

three-stage protocol whose final output is accurate orderings of the

input scaffolds.

At the first stage, Architect uses the input alignments to build a

scaffold graph. Nodes in the graph correspond to scaffolds; links are

placed between scaffolds whenever there appears to be evidence that

they might be in close proximity in the target genome.

Then, the graph is iteratively pruned in order to remove spurious

edges. Pruning occurs in three steps: first, we use paired-end link in-

formation to identify the highest-confidence connections; next, we

use read cloud alignments to resolve cases where paired-links could

not be pruned with sufficient confidence; finally, we use information

contained solely in read clouds to make decisions about edges which

have no evidence from paired-end reads. These decisions are made

using a model that determines the probability of a spurious assign-

ment given observed read cloud evidence.

Finally, in the third and last step, we use the remaining unpruned

edges to order the scaffolds. We now give more details about each

procedure.

4.1 Scaffolding algorithm
We now give a high-level overview of our scaffolding strategy. The

input to our procedure is a set of scaffolds S and two sets of align-

ments (in BAM format): a paired-end read alignment and a read

cloud alignment. We also let K denote the total number of read

cloud containers; for the TSLR data used in our experiments,

K¼384 per library.

4.1.1 Graph construction

We start by forming the scaffold graph G ¼ ðV;EÞ. The vertices V

¼ fscjs 2 S; c 2 fh; tgg of G correspond to scaffolds augmented

with indicators c that represent either the head (c¼h) or tail (c¼ t)

of the node. The edge set E is restricted to ‘consistent’ pairs si;ci
; sj;cj

where ðci; cjÞ ¼ ðh; tÞ or (t, h). Edges are constructed from the

paired-end and read cloud alignments as follows.

Paired-end link detection. We introduce an edge between si; sj

2 S if there are at least three paired-end links connecting them. Each

paired-end read must have a mapping score of � 30; also, the aver-

age inter-scaffold distance over all read pairs in a link must fall

within three standard deviations of the average library insert size.

We will use linksðsi;ci
; sj;cj
Þ to denote the number of paired-end

links between the corresponding scaffolds.

Container hit detection. We say that a ‘hit’ for container k occurs

in scaffold si when a read cloud from that container maps to si. If

two si, sj are close to each other in the target genome, we expect to

observe multiple hits from the same containers in both of them.

To avoid false positives due to incorrect read alignments, we call

a hit when at least hmin reads from a container map to si (hmin > 40

by default for TSLR data). Also, when there is a hit from container

k to scaffold si, we associate that hit with an interval Isi ;k¼ðI
ð1Þ
si ;k
;I
ð2Þ
si ;k
Þ

that indicates the coordinates to which the read cloud mapped on si;

we define I
ð1Þ
si ;k

(respectively, I
ð2Þ
si ;k

) as the start (respectively, the end)

position of the 10-th short-read aligning to si from container k, start-

ing from the left (respectively, from the right). This again encourages

robustness to read misalignments.

We will use hitsðsi;ci
Þ � f1; . . . ;Kg to denote the set of hits in si

at endpoint ci; we also use

commonðsi;ci
; sj;cj
Þ ¼
jhitsðsi;ci

Þ \ hitsðsj;cj
Þj

jhitsðsi;ci
Þ [ hitsðsj;cj

Þj

to denote the fraction of hits shared between si;ci
; sj;cj

. New edges in

G are created whenever jhitsðsi;ci
Þ \ hitsðsj;cj

Þj � 4.

4.1.2 Pruning

Paired-end pruning. First, we determine edges that have strong sup-

port from paired-end reads and prune ones that don’t. Specifically,

we identify edges e ¼ ðsi;ci
; sj;cj
Þ that have stronger support than all

alternatives Ealt ¼ fðs1; s2Þjs1 2 e or s2 2 eg in the sense that

8e0 2 Ealt.

linksðeÞ � linksðe0Þ � s1 and
linksðe0Þ
linksðeÞ � s2;

where s1 ¼ 3 and s2 ¼ 0:7 by default. In such cases, we identify e as

a correct and prune away Ealt from the graph. Note that this stage is

meant to emulate of SSPACE (Boetzer et al., 2011), a popular and

widely used standalone scaffolder. Although the algorithm we use is

very simple—especially compared with more complex, multi-stage

scaffolding procedures implemented in the Celera (Myers et al.,

2000) or Velvet (Zerbino et al., 2009) assemblers—it has been

shown to be one of the best overall scaffolding methods in a recent

empirical study (Hunt et al., 2014).

