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Abstract
Species	distribution	models	(SDMs)	estimate	the	geographical	distribution	of	species	
although	with	several	limitations	due	to	sources	of	inaccuracy	and	biases.	Empirical	
tests	arose	as	the	most	 important	steps	 in	scientific	knowledge	to	assess	the	effi-
ciency	of	model	predictions,	which	are	poorly	rigorous	in	SDMs.	A	good	approach	to	
the	empirical	distribution	(ED)	of	a	species	can	be	obtained	from	comprehensive	em-
pirical	knowledge,	that	is,	well-	understood	distributions	gathered	from	large	amount	
of	data	generated	with	appropriate	spatial	and	temporal	samples	coverage.	The	aims	
of	 this	 study	were	 to	 (a)	 compare	different	SDMs	predictions	with	an	ED;	 and	 (b)	
evaluate	if	fuzzy	global	matching	(FGM)	could	be	used	as	an	index	to	compare	SDMs	
predictions	and	ED.	Six	algorithms	with	5	and	20	variables	were	used	to	assess	their	
accuracy	in	predicting	the	ED	of	the	venomous	snake	Bothrops alternatus	(Viperidae).	
Its	entire	distribution	is	known,	thanks	to	thorough	field	surveys	across	Argentina,	
with	1,767	records.	ED	was	compared	with	SDMs	predictions	using	Map	Comparison	
Kit.	SDMs	predictions	showed	important	biases	in	all	methods	used,	from	70%	sub-	
estimation	to	40%	over-	estimation	of	ED.	BIOCLIM	predicted	≈31%	of	B. alternatus 
ED.	DOMAIN	predicted	99%	of	ED,	but	over-	estimated	40%	of	the	area.	GLM	with	
five	variables	calculated	75%	of	ED,	while	Genetic	Algorithm	for	Rule-	set	Prediction	
showed	≈60%	of	ED;	the	last	two	presenting	overpredictions	in	areas	with	favorable	
climatic	conditions	but	not	inhabited	by	the	species.	MaxEnt	and	RF	were	the	only	
methods	to	detect	isolated	populations	in	the	southern	distribution	of	B. alternatus. 
Although	SDMs	proved	useful	in	making	predictions	about	species	distribution,	pre-
dictions	 need	 validation	 with	 expert	 maps	 knowledge	 and	 ED.	 Moreover,	 FGM	
showed	a	good	performance	as	an	index	with	values	similar	to	True	Skill	Statistic,	so	
that	it	could	be	used	to	relate	ED	and	SDMs	predictions.
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1  | INTRODUC TION

In	 recent	 decades,	 increased	 use	 of	 GIS	 and	 technical	 tools	 that	
quantify	species–environment	relationships	has	encouraged	the	de-
velopment	of	algorithms	 to	predict	 the	 spatial	distribution	of	 spe-
cies,	 called	 species	distribution	models	 (SDMs)	 (Elith	&	Leathwick,	
2009;	 Guisan	 &	 Zimmermann,	 2000).	 SDMs	 relate	 species	 occur-
rence	data	with	a	set	of	variables	selected	under	the	assumption	that	
they	 could	be	 related	 to	 the	distribution	of	 the	 species	 (Guisan	&	
Zimmermann,	2000).	They	are	being	increasingly	used	to	assess	con-
servation	applications	and	climate	change	studies,	and	predict	both	
ecological	ranges	and	the	potential	of	 invasive	species	and	explicit	
predictions	 about	 species	 environmental	 suitability	 (Bosso	 et	al.,	
2017;	 Chen,	 Zhang,	 Jiang,	 Nielsen,	 &	He,	 2017;	 Law	 et	al.,	 2017).	
SDMs	are	favored	by	an	increased	access	to	public	biodiversity	(e.g.,	
Biodiversity	 Information	 System	 for	 Europe,	 Global	 Biodiversity	
Information	Facility	 and	Sistema	de	 Información	de	Biodiversidad)	
and	 environmental	 databases	 (e.g.,	 Data	 Service	 and	 Information,	
Global	Environmental	Database,	WorldClim),	being	also	a	promising	
tool	to	fill	knowledge	gaps	in	species	distributions	(Guillera-	Arroita	
et	al.,	2015;	Guisan	et	al.,	2013).	The	lack	of	distributional	data,	the	
so-	called	Wallacean	shortfall,	stems	from	geographical	biases,	which	
often	 result	 in	 maps	 of	 observed	 biodiversity	 closely	 resembling	
maps	of	survey	effort	(Hortal,	Borges,	&	Gaspar,	2006;	Hortal	et	al.,	
2015;	Lomolino,	2004;	Whittaker	et	al.,	2005).	However,	unbiased	
species	distribution	information	is	important	to	make	robust	conser-
vation	management	decisions	(Guisan	et	al.,	2013).

Although	SDMs	were	assessed	with	different	 thresholds,	 sam-
ple	sizes,	variables,	and	background	(Barbet-	Massin,	Jiguet,	Albert,	
&	 Thuiller,	 2012;	 Bucklin	 et	al.,	 2015;	 Elith	 et	al.,	 2006;	 Guisan	 &	
Thuiller,	 2005;	 Guisan	 &	 Zimmermann,	 2000;	 Jiménez-	Valverde,	
Lobo,	 &	 Hortal,	 2008;	 Peterson	 et	al.,	 2011;	 Qiao,	 Peterson,	 &	
Soberon,	2015;	Saupe	et	al.,	2012),	they	present	several	limitations	
listed	in	Elith	et	al.	(2006)	and	Mateo,	Felicísimo,	and	Muñoz	(2011).	
While	many	 studies	 take	 into	 account	 these	 limitations	 (Araújo	&	
Luoto,	2007;	Elith	et	al.,	2006;	Fitzpatrick,	Weltzin,	Sanders,	&	Dunn,	
2007;	Guisan	et	al.,	2006;	Jarnevich,	Stohlgren,	Kumar,	Morisette,	&	
Holcombe,	2015;	Oliveira	et	al.,	2016;	Rojas-	Soto,	Mart,	&	Navarro-	
sig,	 2008;	 Rojas-	Soto,	 Sosa,	 &	 Ornelas,	 2012;	 Tsoar,	 Allouche,	
Steinitz,	Rotem,	&	Kadmon,	2007;	Varela	et	al.,	2015),	few	compare	
model	 predictions	 with	 well-	known	 distributions	 of	 species	 (e.g.,	
Duan,	Kong,	Huang,	Fan,	&	Wang,	2014;	Elith	et	al.,	2006)	or	virtual	
species	with	well	known	niches	(e.g.,	Qiao	et	al.,	2015;	Saupe	et	al.,	
2012),	these	last	studies	being	really	important	steps	to	assess	the	
accuracy	of	different	SDMs	predictions.	In	this	context,	Soberón	and	
Peterson	(2005)	proposed	a	formal	basis	to	clarify	the	use	of	tech-
niques	towards	estimating	ecological	niches.	Ecological	niches	could	
be	represented	by	the	BAM	diagram	(biotic;	abiotic;	movement)	(See	
figure	1	of	Soberón	&	Peterson,	2005).	This	diagram	combines	three	
factors:	biotic	(B)	and	abiotic	(A)	factors,	as	well	as	dispersed	accessi-
ble	regions	(M),	whose	intersections	represent	the	geographic	space	
occupied	by	the	species	(Soberón,	2007;	Soberón	&	Nakamura,	2009)		
and	 the	 intersection	of	A	+	B	 represents	 the	potential	distribution	

(Soberón	&	Peterson,	 2005),	 being	 one	 of	 the	most	 expected	 ap-
plications	 in	 SDMs	 studies	 (e.g.,	Urbina-	Cardona	&	 Loyola,	 2008).	
As	in	Saupe	et	al.	(2012),	we	could	use	BAM	diagram	to	distinguish	
between	two	conceptual	 frameworks	 in	this	 field,	one	to	estimate	
the	occupied	area	(B	+	A	+	M)	and	the	other	to	estimate	the	potential	
distribution	 (B	+	A).	The	 first	 requires	 information	about	 favorable	
conditions	and	factors	that	restrict	its	spread	(biotic	and	geographic	
factors)	to	avoid	over	predictions	(Peterson	et	al.,	1999).	The	other	
needs	only	the	favorable	conditions,	being	the	potential	distribution	
areas	(Saupe	et	al.,	2012;	Soberón	&	Peterson,	2005).

Nonetheless,	studies	that	provide	techniques	to	improve	SDMs	
predictions	 in	 relation	 to	 expert	 maps	 are	 needed,	 as	 in	 Merow,	
Wilson,	and	Jetz	 (2016)	where	 they	sought	 to	determine	 if	expert	
maps	can	help	 reduce	biased	extrapolation	 in	SDMs	prediction.	 In	
a	 similar	way,	most	 of	 the	 accuracy	measures	 from	 the	 confusion	
matrix	(Barbosa,	Real,	Muñoz,	&	Brown,	2013;	Fielding	&	Bell,	1997)	
and	indices	(e.g.,	area	under	the	curve—AUC-	ROC;	Akaike	informa-
tion	 criterion,	 see	 Guisan	 &	 Thuiller,	 2005)	 used	 for	 this	 purpose	
does	not	provide	a	comparison	of	the	model	with	the	empirical	dis-
tribution	(ED)	of	the	species	(Loiselle	et	al.,	2008).	These	last	authors	
pointed	out	the	importance	of	validating	models	with	independent	
data,	and	warned	that	failure	to	include	independent	model	valida-
tion,	especially	 in	cases	where	training	points	are	 limited,	may	po-
tentially	 lead	 to	serious	errors	 in	conservation	decision-	making.	 In	
this	sense,	one	of	the	most	important	steps	in	scientific	knowledge	
is	carrying	out	empirical	tests	to	assess	the	efficiency	of	model	pre-
dictions.	A	good	approach	to	the	“ED”	of	a	species	can	be	obtained	
from	empirical	knowledge	(Merow	et	al.,	2016).	Expert	maps,	in	fact,	
are	usually	an	excellent	resource	for	delimiting	the	broad	areas	out-
side	which	a	species	 is	not	expected	to	occur	 (Merow	et	al.,	2016)	
and,	in	the	case	of	well-	understood	distributions	with	large	amount	
of	data	generated	by	specialists	and	appropriate	spatial	and	tempo-
ral	 unbiased	 sample	 coverage,	 they	 could	 be	 considered	 the	 best	
approach	 to	 define	 empirical	 geographical	 distributions	 (Loiselle	
et	al.,	2008;	Merow	et	al.,	2014).	On	the	other	hand,	Power,	Simms,	
and	White	(2001)	and	White	(2006)	have	previously	demonstrated	
that	 the	 fuzzy	 global	matching	 (thereafter	 FGM)	 function	 used	 as	
comparison	 tool	provide	a	good	 interpretation	 to	compare	empiri-
cal	maps	and	models	prediction.	The	FGM	function	offers	a	visual	
representation	 of	 where	 differences	 have	 occurred	 between	 two	
maps.	Recent	findings	as	Barbosa	and	Real	 (2012)	highlighted	sev-
eral	advantages	of	fuzzy	logic	over	as	a	tool	to	compare	models	pre-
dictions,	such	as	the	possibility	to	combine	multiple	species	models.	
In	this	context,	the	aims	of	this	study	were	to	(a)	compare	different	
SDMs	predictions	with	an	ED	of	Bothrops alternatus;	and	(b)	evaluate	
if	FGM	could	be	used	as	an	index	to	compare	SDMs	predictions	with	
ED.	As	a	model	for	this	study,	we	selected	B. alternatus,	a	poisonous	
snake	species	with	public	health	importance.	Thorough	and	contin-
uous	efforts	have	been	made	for	decades	to	perform	unbiased	sam-
plings	throughout	its	distribution	area	in	Argentina	(e.g.,	Arzamendia	
&	Giraudo,	2009;	Bellini,	Giraudo,	Arzamendia,	&	Etchepare,	2015;	
Giraudo,	2001;	Giraudo	&	Arzamendia,	2014;	Giraudo	et	al.,	2008;	
Nori,	Carrasco,	&	Leynaud,	2013).	Besides,	B. alternatus:	(a)	presents	
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a	well-	understood	distribution;	(b)	is	easily	detectable	(it	lives	in	rel-
atively	 wet	mesophilic	 open	 areas	 including	 grasslands,	 savannas,	
wetlands,	and	open	forests	in	the	Espinal,	where	exhaustive	surveys	
are	 possible;	 (c)	 has	 a	 large	 and	 conspicuous	 size	 and	 is	 relatively	
abundant	throughout	its	spatial	distribution);	(d)	offers	plenty	of	in-
formation	about	its	natural	history	such	as	diet,	habitat	use,	and	re-
production	(Bellini	et	al.,	2015;	Giraudo,	2012;	Giraudo	et	al.,	2008;	
Scrocchi,	Moreta,	 &	 Kretzschmar,	 2006);	 (e)	 presents	 peculiarities	
in	 its	distribution	which	constitute	real	challenges	 in	modeling;	for	
example,	 it	 has	 not	 been	 found	 in	 humid	 forests	 to	 the	northeast	
of	its	distribution	(Giraudo,	2001)	and	two	disjunctive	and	isolated	
populations	occur	in	coastal	areas	and	the	Pampean	hills	in	Buenos	
Aires	province	(South	distribution).

2  | MATERIAL S AND METHODS

2.1 | Study area and data

Of	 21,032	 records	 of	 Argentinean	 snakes	 in	 our	 database	
(Arzamendia	&	Giraudo,	2004,	2012;	Giraudo	&	Arzamendia,	2018)	
(Figure	1a),	 we	 extracted	 1,767	 occurrence	 data	 of	 B. alternatus 
(Figure	1b).	These	data	were	recorded	in	385	of	our	own	field	works,	
in	different	seasons	and	throughout	the	country,	between	1989	and	
2017,	mainly	in	poorly	sampled	areas	(gap	areas)	in	order	to	comple-
ment	biases	 in	 the	database.	 In	 addition,	we	 revised	museum	col-
lections	 to	 confirm	 taxonomic	 identification	 and	 obtained	 reliable	
georeferenced	data	from	the	scientific	literature,	both	tasks	dating	
back	to	the	beginning	of	the	20th	century.

We	 defined	 the	 ED	 of	 B. alternatus	 (Figure	1b)	 mainly	 based	
on	both	collected	data	with	 intensive	spatial	and	 temporal	 sample	
coverage	 and	 our	 knowledge	 (Bellini	 et	al.,	 2015;	 Giraudo,	 2001;	

Giraudo	 &	 Arzamendia,	 2014;	 Giraudo	 et	al.,	 2008)	 as	 well	 as	 by	
delimiting	areas	inhabited	and	not	inhabited	by	the	species.	We	in-
cluded	some	areas	without	data	in	the	inhabited	territory	of	B. alter-
natus	because	we	know	that,	 they	can	be	occupied	by	the	species	
(Hortal	et	al.,	2015).	More	specifically,	ED	was	delimited	 following	
the	 peripheral	 presences,	 leaving	 a	 buffer	 distance	 of	 30	km	 for	
similar	environmental	areas	and	5	km	when	the	climatic	conditions	
changed	abruptly	(e.g.,	a	mountain;	like	in	the	south	of	B. alternatus 
distribution).	 So,	we	combined	our	knowledge	 to	generate	 the	ED	
and	the	presence	data	 following	Merow	et	al.	 (2014).	This	ED	was	
compared	with	the	predictions	produced	by	each	model.	For	B. alter-
natus,	some	environmental	areas	present	suboptimal	conditions	that	
change	throughout	the	country,	comprising	large	areas	in	the	North	
and	smaller	areas	in	the	South,	where	some	disjunctive	populations	
inhabit	the	Tandil	and	Ventana	hills	in	Buenos	Aires	province.

The	minimum	 allowed	 distance	 (5	km)	 function	 in	 ArcGis	 10.1	
was	used	to	randomly	select	a	total	of	350	occurrences.	As	a	sam-
ple	size	of	<70	observations	reduces	model	performance	(Kadmon,	
Farber,	 &	Danin,	 2003),	 and	 increasing	 sample	 size	 decreases	 the	
variability	 in	 predictive	 accuracy	 (Wisz	 et	al.,	 2008),	 we	 selected	
100	presences	for	calibration	and	the	evaluation	process	(Figure	1c).	
In	 this	way,	we	evaluated	SDM	performances	with	a	 small	 sample	
size,	a	situation	pointed	out	in	numerous	studies	(e.g.,	Barbet-	Massin	
et	al.,	2012;	Wisz	et	al.,	2008).	Although	 random	selection	 for	 the	
presence/absence	 of	 data	 does	 not	 allow	 to	 obtain	 independent	
samples	 and	 therefore	 can	 overfit	 the	 calibration	 or	 training	 data	
(Araújo,	Thuiller,	Williams,	&	Reginster,	2005),	this	is	not	considered	
a	problem	if	the	goal	is	to	describe	a	pattern	and	simultaneously	re-
duce	false-	negatives	(Araújo	&	Guisan,	2006).	If	SDMs	are	intended	
to	be	used	 for	conservation	planning,	verification	becomes	an	ap-
proved	method	to	test	whether	an	SDM	performs	as	intended	(Raes	
&	ter	Steege,	2007).

F IGURE  1 Records	of	the	snakes	that	inhabit	Argentina.	(a)	21,032	records	of	Argentinean	snakes,	obtained	in	382	field	works	between	
1989	and	2017	throughout	the	country	plus	museums	and	literature	data.	(b)	Black	points	correspond	to	1,767	georeferenced	records	of	
B. alternatus,	while	the	black	lines	represent	the	area	delimited	by	us	where	B. alternatus	does	not	occur.	(c)	Subset	of	100	randomly	selected	
presence	records	(training	data)	and	1,000	randomly	created	absences	in	the	area	where	the	species	does	not	occur



10500  |     SARQUIS et Al.

2.2 | Environmental predictors

We	used	19	climatic	variables	taken	from	WorldClim	(http://www.
worldclim.org/bioclim)	 and	 one	 topographical	 variable	 (altitude	
with	 a	 1	km-		 resolution)	 taken	 from	 R-	package	 Raster	 (http://
srtm.csi.cgiar.org/	 in	 Hijmans,	 Cameron,	 Parra,	 Jones,	 &	 Jarvis,	
2005;	 Hijmans	 et	al.,	 2016).	 We	 used	 only	 environmental	 pre-
dictors	 because	 evidence	 (historical	 and	 modern)	 demonstrates	
that	climatic	variables	play	a	primary	role	in	shaping	species’	dis-
tributions	 (Fourcade,	 Besnard,	 &	 Secondi,	 2018).	We	 chose	 this	
resolution	 because	 it	 represents	more	 effectively	 the	 variability	
of	 the	species	 in	 the	20	variables	used	for	 the	analysis.	Soberón	
and	Nakamura	 (2009)	 said	 that	 grid	 resolution	 should	 be	 estab-
lished	by	biological	considerations	of	the	size,	mobility,	and	ecol-
ogy	 of	 the	 species.	 In	 this	 case,	 B. alternatus’s	 home-	range	 is	
usually	not	 very	wide	and	 there	 are	 areas	within	 its	distribution	
(the	 Pampean	 hills	 in	 Buenos	Aires	 province)	where	 the	 species	
presents	 environmental	 differences	 in	 the	 presence/absence	 at	
1	km	 resolution	 in	 its	 distribution	 (Bellini	 et	al.,	 2015;	 Giraudo,	
2001;	Giraudo	&	Arzamendia,	2014;	Giraudo	et	al.,	2008;	Scrocchi	
et	al.,	2006).	We	performed	a	Spearman	correlation	test	 in	order	
to	 get	 the	 least	 collinear	 predictor	 subset	 using	 Infostat	 5.1	 (Di	
Rienzo	et	al.,	2005).	We	chose	variables	with	a	correlation	value	
lower	than	0.7	and	confirmed	the	selection	of	the	variables	with	
the	 knowledge	 about	 the	 natural	 history	 of	 the	 species	 (Bellini	
et	al.,	 2015;	Giraudo,	 2012;	Giraudo	 et	al.,	 2008;	 Scrocchi	 et	al.,	
2006)	(Supporting	Information	Appendix	S1).	This	to	ensure	a	con-
trolled	collinearity	between	predictors	and	to	avoid	biased	results	
(Acevedo,	 Jiménez-	Valverde,	Lobo,	&	Real,	2012).	We	confirmed	
that	 the	 selected	 predictor	 variables	 were	 related	 to	 likely	 oc-
cupied	areas	rather	than	potentially	suitable	areas,	thus	avoiding	
the	influence	of	accuracy	on	SDM	predictions	(Elith	&	Leathwick,	
2009;	 Syfert	 et	al.,	 2014).	 The	modeling	process	was	performed	
with	 two	sets	of	predictors	 (a	set	of	5	and	a	set	of	20	variables)	
following	previous	studies	which	concluded	that	some	algorithms	
are	more	sensitive	to	collinearity,	while	others	are	very	restrictive	
when	using	more	predictor	variables	(Elith	et	al.,	2006;	Stockwell	
&	Peterson,	 2002;	Wang,	 Liu,	Munroe,	Cao,	&	Biermann,	 2016).	
For	the	set	of	20	variables,	we	used	the	19	climatic	variables	and	
altitude	(m).