Algorithm 1 Architect scaffolding algorithm

Input: Set S of input contigs or scaffolds. Paired-end align-

ment Ap. Read cloud alignment Ar. Threshold parameters

ðs1; s2; q1; q2Þ

1. Construct graph G ¼ ðV;EÞ:
• Let V ¼ fsi;c :¼ ðsi; ciÞjsi 2 S; ci 2 ðh; tÞg
• Add edges ðsi;ci

; sj;cj
Þ for which linksðsi;ci

; sj;cj
Þ � 3

• Add edges ðsi;ci
; sj;cj
Þ for which jhitsðsi;ci

Þ \ hits
ðsj;cj
Þj � 4

2. Prune spurious edges:
• Paired-end pruning. Go through vertices v 2 V in

decreasing order of length. For each e 2 E incident to

v, let EaltðeÞ ¼ fðs1; s2Þjs1 2 e or s2 2 eg. If 8e0 2 EaltðeÞ;
linksðeÞ � linksðe0Þ � s1 and linksðe0Þ

linksðeÞ � s2, then se-

lect e as being the correct edge and prune EaltðeÞ from

the graph.
• Joint read cloud and paired-end pruning. Go again

through vertices v 2 V in decreasing order of length.

For each e 2 E incident to v such that linksðeÞ � 3;

commonðeÞ � q1, let EaltðeÞ ¼ fðs1; s2Þjs1 2 e or s2 2 eg.
If 8e0 2 EaltðeÞ; commonðe0Þ < q1 or linksðe0Þ ¼ 0,

then prune EaltðeÞ from the graph.
• Read-cloud pruning. Prune e 2 E for which

commonðeÞ < q2:

3. Determine scaffold orderingsO via edge contraction in G.

Output: Set of orderings O.
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Joint paired-end and read-cloud pruning. Next, we find edges

with support from both paired-end reads and read clouds, and elim-

inate alternatives. In particular, we find all edges e 2 E such that

linksðeÞ � 3 and commonðeÞ � q1 and for all alternatives

e0 2 Ealt ¼ fðs1; s2Þjs1 2 e or s2 2 eg

linksðe0Þ < 3 or commonðe0Þ < q1;

where q1 � 0 is a user-specified parameter. In such cases, we iden-

tify e as correct and prune away Ealt from the graph. This step at-

tempts to resolve paired-end link ambiguities via read clouds; it

considers links with insufficient cloud support to be spurious.

Read-cloud pruning. Finally, we discard all link data, and prune

away edges that have insufficient support from read clouds. In par-

ticular we prune all edges E for which

commonðeÞ < q2:

Again, q2 � 0 is a user-specified parameter.

The parameters ðq1;q2Þ are set by default to (0.2, 0.33); we

found that these values produced the best NA50 in our experiments.

Decreasing these values (i.e. increasing the recall), did not result in

any improvements in NA50, while increasing them by more than

25% (thus increasing precision), produced a considerable decrease

in assembly contiguity at the cost of a relatively modest improve-

ment in accuracy. The default parameters for ðs1; s2Þ were chosen to

match those of SSPACE (Boetzer et al., 2011); in our experiments,

performance was relatively robust relative to these parameters,

mainly because most edges from paired-end links were unambigu-

ous. Finally, we specified some parameters directly as constants (e.g.

3 minimum paired-end links to form an edge); we found that tweak-

ing these parameters led to little improvements, and in some cases

resulted in a large degradation of performance.

4.1.3 Ordering

Once we have pruned the graph G, we proceed to order and orient

scaffolds. Two scaffolds si;ci
; sj;cj

can be oriented relative to each

other if they are connected by an edge e, and there is no other edge

that touches si;ci
or sj;cj

. In such cases, we can contract e and merge

si;ci
; sj;cj

into a new scaffold. We repeat this procedure for all edges

that can be contracted and output the sequences of the scaffold in

the final, simplified graph.

4.2 Evaluation methodology
We use the standard metrics of Quast (Gurevich et al., 2013) to

measure misassemblies. Quast determines true contig positions by

mapping them to the reference via MUMmer; it defines a major

miassembly as an alignment in which a contig subsequence maps 1

kb or further from its neighbouring subsequences. We define the

genome NA50 as the N50 of scaffolds that have been broken at

every major misassembly.

In order to evaluate the quality of the output of Architect, we de-

veloped our own evaluation script, which is available on Github. In

brief, we first map to the reference the scaffolds provided as input to

Architect. Then, given a set of output orderings, we determine the

number of misassemblies in the orderings as a sum (1) the number

of misassemblies in the input contigs and (2) the number of misor-

derings introduced by Architect. The latter is defined as follows.