2.3 | Modeling procedure

We	assessed	 six	of	 the	most	 commonly	used	modeling	methods	
(Graham	&	Hijmans,	2006),	 following	Elith	et	al.	 (2006),	 grouped	
in	two	types	of	algorithms.	One	group	includes	presence-	only	al-
gorithms	(e.g.,	BIOCLIM,	DOMAIN).	BIOCLIM	characterizes	sites	
that	 are	 located	within	 the	environmental	 hyper-	space	occupied	
by	a	species	and	calculates	suitability	values	across	the	geographic	
region	in	terms	of	climatic	and	topographical	conditions	similar	to	
the	 hyper-	space	 (Busby,	 1991).	 DOMAIN	 uses	 a	 point-	to-	point	
similarity	metric	to	assign	a	classification	value	to	a	candidate	site	
based	 on	 the	 proximity	 of	 the	 environmental	 space	 to	 the	most	

similar	record	site	(Gower	distance),	resulting	in	a	probabilistic	map	
(Carpenter,	Gillison,	&	Winter,	1993).	The	 second	group	of	 algo-
rithms	is	composed	of	methods	that	characterize	the	background	
with	a	sample,	such	as	Genetic	Algorithm	for	Rule-	set	Prediction	
(GARP)	 and	Maximum	 Entropy	 (MaxEnt),	 or	 that	 sometimes	 use	
pseudo-	absences	 and/or	 presence	 data,	 like	 several	 general	 lin-
eal	models	(GLM)	regression	approaches	and	Random	Forest	(RF).	
GARP	uses	a	genetic	algorithm	to	select	a	set	of	rules	(e.g.,	adap-
tations	 of	 regression	 and	 range	 specifications)	 that	 best	 predict	
species	distribution	(Stockwell	&	Peters,	1999).	MaxEnt	estimates	
the	 distribution	 of	maximum	entropy	 constrained	 in	 such	 a	way	
that	expected	values	for	predictor	variables	match	their	empirical	
average	 (Phillips,	Anderson,	&	Schapire,	2006).	GLM	 is	based	on	
an	assumed	relation	between	the	mean	of	 the	response	variable	
and	 the	 linear	combination	of	 the	explanatory	variables	 (Guisan,	
Edwards,	&	Hastie,	 2002).	 RF	 is	 considered	 an	 “ensemble	 learn-
ing”	method	 of	 classification	 trees,	 each	 capable	 of	 producing	 a	
response	when	presented	with	a	set	of	predictor	values.	Each	tree,	
constructed	using	a	different	bootstrap	sample	of	the	data,	grows	
to	maximum	 size	without	 pruning,	 trying	 to	maintain	 some	 pre-
diction	 strength	while	 inducing	 diversity	 among	 trees	 (Breiman,	
2001).	We	 included	 presence–absence	models	 to	 compare	 with	
presence-	only	 models	 because	 tend	 to	 performed	 better	 (Elith	
et	al.,	 2006).	 BIOCLIM	 and	 DOMAIN	 were	 implemented	 with	
DIVA-	GIS	 (www.diva-gis.org),	both	using	default	settings	 (Busby,	
1991;	 Carpenter	 et	al.,	 1993).	 GARP	 was	 used	 choosing	 the	
best	 result	 subset,	 as	 explained	 in	 the	 “Open	Modeller”	module	
(Anderson,	Lew,	&	Peterson,	2003).	MaxEnt	was	employed	follow-
ing	Phillips	et	al.	(2006).	GLM	and	RF	were	performed	in	R	(R	Core	
Team,	2014)	with	R-	package	Biomod2	(Thuiller,	Georges,	Engler,	&	
Breiner,	 2014).	 For	 those	models	 that	needed	presence/absence	
data,	 we	 generated	 1,000	 random	 absence	 records	 outside	 the	
distribution	 area	 (ED)	 (Tognelli,	 Roig-	junent,	Marvaldi,	 Flores,	 &	
Lobo,	 2009),	 where	 the	 evidence	 in	 the	 last	 100	years	 showed	
that	B. alternatus	does	not	presently	occur	but	rather	became	true	
absences,	which	are	based	on	reliable	field	evidence	of	nonoccur-
rence	 (Figure	1c)	 (Saupe	 et	al.,	 2012).	Moreover,	 several	 studies	
obtained	good	performance	using	pseudo-	absence/absence	data	
outside	a	predefined	region	based	on	a	minimum	distance	to	the	
presence	 (Barbet-	Massin	et	al.,	 2012;	 Lobo,	 Jiménez-	Valverde,	&	
Hortal,	 2010).	 This	way	of	 generated	 absence	 records	 is	 recom-
mended	 when	 using	 classification	 and	 machine-	learning	 tech-
niques	(Barbet-	Massin	et	al.,	2012).	These	last	authors	pointed	out	
that	the	accuracy	increases	until	an	asymptote	when	the	number	
of	 presences	 reached	 one	 tenth	 of	 the	 number	 of	 absences	 for	
GLM	and	RF.

In	spite	of	knowing	the	distribution	of	B. alternatus,	 there	 is	al-
ways	the	possibility	of	 finding	 individuals	 in	the	periphery	of	 their	
distribution.	 So,	 the	 area	 in	 Figure	1c	where	 the	 species	 does	 not	
occur	 was	 outlined	 considering	 suboptimal	 areas	 with	 low	 abun-
dance	(Figure	1c).	Although	large	backgrounds	are	merely	informa-
tive,	it	is	worth	noting	that	they	result	in	high	discriminatory	power	
in	model	prediction	(Acevedo	et	al.,	2012).

http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
http://www.diva-gis.org
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We	generated	only	one	kind	of	absence	data	because	the	vari-
ability	arising	from	each	methodological	choice	regarding	the	use	of	
absences	was	lower	than	that	arising	from	the	use	of	different	SDMs	
(see	Barbet-	Massin	et	al.,	2012),	especially	when	at	least	100	pres-
ence	records	were	sampled.	We	ran	each	algorithm	with	both	sets	
of	5	and	20	variables.	Therefore,	we	had	B5	and	B20	for	Bioclim,	
D5	and	D20	for	Domain,	G5	and	G20	for	GARP,	M5	and	M20	for	
MaxEnt,	GL5	and	GL20	 for	GLM,	 and	RF5	and	RF20	 for	Random	
Forest.

2.4 | Validation and evaluation methods

Each	prediction	was	converted	into	a	binary	map	(presence/absence)	
using	ArcGis	10.1	(ESRI	2009).	Although	a	binary	map	may	lead	to	
unnecessary	information	loss	and	hence	be	detrimental	in	the	con-
text	 of	 the	 intended	 application	 (Guillera-	Arroita	 et	al.,	 2015),	 our	
purpose	was	to	compare	the	output	prediction	map	and	the	ED	of	
B. alternatus.	We	used	 the	 threshold	value	 that	optimizes	 specific-
ity	 and	 sensitivity	 for	 each	model.	 This	 has	 the	 advantage	 of	 giv-
ing	equal	weight	to	both	presence	and	absence	success	probability	
when	species	presence/absence	distribution	records	are	unbalanced	
(Jiménez-	Valverde	&	Lobo,	2007).

The	 ED	was	 compared	with	 the	 cartographic	 representation	
of	each	prediction	(12	in	total).	This	analysis	was	performed	after	
the	modeling	process	and	the	transformation	to	a	binary	map	(cat-
egorical	maps).	We	established	the	similarities	of	each	prediction	
with	the	ED	of	B. alternatus	(Figure	1),	overlapped	each	prediction	
with	the	ED	and	obtained	12	overlapped	maps	(Hagen,	2003).	We	
quantified	the	differences	between	the	ED	and	the	cartographic	
representation	of	each	prediction	using	the	FGM	function	 in	the	
Map	Comparison	Kit	(MCK)	3.2.3	software	(Hagen,	2003;	http://
www.riks.nl/mck).	 This	 compares	 the	 overlap	 of	 two	maps,	 one	
considered	as	“reference”	(ED)	and	the	other	as	“comparison”	(the	
models),	and	 results	 in	an	overall	 similarity	value,	 taking	 into	ac-
count	the	intersection	area,	the	area	of	agreement/disagreement	
and	 the	 polygon	 size	 (White,	 2006).	 This	 analysis	 was	 comple-
mented	with	 the	 Per	 Category	 function,	which	makes	 a	 cell-	by-	
cell	 comparison	 and	 provides	 information	 about	 the	 occurrence	

of	the	selected	category	between	both	maps	(Visser	&	Nijs,	2006)	
(Figure	3).	We	calculated	percentage	indices	to	show	the	propor-
tion	 of	 cells	 correctly	 and	 incorrectly	 predicted	 by	 the	 models.	
These	 indices	were	 determined	with	MCK,	 using	 the	 values	 ob-
tained	from	each	cell	and	overlaying	each	prediction	with	the	ac-
tual	distribution	of	B. alternatus.

In	 addition,	 we	 carried	 out	 a	 Spearman	 correlation	 analysis	
(p	<	0.05)	between	FGM	and	the	precision	measurements	to	find	
which	measures	were	most	related	to	FGM	and,	therefore,	which	
measure	 gave	more	 information	 about	 the	 ED.	We	 used	 several	
discrimination	indices	derived	from	the	confusion	matrix,	namely	
sensitivity,	 specificity	 (Fielding	 &	 Bell,	 1997),	 and	 the	 under-	
prediction	and	overprediction	rates	(UPR	and	OPR,	respectively).	
The	 latter	 rates	 refer	 to	 the	 proportion	 of	 observed	 presences	
in	 the	 predicted	 absence	 area	 and	 the	 proportion	 of	 observed/
assumed	 absences	 in	 the	 predicted	 presence	 area,	 respectively	
(Barbosa	et	al.,	2013).	We	obtained	 the	ROC	curve,	 that	 is,	AUC	
index,	which	 represents	 the	probability	 that	 the	model	correctly	
predicted	the	observed	presences	and	absences	and	varies	 from	
0	to	1,	1	being	perfect	discrimination	and	0.5	to	0	implying	a	dis-
crimination	 worse	 than	 random	 (Araújo	 et	al.,	 2005;	 Elith	 et	al.,	
2006).	One	of	the	greatest	advantages	of	the	ROC	curve	(AUC)	is	
that	it	is	threshold	independent	(Lobo,	Jiménez-	Valverde,	&	Real,	
2008);	however,	 its	use	and	efficiency	has	been	widely	criticized	
(Jiménez-	Valverde,	2012;	Lobo	et	al.,	2008),	although	it	continues	
to	be	used	 in	 the	 literature	 (e.g.,	Ma	&	Sun,	2018;	Taylor,	Papeş,	
&	 Long,	 2018).	 Other	 metrics	 have	 been	 proposed	 to	 evaluate	
SDMs	 (see	 Hijmans,	 2012;	 Phillips	 &	 Elith,	 2010),	 despite	 this,	
no	measure	has	succeeded	 in	 replacing	AUC,	which	 is	 still	being	
used	 in	more	 than	80%	of	SDMs	studies	 (Fourcade	et	al.,	2018).	
We		calculated	the	true	skill	statistic	(TSS),	which	does	not	depend	
on	the	prevalence	or	the	sample	size	(Allouche,	Tsoar,	&	Kadmon,	
2006).	TSS	ranges	from	−1	to	+1,	where	+1	indicates	perfect	agree-
ment	and	values	of	zero	or	less	indicate	a	performance	no	better	
than		random	(Allouche	et	al.,	2006).	These	indices	were	obtained	
for	both	training	and	test	data	 (Figure	4),	values	>0.7	being	con-
sidered	good	 predictive	 accuracies	 (Faleiro,	 Machado,	 &	 Loyola,	
2013).

F IGURE  2 Graphic	with	fuzzy	global	matching	values	for	each	model	compared	to	the	real	distribution,	where	(B5–B20)	Bioclim,	(D5–
D20)	Domain,	(G5–G20)	Garp,	(M5–M20)	MaxEnt,	(GL5–GL20)	GLM,	and	(RF5–RF20)	Random	Forest

http://www.riks.nl/mck
http://www.riks.nl/mck
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3  | RESULTS

3.1 | Comparison between models and real 
distribution

The	 FGM	 values	 were	 between	 0.681	 (D20)	 and	 0.740	 (RF20)	
(Figure	2).	RF	and	M20	reached	the	highest	FGM	values	(0.740	and	
0.726,	respectively,	Figure	2).

DOMAIN	predicted	the	highest	percentage	of	the	ED	(close	to	
99%),	 but	 overestimated	 almost	 40%	 of	 the	 area,	while	 BIOCLIM	
predicted	the	lowest	proportion	of	the	ED	(29%–31%)	and	showed	
the	 highest	 omission	 error	 values	 (≈70%,	 Table	1).	 The	 rest	 of	 the	
models	 showed	 a	more	 balanced	 trade-	off	 in	 overlapping	 propor-
tions	between	ED	and	modeled	distribution	maps,	from	intermediate	
to	high	overlapping	values	 (43%–75%,	Figures	3	and	4).	GLM5,	 for	
example,	predicted	75%	of	the	ED,	but	it	presented	a	high	overpre-
diction	 rate	 (Table	1).	GARP	 showed	 intermediate	ED	percentages	
(more	than	60%),	with	relatively	poor	rates	of	under-		and	overpre-
diction,	but	better	values	than	BIOCLIM	and	DOMAIN.	RF	predicted	
54%–57%	of	 the	ED	and	MaxEnt	between	43%	and	56%.	 It	 is	 re-
markable	that	the	only	methods	that	detected	isolated	and	gap	pop-
ulations	in	the	Pampean	hills	in	Buenos	Aires	province	were	M20	and	
RF5-	20	(see	Figures	1	and	3).	Moreover,	except	for	B5	and	RF5,	the	
rest	of	the	predictions	indicated	that	the	same	area	in	Tucumán	had	
high	 values	 of	 suitability	 (Figure	4,	 region	with	 white	 background	

and	black	points).	We	found	important	differences	between	the	ED	
of	B. alternatus	and	each	of	the	12	predictions	obtained	for	the	spe-
cies	(Figure	3).

Accuracy	measure	values	were	higher	than	would	be	expected	
from	 a	 null	 model	 (Figure	4).	We	 did	 not	 find	 large	 differences	
in	 sensitivity,	 specificity,	 AUC,	 and	 TSS	 values	 obtained	 from	
the	 training	 and	 test	data.	Conversely,	we	detected	differences	
in	 under-		 and	 overprediction	 (Figure	4).	 Under-	prediction	 rates	
from	the	training	data	showed	lower	values	in	all	methods	except	
DOMAIN,	 and	 higher	 values	 in	 overprediction	 rates	 than	 those	
obtained	with	the	test	data.	These	rates	precisely	represent	the	
similarity	 of	 the	 models	 with	 the	 ED;	 BIOCLIM,	 DOMAIN,	 and	
GARP,	 for	 example,	 showed	high	 values	of	 overprediction	 rates	
(Figures	3	and	4).	On	the	other	hand,	RF	and	MaxEnt	presented	
low	 values	 for	 these	 rates	 and	 their	 predictions	 adjusted	 well	
with	 the	 ED	 (Figures	3	 and	 4).	 The	 maximum	 sensitivity	 value	
came	 from	 DOMAIN	 (D5–D20),	 followed	 by	 Random	 Forest	
(RF5–RF20).	 DOMAIN,	 in	 turn,	 had	 the	 lowest	 specificity	 val-
ues,	while	RF	presented	the	highest.	BIOCLIM	and	GARP	had	the	
lowest	 sensitivity	 values,	 with	 high	 specificity	 values.	 This	 last	
index	was	 the	 only	 accuracy	measure	with	 the	 same	 values	 for	
the	 training	 and	 test	data.	Maximum	TSS	and	AUC	values	were	
obtained	in	RF,	followed	by	M20,	GLM,	and	M5.	TSS	showed	the	
highest	 values	 in	 the	 training	 data	 (Figure	4).	 AUC	 (ROC	 curve)	

TABLE  1 Proportion	of	cells	correctly	and	incorrectly	predicted	between	each	model	and	the	empirical	realized	distribution	of	
B. alternatus

Model types Sensitivity Specificity Overprediction rate Under- prediction rate
Total cells 
detected

B20 34.51 59.34 9.36 65.45 31.32

B5 29.52 64.21 8.82 70.45 26.94

D20 99.61 0.18 41.74 0.31 58.01

D5 99.43 0.35 39.45 0.59 60.23

G20 65.42 28.64 17.16 34.52 54.21

G5 62.71 28.92 22.38 37.23 48.74

GLM20 57.43 38.71 8.81 42.52 52.36

GLM5 75.32 19.04 22.92 24.65 58.18

M20 43.61 55.42 1.61 56.36 42.92

M5 56.84 37.91 11.94 43.12 50.04

RF20 57.84 42.01 0.31 42.16 57.62

RF5 54.41 45.11 0.71 45.52 54.10

Note.	These	proportions	were	obtained	from	the	analysis	of	cell-	by-	cell	data	from	the	maps	of	Figure	3,	where	(B5–B20)	Bioclim,	(D5–D20)	Domain,	
(G5–G20)	Garp,	(M5–M20)	MaxEnt,	(GL5–GL20)	GLM,	and	(RF5–RF20)	Random	Forest.

F IGURE  3 Cell	by	cell	comparison	per	category	between	each	model	(with	5	and	20	climatic	variables)	and	the	empirical	realized	
distribution	of	Bothrops alternatus.	The	light	gray	area	represents	areas	where	B. alternatus	does	not	occur	(for	the	model	and	the	real	
distribution);	the	dark	gray	area	shows	the	correct	overlap	of	the	model	and	the	real	distribution;	the	black	area	refers	to	the	empirical	
realized	distribution	that	is	not	predicted	by	the	algorithms	(omission	errors);	black	points	with	white	background	are	part	of	the	prediction	
where B. alternatus	does	not	occur	(commission	errors).	Where	(B5–B20)	Bioclim,	(D5–D20)	Domain,	(G5–G20)	Garp,	(M5–M20)	MaxEnt,	
(GL5–GL20)	GLM,	and	(RF5–RF20)	Random	Forest
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was	 higher	 than	 0.74	 in	 all	 algorithms.	 BIOCLIM	 presented	 the	
highest	 under-	prediction	 rate,	 while	 DOMAIN,	 GLM5,	 and	 RF	
presented	the	lowest	rate.	The	highest	overprediction	rate	came	
from	DOMAIN,	whereas	M20	and	RF	showed	the	lowest	values.	
The	 under-	prediction	 rate	 obtained	 for	 the	 training	 data	 was	

between	0	(D5,	RF5	and	RF20)	and	0.0438,	with	B5	reaching	the	
lowest	 values.	 The	 overprediction	 rate	 showed	 values	 between	
0	 and	0.83,	with	 the	highest	 value	 in	D5	 (0.8379)	 and	 the	 low-
est	in	RF20	(0),	RF5	(0.0014),	M20	(0.0109),	and	GLM20	(0.0624).	
Once	 more,	 D5	 reached	 the	 highest	 value	 (0.403)	 (Figure	4).	