Given two scaffolds a, b mapping to intervals (a1, a2), (b1, b2) in the

reference, we say that b follows a if a, b map to the same strand of

the same chromosome and the following two criteria hold: a1 < b1

and jb1 � a2j < 5000. Given an ordering c1; c2; . . . ; cn of contigs

(each ci corresponding to an interval), we determine the number of

misorderings as the number of consecutive pairs i; iþ 1 that are not

adjacent. We consider both left-to-right and right-to-left orderings,

and take the correct one to be the one with the fewest errors. Note

that this procedure generalizes the methodology used in Quast.

5 Discussion

Comparison to FragScaff. FragScaff and Architect leverage the same

read cloud signal to perform scaffolding; they mainly differ in their

scaffolding algorithm. FragScaff generally adopts a top-to-bottom

approach: it determines edge scores by fitting a normal distribution

to hitsðsi; sjÞ across the entire graph. Users specify a z-score as a

cutoff for pruning edges; true connections are then determined using

a greedy MST algorithm. Architect on the other hand combines scaf-

folds from the bottom up: it computes a local score for each edge,

which depends only on local signal between si and sj. Architect then

prunes edges locally: it discards edges within a neighbourhood if

that neighbourhood contains a single best connection. Unlike

FragScaff, it does not attempt to resolve the remaining edges via a

MST.

We believe the latter approach has several advantages in the con-

text of metagenomes and high-coverage low-dilution technologies

like TSLR. First, the cutoff for pruning reads ought to depend on the

neighbourhood: a correct edge e� may have low support, but if alter-

native edges are even less supported, we may still choose to select e�

and discard the alternatives. This is especially true for read cloud

technologies that exhibit coverage biases across different regions of

the genome. Conversely, the greedy MST approach must select a

connected tree in the scaffold graph. Thus, if two edges are equally

good candidates, it must choose one over the other.

Finally, Architect is able to leverage standard paired-end links to

improve scaffold contiguity. These links are particularly helpful

when initial short-read assemblies are fragmented; generally, we

want the initial shotgun-based scaffolds to be sufficiently long, so

that a sufficient number of read clouds may align to them. Paired-

end links may help bootstrap scaffolding with read clouds when the

starting contigs are too short.

Comparison to SLR subassembly. Architect produced in most

cases assemblies that were longer than ones obtained from subas-

sembled long reads, even though it required substantially less

sequencing. This in part due to the fact that the TSLRs used in our

experiments did not adequately cover the entirety of the target gen-

ome, owing primarily to sequencing biases. In fact, high-coverage

shotgun reads typically produced assemblies with comparable N50

lengths to the SLR assemblies, indicating that repeats were not the

bottleneck factor limiting the effectiveness of the long reads. This

hypothesis is further supported by the fact that jointly assembling

the long read and shotgun datasets produced substantially better re-

sults than with either technology by itself.

However, jointly assembling read clouds and shotgun reads pro-

duced significantly longer assemblies that even this latter approach.

We believe there are two explanations behind this. First, current as-

sembly paradigms are targeted at either short or long reads, and

there are currently no effective tools for combining both types of

assemblies. Architect side-steps this issue by using the read clouds

only as an indirect signals during the scaffolding process.

Furthermore, read cloud technologies such as TSLR often exhibit

biases in their internal coverage, and as a consequence some clouds

may not subassemble into long reads. By side-stepping subassembly,

our approach is able to leverage these low-quality clouds.
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Comparison to SMRT sequencing. Multiple authors have shown

that SMRT sequencing is highly effective at assembling bacterial

(Koren et al., 2012; Chin et al., 2013), eukaryotic (Berlin et al.,

2015) and even human (Chaisson et al., 2015) genomes. The SMRT

technology produces reads of up to a dozen of kilobases in length

which exhibit very low sequence bias; these may probe genomic re-

gions that are difficult to access even with standard shotgun

sequencing reads (Chaisson et al., 2015). The same cannot be said

for SLRs, which often involve an amplification step (based on e.g.

PCR), which may result in highly non-uniform genomic coverage

(Peters et al., 2012; Kuleshov et al., 2015). The SMRT technology is

also more effective at assembling tandem repeat regions, which may

confuse subassembly-based approaches. The main shortcomings of

SMRT include specialized sequencing instruments and increased re-

agent costs relative to the Illumina platform. Moreover, SMRT tech-

nologies typically exhibit lower accuracy; although this can often be

mitigated by error-correction algorithms, such algorithms may inad-

vertently correct real genomic variation, especially in the context of

heterozygous genomes or multiple closely related metagenomic

strains (Kuleshov et al., 2015).