F IGURE  4 Comparison	between	the	
training	and	test	data	of	the	species	using	
the	accuracy	of	sensitivity,	specificity,	
true	skill	statistic	(TSS),	area	under	the	
curve	(AUC),	under-	prediction	rate,	
and	overprediction	rate.	Plots	showing	
sensitivity,	specificity,	Under-	predictions	
rate,	Overpredictions	rate,	AUC,	and	TSS	
for	each	method	of	modeling.	Diamonds	
represent	values	obtained	for	the	training	
(N = 100),	while	black	squares	represent	
values	obtained	for	the	test	data	(N = 766).	
Where	(B5–B20)	Bioclim,	(D5–D20)	
Domain,	(G5–G20)	Garp,	(M5–M20)	
MaxEnt,	(GL5–GL20)	GLM,	and	(RF5–
RF20)	Random	Forest
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We	obtained	a	positive	correlation	between	FGM	and	the	accu-
racy	measures	 (Table	2)	 for	 Specificity,	 AUC	 and	 TSS	 (p	<	0.05)	
(Figures	2	 and	 4).	 Therefore,	 projections	 of	 the	 models	 with	
higher	ability	of	discrimination	presented	greater	similarity	with	
the	ED	of	B. alternatus.

4  | DISCUSSION

Soberón	and	Peterson	(2005)	proposed	that	SDMs	find	regions	that	
“resemble,”	 in	terms	of	 the	 layers	provided,	 those	areas	where	oc-
currence	points	are	located,	so	the	rest	of	the	process	is	interpreta-
tion.	Our	results	show	that	model	predictions	recognized	correctly	
some	regions	inhabited	by	B. alternatus,	as	is	also	reported	by	other	
studies	with	 different	 taxa	 that	 do	 not	 used	ED,	 like	 in	Braunisch	
et	al.	(2013);	Elith	et	al.	(2006);	Tognelli	et	al.	(2009).	Although	com-
parisons	between	model	predictions	and	expert	maps	with	empiri-
cal	data	were	barely	assessed	(Duan	et	al.,	2014;	Guisan	&	Thuiller,	
2005),	evaluating	the	performance	of	the	model	appears	as	a	good	
alternative	 when	 EDs	 are	 available	 (Peterson	 et	al.,	 2011).	 These	
comparisons	 become	 necessary	 when	 public	 health	 actions	 such	
as	provision	of	 antiophidic	 serum,	 conservation	actions,	 establish-
ment	of	protected	areas,	among	others,	are	required	(Giraudo,	2012;	
Mateo	et	al.,	2011).	In	addition,	we	found	more	differences	between	
algorithm	 predictions	 than	 between	 the	 environmental	 predictor	
sets	of	5	and	20	variables	within	each	algorithm,	as	in	Bucklin	et	al.	
(2015).	We	used	only	environmental	variables	because	climate	plays	
a	primary	role	in	shaping	species’	distributions	and	additional	predic-
tors	have	minor	effects	on	the	accuracy	of	SDMs	and	spatial	predic-
tions	(Bucklin	et	al.,	2015;	Fourcade	et	al.,	2018).	Also,	Merow	et	al.	
(2014)	express	that	insights	from	ecological	theory	and	knowledge	
of	species	can	guide	which	type	of	variables	have	to	be	include	in	the	
modeling	process.

However,	we	observed	differences	within	the	predictors	set	only	
in	DOMAIN	 and	MaxEnt,	 where	 five	 variables	 correctly	 detected	
more	regions	 inhabited	by	B. alternatus	 than	20	 in	agreement	with	
most	 of	 the	 specific	 literature	 (like	Wang	 et	al.,	 2016).	 The	 most	

conservative	predictions	belonged	 to	BIOCLIM,	which	did	not	de-
tect	most	 areas	 inhabited	 by	B. alternatus.	 In	 accordance	with	 the	
works	of	Elith	et	al.	 (2006)	and	Tognelli	et	al.	 (2009),	our	BIOCLIM	
predictions	achieved	low	values	of	precision	measures.	Conversely,	
DOMAIN	predictions	achieved	high	sensitivity	values	and	the	lowest	
specificity	values,	as	was	the	case	in	Tognelli	et	al.	(2009).	BIOCLIM	
presented	slightly	better	values	than	DOMAIN,	like	in	Graham	and	
Hijmans	 (2006).	 GARP,	 GLM,	 MaxEnt,	 and	 RF	 predictions	 more	
closely	resembled	the	ED	of	B. alternatus,	but	only	RF	and	M	could	
detect	the	 isolated	populations	 in	the	Southern	distribution	of	the	
species.

Genetic	Algorithm	for	Rule-	set	Prediction	correctly	detected	al-
most	50%	of	the	inhabited	areas	and	presented	higher	values	than	
BIOCLIM	and	DOMAIN.	Random	Forest	and	MaxEnt	performed	well	
in	all	the	accuracy	measures	used.	These	results	are	similar	to	those	
obtained	by	Bucklin	et	al.	(2015)	and	Tognelli	et	al.	(2009).	Moreover,	
they	are	a	good	alternative	for	species	with	disjunct	distributions,	as	
was	indicated	by	Bucklin	et	al.	(2015)	and	Kesler	and	Walker	(2015).	
Bucklin	et	al.	 (2015)	and	Duan	et	al.	 (2014)	 found	that	 their	better	
predictions	presented	high	values	of	AUC	and	TSS.	Our	high	values	
of	positive	correlations	between	FGM	and	some	accuracy	measures	
such	as	AUC	and	TSS	showed	that	the	greater	discrimination	capac-
ity	of	the	model	 is	correlated	with	a	greater	similarity	between	 its	
projections	 and	 the	 ED.	 AUC	 always	 indicated	 better	 predictions	
than	a	null	model,	even	in	projections	that	under-		or	overpredict	the	
ED	of	B. alternatus,	making	 it	 impossible	 to	make	a	decision	based	
on	this	matrix	(see	Lobo	et	al.,	2008).	TSS	was	the	only	helpful	ac-
curacy	measure	to	assess	the	performance	of	SDMs	(Allouche	et	al.,	
2006),	with	 the	same	pattern	as	FGM.	 In	spite	of	 this,	 the	models	
that	reached	the	highest	FGM	values	(RF	and	Maxent	20)	under-		or	
over-	estimated	more	than	25%	of	the	ED	of	B. alternatus.	These	dif-
ferences	could	be	related	to	the	information	given	by	presence-	only	
models,	providing	a	suitability	gradient	of	observation	of	the	species	
but	without	making	a	difference	between	presence/absence	or	de-
tectability	(Guillera-	Arroita	et	al.,	2015).	Moreover,	such	differences	
could	be	due	to	not	including	in	the	analysis	interspecific	interactions	
and	dispersion	capacity	of	the	species	(Soberón	&	Peterson,	2005).

Variable I Variable II N Spearman
p- Value 
(p < 0.05)

Fuzzy	global	
matching

Sensitivity 12 0.31 0.324

Fuzzy	global	
matching

Specificity 12 0.82 0.001

Fuzzy	global	
matching

Under-	prediction	rate 12 −0.31 0.319

Fuzzy	global	
matching

Overprediction	rate 12 −0.88 0.00015

Fuzzy	global	
matching

AUC 12 0.89 0.000067

Fuzzy	global	
matching

TSS 12 0.90 0.000052

Note.	AUC,	area	under	the	curve;	TSS,	true	skill	statistic.

TABLE  2 Spearman’s	correlation	
coefficients	between	fuzzy	global	
matching	and	discrimination	measures	
(p	<	0.05)
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Di	Cola	and	Chiaraviglio	(2011)	predicted	high	suitability	values	
for	 B. alternatus	 in	 the	 north	 and	 center	 of	 Misiones,	 throughout	
Tucumán	and	in	the	east	of	Salta	and	Jujuy,	while	Nori	et	al.	(2013)	
predicted	similar	values	in	the	north	of	Misiones,	throughout	Buenos	
Aires	 and	 in	 a	disjunct	 area	 in	Tucumán.	Conversely,	 in	our	 study,	
model	predictions	(except	DOMAIN	and	GLM)	did	not	achieve	high	
suitability	values	for	these	areas.	This	may	be	due	to	the	fact	that	
B. alternatus	 is	 a	 species	 that	 does	 not	 occur	 in	 forests	 (Giraudo,	
2001;	Scrocchi	et	al.,	2006).

We	 concluded	 that	 certain	 algorithms,	 like	 DOMAIN,	 produce	
predictions	which	are	 too	 inclusive,	while	others	present	more	 re-
strictive	 predictions,	 such	 as	BIOCLIM.	The	 rest	 of	 the	 algorithms	
make	under-		and	overpredictions,	with	RF	better	resembling	the	ED	
of	B. alternatus.	Because	of	the	consistent	under-		or	overprediction	
in	the	models,	our	results	also	confirmed	the	importance	of	validating	
them	with	independent	data	or	expert	opinion.	According	to	Loiselle	
et	al.	 (2008),	 failure	 to	 include	 independent	 model	 validation	may	
potentially	 lead	 to	 serious	 errors	 in	 conservation	 decision-	making	
and	planning.	These	issues	need	to	be	further	analyzed	with	others	
focuses.	 Recently,	 advances	 approaches	 were	 developed	 most	 of	
them	through	the	Bayesian	approach,	that	has	become	a	good	option	
to	deal	when	the	distribution	of	the	species	is	modeled	using	point-	
references	data	due	to	the	ease	with	which	prior	information	can	be	
incorporated	along	with	the	fact	that	it	provides	a	more	realistic	and	
accurate	 estimation	of	 uncertainty	 (Dutra	 Silva,	Brito	de	Azevedo,	
Bento	Elias,	&	Silva,	2017;	Martínez-	Minaya,	Cameletti,	Conesa,	&	
Pennino,	2018;	Rodríguez	de	Rivera	&	López-	Quílez,	2017).	So,	more	
studies	 testing	 and	 comparing	 ED,	 FGM,	 and	 Bayesian	 approach	
are	need	it,	even	if	our	study	was	not	focuses	on	recent	developed	
Bayesian	approach	(see	Martínez-	Minaya	et	al.,	2018	for	a	revision).