Drosophila melanogaster assembly analysis. To further analyze

the differences between the two technologies, we compared the

SMRT assembly of D.melanogaster by Berlin et al. (2015) with our

assembly based on Tru-seq SLR clouds whose local coverage was

subsampled to 25% of the original data. The SMRT assembly was

substantially more contiguous than ours (21 Mbp versus 252 kb

N50); furthermore, SMRT produced contiguous genomic sequences,

whereas the output of our method consists of contig orderings.

The difference in performance between the two methods can be

attributed to a significantly higher coverage of the target genome

(90x versus 17x global coverage) and substantially longer read

lengths (average length of 9317 kb versus 4800 kb; the latter num-

ber refers to the average length of subassembled long reads, which

we use as a proxy for the average length of useful long fragments).

Most importantly, Tru-seq SLRs exhibit important sequencing bias

(Kuleshov et al., 2015), which leaves many genomic regions un-

covered; this is partly evidenced by the fact that standard shotgun

assemblies match the contiguity of assemblies based on fully subas-

sembled long reads, even though the latter are �100	 longer. In

fact, we observed that regions in the Drosophila reference genome

to which orderings produced by Architect could be aligned with

MUMmer (v. 3.0 with default parameters) had an average GC con-

tent of 47%, compared with 38% for other regions. The average

GC content in D.melanogaster was 42.23%. In addition, we repro-

duced the analysis of Berlin et al. (2015) and found that our assem-

bly placed 4690 (86%) of 5425 annotated transposable element

repeats in a single contig ordering, compared with 5274 (97%) for

the SMRT assembly. This difference can be attributed to the diffi-

culty of SLRs in handling tandem and nested repeats, as well as to

the shorter fragment length used in our assembly.

Although, our assembly of D.melanogaster was less complete

than that based on SMRT reads, we want to emphasize that alterna-

tive technologies (e.g. the 10X platform) may yield substantially lon-

ger read clouds with less sequencing bias than ones we used for our

assembly. Since our technique is applicable to such technologies, we

expect it to produce competitive assemblies when the underlying

read cloud technologies become more mature.

Alternative technologies and larger genomes. Although we used

Architect to assemble small- and medium-sized genomes, our high-

level approach extends naturally to larger genomes. Larger genomes

typically have longer repeats, and resolving them requires longer

read clouds. While commercial technologies enabling such read

clouds are starting to become commercially available, there are yet

few publicly available read cloud datasets, which motivates us to

focus our evaluation on TSLR data.

Our approach may also be complementary to alternative tech-

nologies such as chromatin-level contact probability maps or SMRT

sequencing. The latter technology could be used to generate substan-

tially longer initial contigs, which could then be further scaffolded

with long read clouds. Chromatin-level contact probability maps

could be used to further scaffold the ordered contigs produced by

Architect into chromosome-long maps. This idea was shown to be

highly effective in combination with the output of FragScaff and

should be expected to work with the output of Architect as well.

Finally, an important advantage of our subassembly approach is

its modularity: the base contigs can be produced using any shotgun

assembler, and as a consequence our methodology can be improved

by better assemblers and by additional sequencing data such as

mate-pair reads.

6 Conclusion

In conclusion, we have shown that shallow read clouds can be used

to effectively produce long-range scaffolds on both genomic and

metagenomic data without actually forming subassembled long

reads. This produces 5- to 20-fold savings in sequencing require-

ments while at the same time increasing the N50 length of scaffolds

by up to five times compared with current state-of-the-art methods.

Furthermore, our tool Architect improves over an existing scaf-

folder, FragScaff, by being able to handle read clouds produced

from other technologies besides CPT-seq as well as by handling

metagenomic datasets. These were noted as important limitations of

the read cloud scaffolding approach in the original FragScaff paper.

Our results suggest that Architect may lower the cost of accurate

de novo assembly and facilitate the analysis of metagenomic sam-

ples. Scaffolds on the order of tens of kilobases are sufficient to cap-

ture many interesting long-range genomic features in metagenomes,

for example long operons or strain haplotypes. Lowering the

sequencing requirements needed to access these features is particu-

larly important, since high coverage is needed to capture low abun-

dance strains. By reducing by 10-fold the internal coverage of read

clouds, we may correspondingly increase external coverage by 10-

fold, which in turns let us sample species whose level of abundance

is 10 times smaller than what was previously accessible.

Finally, we would like to note the fact that our approach is

highly modular and can be expected to lead to improvements when

combined with better shotgun read assemblers as well as alternative

sequencing methods such as chromatin-level contact probability

maps, SMRT sequencing or mate pairs.
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