Finally,	we	found	that	both	expert	maps	with	ED	and	FGM	func-
tion	appear	as	appropriate	tools	to	complement	performance	indices	
used	in	species	distribution	modeling	since	they	offer	an	assessment	
alternative	to	compare	the	characteristics	of	the	predictions	when	
EDs	are	available.

ACKNOWLEDG MENTS

The	 following	 supported	 the	 work:	 CONICET	 (PIP	 2011-	0355),	
Universidad	Nacional	del	Litoral	(CAID-	2016-	UNL),	ANPCYT	(PICT	
2016-	1415	and	PICT-	2013-	2203	FONCYT).	We	thank	the	Consejo	
Nacional	de	Investigaciones	Científicas	y	Técnicas.	We	thank	María	
Eugenia	Rodriguez,	Romina	Pavé	and	Carla	Bessa,	and	the	Instituto	
Nacional	de	Limnología	(CONICET-	UNL)	that	allowed	our	work.

CONFLIC TS OF INTERE S T

The	authors	have	no	conflicts	of	interest	to	declare.

AUTHOR CONTRIBUTIONS

JAS	conceived	the	ideas,	designed	the	objectives,	analyzed	the	data,	
results,	figures,	and	maps	and	wrote	the	manuscript.	MAC	analyzed	

the	data	and	provided	suggestions	on	manuscript	improvement.	VA	
collected	the	field	data	and	performed	the	data	base,	provided	in-
formation	about	the	study	site,	made	the	distribution	maps	of	spe-
cies,	and	determined	the	nodes	and	track	and	wrote	the	manuscript.	
GB	revised	the	language,	wrote	the	manuscript,	and	made	important	
contribution	on	the	manuscript	discussion.	ARG	conceived	the	ideas,	
collected	the	data	and	performed	the	data	base,	reported	informa-
tion	about	the	natural	history	of	 the	species,	analyzed	the	results,	
wrote	the	manuscripts	and	helped	with	focusing	the	manuscript.

DATA ACCE SSIBILIT Y

We	included	the	database	of	Bothrops alternatus	in	Figshare,	under	
CC0	 license	 (see	 CC0	 in	 https://knowledge.figshare.com/articles/
item/what-is-the-most-appropriate-license-for-my-data).

ORCID

Juan A. Sarquis  http://orcid.org/0000-0002-0213-1106 

R E FE R E N C E S

Acevedo,	 P.,	 Jiménez-Valverde,	 A.,	 Lobo,	 J.,	 &	 Real,	 R.	 (2012).	
Delimiting	 the	 geographical	 background	 in	 species	 distribution	
modelling.	 Journal of Biogeography,	 39(8),	 1383–1390.	 https://doi.
org/10.1111/j.1365-2699.2012.02713.x

Allouche,	O.,	Tsoar,	A.,	&	Kadmon,	R.	(2006).	Assessing	the	accuracy	of	
species	distribution	models:	Prevalence,	kappa	and	the	true	skill	sta-
tistic	(TSS).	Journal of Applied Ecology,	43(6),	1223–1232.	https://doi.
org/10.1111/j.1365-2664.2006.01214.x

Anderson,	 R.,	 Lew,	 D.,	 &	 Peterson,	 A.	 (2003).	 Evaluating	 predictive	
models	of	species’	distributions:	Criteria	for	selecting	optimal	mod-
els.	 Ecological Modelling,	 162(3),	 211–232.	 https://doi.org/10.1016/
S0304-3800(02)00349-6

Araújo,	M.	B.,	&	Guisan,	A.	(2006).	Five	(or	so)	challenges	for	species	dis-
tribution	modelling.	Journal of Biogeography,	33,	1677–1688.	https://
doi.org/10.1111/j.1365-2699.2006.01584.x

Araújo,	 M.	 B.,	 &	 Luoto,	 M.	 (2007).	 The	 importance	 of	 biotic	 interac-
tions	 for	 modelling	 species	 distributions	 under	 climate	 change.	
Global Ecology and Biogeography,	 16,	 743–753.	 https://doi.
org/10.1111/j.1466-8238.2007.00359.x

Araújo,	M.,	Thuiller,	W.,	Williams,	P.,	&	Reginster,	I.	(2005).	Downscaling	
European	species	atlas	distributions	to	a	finer	resolution:	Implications	
for	conservation	planning.	Global Ecology and Biogeography,	14(1),	17–
30.	https://doi.org/10.1111/j.1466-822X.2004.00128.x

Arzamendia,	V.,	&	Giraudo,	A.	R.	 (2004).	Usando	patrones	de	biodiver-
sidad	para	 la	 evaluación	y	diseño	de	 áreas	protegidas:	 las	 serpien-
tes	 de	 la	 provincia	 de	 Santa	 Fe	 (Argentina)	 como	 ejemplo.	Revista 
Chilena de Historia Natural,	77(2),	335–348.	https://doi.org/10.4067/
S0716-078X2004000200011

Arzamendia,	V.,	&	Giraudo,	A.	R.	(2009).	Influence	of	large	South	American	
rivers	of	the	Plata	Basin	on	distributional	patterns	of	tropical	snakes:	
A	panbiogeographical	analysis.	Journal of Biogeography,	36(9),	1739–
1749.	https://doi.org/10.1111/j.1365-2699.2009.02116.x

Arzamendia,	 V.,	 &	 Giraudo,	 A.	 R.	 (2012).	 A	 panbiogeographi-
cal	 model	 to	 prioritize	 areas	 for	 conservation	 along	 large	 riv-
ers.	 Diversity and Distribution,	 18(1),	 168–179.	 https://doi.
org/10.1111/j.1472-4642.2011.00829.x

Barbet-Massin,	M.,	Jiguet,	F.,	Albert,	C.,	&	Thuiller,	W.	(2012).	Selecting	
pseudo-	absences	 for	 species	distribution	models:	How,	where	and	

https://knowledge.figshare.com/articles/item/what-is-the-most-appropriate-license-for-my-data
https://knowledge.figshare.com/articles/item/what-is-the-most-appropriate-license-for-my-data
http://orcid.org/0000-0002-0213-1106
http://orcid.org/0000-0002-0213-1106
https://doi.org/10.1111/j.1365-2699.2012.02713.x
https://doi.org/10.1111/j.1365-2699.2012.02713.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1016/S0304-3800(02)00349-6
https://doi.org/10.1016/S0304-3800(02)00349-6
https://doi.org/10.1111/j.1365-2699.2006.01584.x
https://doi.org/10.1111/j.1365-2699.2006.01584.x
https://doi.org/10.1111/j.1466-8238.2007.00359.x
https://doi.org/10.1111/j.1466-8238.2007.00359.x
https://doi.org/10.1111/j.1466-822X.2004.00128.x
https://doi.org/10.4067/S0716-078X2004000200011
https://doi.org/10.4067/S0716-078X2004000200011
https://doi.org/10.1111/j.1365-2699.2009.02116.x
https://doi.org/10.1111/j.1472-4642.2011.00829.x
https://doi.org/10.1111/j.1472-4642.2011.00829.x


     |  10507SARQUIS et Al.

how	many?	Methods in Ecology and Evolution,	3(2),	327–338.	https://
doi.org/10.1111/j.2041-210X.2011.00172.x

Barbosa,	 A.,	 &	 Real,	 R.	 (2012).	 Applying	 fuzzy	 logic	 to	 comparative	
distribution	 modelling:	 A	 case	 study	 with	 two	 sympatric	 am-
phibians.	 The Scientific World Journal,	 2012,	 428206.	 https://doi.
org/10.1100/2012/428206

Barbosa,	A.,	Real,	R.,	Muñoz,	A.,	&	Brown,	J.	(2013).	New	measures	for	
assessing	 model	 equilibrium	 and	 prediction	 mismatch	 in	 species	
distribution	models.	Diversity and Distributions,	19(10),	 1333–1338.	
https://doi.org/10.1111/ddi.12100

Bellini,	G.,	Giraudo,	A.,	Arzamendia,	V.,	&	Etchepare,	E.	(2015).	Temperate	
snake	community	in	South	America:	Is	diet	determined	by	phylogeny	
or	ecology?	PLoS One,	10(5),	1–15.	https://doi.org/10.1371/journal.
pone.0123237

Bosso,	L.,	Luchi,	N.,	Maresi,	G.,	Cristinzio,	G.,	Smeraldo,	S.,	&	Russo,	D.	
(2017).	Predicting	current	and	future	disease	outbreaks	of	Diplodia 
sapinea	shoot	blight	in	Italy:	Species	distribution	models	as	a	tool	for	
forest	management	planning.	Forest Ecology and Management,	400,	
655–664.	https://doi.org/10.1016/j.foreco.2017.06.044

Braunisch,	 V.,	 Coppes,	 J.,	 Arlettaz,	 R.,	 Suchant,	 R.,	 Schmid,	 H.,	 &	
Bollmann,	 K.	 (2013).	 Selecting	 from	 correlated	 climate	 variables:	
A	 major	 source	 of	 uncertainty	 for	 predicting	 species	 distribu-
tions	under	 climate	 change.	Ecography,	36(9),	 971–983.	 https://doi.
org/10.1111/j.1600-0587.2013.00138.x

Breiman,	L.	(2001).	Random	forest.	Machine Learning,	45(1),	5–32.	https://
doi.org/10.1023/A:101093340

Bucklin,	D.	N.,	 Basille,	M.,	 Benscoter,	A.,	 Brandt,	 L.	A.,	Mazzotti,	 F.	 J.,	
Romañach,	 S.	 S.,	 …	Watling,	 J.	 I.	 (2015).	 Comparing	 species	 distri-
bution	models	 constructed	with	 different	 subsets	 of	 environmen-
tal	 predictors.	Diversity and Distributions,	21(1),	 23–35.	 https://doi.
org/10.1111/ddi.12247

Busby,	J.	R.	(1991).	Bioclim:	A	bioclimate	analysis	and	prediction	system.	
In	C.	R.	Margules	&	M.	P.	Austin	(Eds.),	Nature conservation: Cost ef-
fective biological surveys and data analysis	 (pp.	 64–68).	Melbourne,	
Vic.,	Australia:	Csiro.

Carpenter,	 G.,	 Gillison,	 A.,	 &	 Winter,	 J.	 (1993).	 DOMAIN:	 A	 flexible	
modelling	 procedure	 for	 mapping	 potential	 distributions	 of	 plants	
and	 animals.	 Biodiversity Conservation,	 2(6),	 667–680.	 https://doi.
org/10.1007/BF00051966

Chen,	Y.,	Zhang,	J.,	Jiang,	J.,	Nielsen,	S.	E.,	&	He,	F.	(2017).	Assessing	the	
effectiveness	of	China’s	protected	areas	to	conserve	current	and	fu-
ture	amphibian	diversity.	Diversity and Distributions,	23(2),	146–157.	
https://doi.org/10.1111/ddi.12508

Di	Cola,	V.,	&	Chiaraviglio,	M.	(2011).	Establishing	species’	environmental	
requirements	to	understand	how	the	southernmost	species	of	South	
American	 pitvipers	 (Bothrops,	 Viperidae)	 are	 distributed:	 A	 niche-	
based	modelling	approach.	Austral Ecology,	36(1),	90–98.	https://doi.
org/10.1111/j.1442-9993.2010.02123.x

Di	Rienzo,	J.	A.,	Robledo,	C.	W.,	Balzarini,	M.	G.,	Casanoves,	F.,	Gonzalez,	
L.,	 &	 Tablada,	 M.	 (2005).	 Infostat software estadístico.	 Córdoba,	
Argentina:	Universidad	Nacional	de	Córdoba.

Duan,	R.	Y.,	Kong,	X.	Q.,	Huang,	M.	Y.,	Fan,	W.	Y.,	&	Wang,	Z.	G.	(2014).	
The	predictive	performance	and	stability	of	six	species	distribution	
models.	PLoS One,	9(11),	e112764.	https://doi.org/10.1371/journal.
pone.0112764

Dutra	Silva,	L.,	Brito	de	Azevedo,	E.,	Bento	Elias,	R.,	&	Silva,	L.	 (2017).	
Species	distribution	modeling:	Comparison	of	fixed	and	mixed	effects	
models	 using	 INLA.	 ISPRS International Journal of Geo- Information,	
6(12),	391.	https://doi.org/10.3390/ijgi6120391

Elith,	J.,	Graham,	H.,	Anderson,	R.	P.,	Dudík,	M.,	Ferrier,	S.,	Guisan,	A.,	
…	Zimmermann,	N.	E.	(2006).	Novel	methods	improve	prediction	of	
species’	distributions	 from	occurrence	data.	Ecography,	29(2),	129–
151.	https://doi.org/10.1111/j.2006.0906-7590.04596.x

Elith,	J.,	&	Leathwick,	J.	 (2009).	Species	distribution	models:	Ecological	
explanation	 and	 prediction	 across	 space	 and	 time.	 Annual Review 

of Ecology, Evolution and Systematics,	 40,	 677–697.	 https://doi.
org/10.1146/annurev.ecolsys.110308.120159

ESRI.	(2009).	Arcgis v. 9.3.	Redlands,	CA:	ESRI.
Faleiro,	 F.	 V.,	Machado,	 R.	 B.,	 &	 Loyola,	 R.	 D.	 (2013).	 Defining	 spatial	

conservation	priorities	 in	 the	 face	of	 land-	use	and	climate	change.	
Biological Conservation,	 158,	 248–257.	 https://doi.org/10.1016/j.
biocon.2012.09.020

Fielding,	A.,	&	Bell,	 J.	 (1997).	A	 review	of	methods	 for	 the	assessment	
of	 prediction	 errors	 in	 conservation	 presence/absence	 models.	
Environmental Conservation,	 24(1),	 38–49.	 https://doi.org/10.1017/
S0376892997000088

Fitzpatrick,	M.	C.,	Weltzin,	J.	F.,	Sanders,	N.	J.,	&	Dunn,	R.	R.	(2007).	The	bio-
geography	of	prediction	error:	Why	does	the	introduced	range	of	the	
fire	ant	over-	predict	its	native	range?	Global Ecology and Biogeography,	
16(1),	24–33.	https://doi.org/10.1111/j.1466-8238.2006.00258.x

Fourcade,	Y.,	Besnard,	A.	G.,	&	Secondi,	J.	(2018).	Paintings	predict	the	
distribution	of	species,	or	the	challenge	of	selecting	environmental	
predictors	and	evaluation	statistics.	Global Ecology and Biogeography,	
27,	245–256.	https://doi.org/10.1111/geb.12684

Giraudo,	A.	R.	 (2001).	Diversidad	de	serpientes	de	 la	selva	Paranaense	
y	del	Chaco	Húmedo.	Taxonomía,	biogeografía	y	conservación.	Ed,	
Literature	of	Latin	America,	Buenos	Aires,	Argentina.	285	pp.

Giraudo,	 A.	 R.	 (2012).	 Fichas	 de	 taxones:	 Serpientes	 Amenazadas.	
Cuadernos de Herpetología,	26,	327–374.

Giraudo,	A.	R.,	&	Arzamendia,	V.	 (2014).	Una	experiencia	 transdiscipli-
naria	de	conservación	en	el	sitio	ramsar	jaaukanigás	(santa	fe,	argen-
tina).	Avá Revista Antropológica,	24,	141–159.

Giraudo,	A.	R.,	&	Arzamendia,	V.	 (2018).	Descriptive	bioregionalisation	
and	conservation	biogeography:	What	is	the	true	bioregional	repre-
sentativeness	of	 protected	 areas?	Australian Systematic Botany,	30,	
403–413.	https://doi.org/10.1071/SB16056

Giraudo,	 A.	 R.,	 Arzamendia,	 V.,	 López,	M.	 S.,	 Quaini,	 R.	 O.,	 Prieto,	 Y.,	
Leiva,	L.	A.,	…	Urban,	J.	M.	 (2008).	Serpientes	venenosas	de	Santa	
Fe,	Argentina:	Conocimientos	sobre	su	historia.	Revista FABICIB,	12,	
69–89.	https://doi.org/10.14409/fabicib.v12i1.819

Graham,	 C.,	 &	 Hijmans,	 R.	 (2006).	 A	 comparison	 of	 meth-
ods	 for	 mapping	 species	 ranges	 and	 species	 richness.	 Global 
Ecology & Biogeography Letters,	 15(6),	 578–587.	 https://doi.
org/10.1111/j.1466-822x.2006.00257.x

Guillera-Arroita,	 G.,	 Lahoz-Monfort,	 J.	 J.,	 Elith,	 J.,	 Gordon,	 A.,	 Kujala,	
H.,	 Lentini,	P.	E.,	…	Wintle,	B.	A.	 (2015).	 Is	my	 species	distribution	
model	 fit	 for	 purpose?	Matching	 data	 and	models	 to	 applications.	
Global Ecology & Biogeography Letters,	 24(3),	 276–292.	 https://doi.
org/10.1111/geb.12268

Guisan,	A.,	 Edwards,	 T.	C.,	&	Hastie,	 T.	 (2002).	Generalized	 linear	 and	
generalized	 additive	 models	 in	 studies	 of	 species	 distributions:	
Setting	 the	 scene.	Ecological Modelling,	157(2),	89–100.	https://doi.
org/10.1016/S0304-3800(02)00204-1

Guisan,	A.,	Lehmann,	A.,	Ferrier,	S.,	Austin,	M.,	Overton,	J.	M.,	Aspinall,	
R.,	 &	Hastie,	 T.	 (2006).	Making	 better	 biogeographical	 predictions	
of	species’	distributions.	Journal of Applied Ecology,	43(3),	386–392.	
https://doi.org/10.1111/j.1365-2664.2006.01164.x

Guisan,	A.,	&	Thuiller,	W.	(2005).	Predicting	species	distribution:	Offering	
more	 than	 simple	 habitat	 models.	 Ecology Letters,	 8(9),	 993–1009.	
https://doi.org/10.1111/j.1461-0248.2005.00792.x

Guisan,	A.,	Tingley,	R.,	Baumgartner,	J.,	Naujokaitis-Lewis,	I.,	Sutcliffe,	P.	
R.,	Tulloch,	A.	I.,	…	Buckley,	Y.	M.	(2013).	Predicting	species	distribu-
tions	for	conservation	decisions.	Ecology Letters,	16(12),	1424–1435.	
https://doi.org/10.1111/ele.12189

Guisan,	A.,	&	Zimmermann,	N.	E.	(2000).	Predictive	habitat	distribution	
models	in	ecology.	Ecological Modelling,	135(2),	147–186.	https://doi.
org/10.1016/S0304-3800(00)00354-9

Hagen,	A.	(2003).	Fuzzy	set	approach	to	assessing	similarity	of	categor-
ical	 maps.	 International Journal of Geographical Information Science,	
17(3),	235–249.	https://doi.org/10.1080/13658810210157822

https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1100/2012/428206
https://doi.org/10.1100/2012/428206
https://doi.org/10.1111/ddi.12100
https://doi.org/10.1371/journal.pone.0123237
https://doi.org/10.1371/journal.pone.0123237
https://doi.org/10.1016/j.foreco.2017.06.044
https://doi.org/10.1111/j.1600-0587.2013.00138.x
https://doi.org/10.1111/j.1600-0587.2013.00138.x
https://doi.org/10.1023/A:101093340
https://doi.org/10.1023/A:101093340
https://doi.org/10.1111/ddi.12247
https://doi.org/10.1111/ddi.12247
https://doi.org/10.1007/BF00051966
https://doi.org/10.1007/BF00051966
https://doi.org/10.1111/ddi.12508
https://doi.org/10.1111/j.1442-9993.2010.02123.x
https://doi.org/10.1111/j.1442-9993.2010.02123.x
https://doi.org/10.1371/journal.pone.0112764
https://doi.org/10.1371/journal.pone.0112764
https://doi.org/10.3390/ijgi6120391
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1016/j.biocon.2012.09.020
https://doi.org/10.1016/j.biocon.2012.09.020
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1111/j.1466-8238.2006.00258.x
https://doi.org/10.1111/geb.12684
https://doi.org/10.1071/SB16056
https://doi.org/10.14409/fabicib.v12i1.819
https://doi.org/10.1111/j.1466-822x.2006.00257.x
https://doi.org/10.1111/j.1466-822x.2006.00257.x
https://doi.org/10.1111/geb.12268
https://doi.org/10.1111/geb.12268
https://doi.org/10.1016/S0304-3800(02)00204-1
https://doi.org/10.1016/S0304-3800(02)00204-1
https://doi.org/10.1111/j.1365-2664.2006.01164.x
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/ele.12189
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1080/13658810210157822


10508  |     SARQUIS et Al.

Hijmans,	 R.	 J.	 (2012).	 Cross-	validation	 of	 species	 distribution	 models:	
Removing	 spatial	 sorting	 bias	 and	 calibration	 with	 a	 null	 model.	
Ecology,	93,	679–688.	https://doi.org/10.1890/11-0826.1

Hijmans,	R.,	Cameron,	 S.,	 Parra,	 J.,	 Jones,	 P.,	&	 Jarvis,	A.	 (2005).	Very	
high	 resolution	 interpolated	 climate	 surfaces	 for	 global	 land	areas.	
International Journal of Climatology,	25(15),	 1965–1978.	 https://doi.
org/10.1002/joc.1276

Hijmans,	R.,	Van	Etten,	J.,	Cheng,	J.,	Mattiuzzi,	M.,	Sumner,	M.,	Greenberg,	
J.	A.,	…	Shortridge,	A.	(2016).	Geographic	data	analysis	and	modeling.	
Package.	1–244.	https://cran.rstudio.com/web/packages/raster/ras-
ter.pdf

Hortal,	 J.,	 Borges,	 P.	 A.	 V.,	 &	 Gaspar,	 C.	 (2006).	 Evaluating	 the	 per-
formance	 of	 species	 richness	 estimators:	 Sensitivity	 to	 sample	
grain	 size.	 Journal of Animal Ecology,	 75(1),	 274–287.	 https://doi.
org/10.1111/j.1365-2656.2006.01048.x

Hortal,	 J.,	 De	 Bello,	 F.,	 Diniz-Filho,	 J.	 A.	 F.,	 Lewinsohn,	 T.	M.,	 Lobo,	
J.	 M.,	 &	 Ladle,	 R.	 J.	 (2015).	 Seven	 shortfalls	 that	 beset	 large-	
scale	 knowledge	 of	 biodiversity.	 Annual Reviews of Ecology, 
Evolution and Systematics,	 46,	 523–549.	 https://doi.org/10.1146/
annurev-ecolsys-112414-054400

Jarnevich,	C.	S.,	Stohlgren,	T.	J.,	Kumar,	S.,	Morisette,	J.	T.,	&	Holcombe,	
T.	 R.	 (2015).	 Caveats	 for	 correlative	 species	 distribution	 model-
ing.	 Ecological Informatics,	 29(1),	 6–15.	 https://doi.org/10.1016/j.
ecoinf.2015.06.007

Jiménez-Valverde,	A.,	&	 Lobo,	 J.	 (2007).	 Threshold	 criteria	 for	 conver-
sion	 of	 probability	 of	 species	 presence	 to	 either–or	 presence–ab-
sence.	 Acta Oecologica,	 31(3),	 361–369.	 https://doi.org/10.1016/j.
actao.2007.02.001

Jiménez-Valverde,	 A.,	 Lobo,	 J.,	 &	 Hortal,	 J.	 (2008).	 Not	 as	 good	 as	
they	 seem:	 The	 importance	 of	 concepts	 in	 species	 distribution	
modelling.	 Diversity and Distributions,	 14(6),	 885–890.	 https://doi.
org/10.1111/j.1472-4642.2008.00496.x

Jiménez-Valverde,	 A.	 (2012).	 Insights	 into	 the	 area	 under	 the	 receiver	
operating	characteristic	 curve	 (	AUC	 )	 as	 a	discrimination	measure	
in	species.	Global Ecology and Biogeography,	5,	498–507.	https://doi.
org/10.1111/j.1466-8238.2011.00683.x

Kadmon,	 R.,	 Farber,	 O.,	 &	 Danin,	 A.	 (2003).	 A	 systematic	 analy-
sis	 of	 factors	 affecting	 the	 performance	 of	 climatic	 envelope	
models.	 Ecological Applications,	 13(3),	 853–867.	 https://doi.
org/10.1890/1051-0761(2003)013

Kesler,	D.	C.,	&	Walker,	R.	A.	(2015).	Geographic	distribution	of	isolated	
indigenous	 societies	 in	 Amazonia	 and	 the	 efficacy	 of	 indigenous	
territories.	 PLoS One,	 10(5),	 1–13.	 https://doi.org/10.1371/journal.
pone.0125113

Law,	B.,	Caccamo,	G.,	Roe,	P.,	Truskinger,	A.,	Brassil,	T.,	Gonsalves,	L.,	…	
Stanton,	M.	(2017).	Development	and	field	validation	of	a	regional,	
management-	scale	 habitat	 model:	 A	 koala	 Phascolarctos	 cinereus	
case	 study.	 Ecology and evolution,	 7(18),	 7475–7489.	 https://doi.
org/10.1002/ece3.3300

Lobo,	 J.	 M.,	 Jiménez-Valverde,	 A.,	 &	 Hortal,	 J.	 (2010).	 The	 uncer-
tain	 nature	 of	 absences	 and	 their	 importance	 in	 species	 dis-
tribution	 modelling.	 Ecography,	 33(1),	 103–114.	 https://doi.
org/10.1111/j.1600-0587.2009.06039.x

Lobo,	 J.,	 Jiménez-Valverde,	 A.,	 &	 Real,	 R.	 (2008).	 AUC:	 A	 mislead-
ing	 measure	 of	 the	 performance	 of	 predictive	 distribution	 mod-
els.	 Global Ecology and Biogeography,	 17(2),	 145–151.	 https://doi.
org/10.1111/j.1466-8238.2007.00358.x

Loiselle,	 B.	 A.,	 Jørgensen,	 P.	M.,	 Consiglio,	 T.,	 Jiménez,	 I.,	 Blake,	 J.	G.,	
Lohmann,	L.	G.,	&	Montiel,	O.	M.	 (2008).	Predicting	species	distri-
butions	from	herbarium	collections:	Does	climate	bias	 in	collection	
sampling	 influence	model	outcomes?	Journal of Biogeography,	35(1),	
105–116.	https://doi.org/10.1111/j.1365-2699.2007.01779.x

Lomolino,	M.	V.	 (2004).	Conservation	biogeography.	 In	M.	V.	Lomolino	
&	 L.	 R.	 Heaney	 (Eds.),	 Frontiers of biogeography: New directions in 

the geography of nature	 (pp.	 293–296).	 Sunderland,	 Mass:	 Sinauer	
Associates.

Ma,	 B.,	 &	 Sun,	 J.	 (2018).	 Predicting	 the	 distribution	 of	 Stipa	 purpurea	
across	the	Tibetan	Plateau	via	the	MaxEnt	model.	BMC Ecology,	18,	
1–12.	https://doi.org/10.1186/s12898-018-0165-0

Martínez-Minaya,	J.,	Cameletti,	M.,	Conesa,	D.,	&	Pennino,	M.	G.	(2018).	
Species	 distribution	 modeling:	 A	 statistical	 review	 with	 focus	 in	
spatio-	temporal	 issues.	 Stochastic Environmental Research and Risk 
Assessment,	7,	1–18.	https://doi.org/10.1007/s00477-018-1548-7

Mateo,	 R.,	 Felicísimo,	 A.,	 &	 Muñoz,	 J.	 (2011).	 Modelos	 de	 distri-
bución	 de	 especies:	 Una	 revisión	 sintética.	 Revista Chilena 
de Historia Natural,	 84(2),	 217–240.	 https://doi.org/10.4067/
S0716078X2011000200008

Merow,	 C.,	 Smith,	M.	 J.,	 Edwards,	 T.	 C.,	 Guisan,	 A.,	Mcmahon,	 S.	M.,	
Normand,	S.,	…	Elith,	J.	(2014).	What	do	we	gain	from	simplicity	ver-
sus	complexity	in	species	distribution	models?	Ecography,	37,	1267–
1281.	https://doi.org/10.1111/ecog.00845

Merow,	C.,	Wilson,	A.	M.,	&	Jetz,	W.	(2016).	Integrating	occurrence	data	
and	 expert	 maps	 for	 improved	 species	 range	 predictions.	 Global 
Ecology and Biogeography,	 25,	 243–258.	 https://doi.org/10.1111/
geb.12539

Nori,	J.,	Carrasco,	P.,	&	Leynaud,	G.	(2013).	Venomous	snakes	and	climate	
change:	 Ophidism	 as	 a	 dynamic	 problem.	 Climatic Change,	 122(1),	
67–80.	https://doi.org/10.1007/s10584-013-1019-6

Oliveira,	U.,	Paglia,	A.	P.,	Brescovit,	A.	D.,	Carvalho,	C.	J.	B.,	Paiva	Silva,	
D.,	 Rezende,	D.	 T.,	…	 Santos,	 A.	 J.	 (2016).	 The	 strong	 influence	 of	
collection	bias	on	biodiversity	knowledge	shortfalls	of	Brazilian	ter-
restrial	 biodiversity.	Diversity and Distributions,	22(12),	 1232–1244.	
https://doi.org/10.1111/ddi.12489

Peterson,	A.	T.,	Soberón,	J.,	&	Sánchez-Cordero,	V.	(1999).	Conservation	
of	ecological	niches	 in	evolutionary	 time.	Science,	285,	1265–1267.	
https://doi.org/10.1126/science.285.5431.1265

Peterson,	 A.,	 Soberón,	 J.,	 Pearson,	 R.	 G.,	 Anderson,	 R.	 P.,	 Martínez-	
Meyer,	E.,	Nakamura,	M.,	&	Araújo,	M.	B.	(2011).	Ecological niches and 
geographic distributions	(314	pp.).	Princeton,	NJ:	Princeton	University	
Press.

Phillips,	 S.,	 Anderson,	 R.,	 &	 Schapire,	 R.	 (2006).	 Maximum	 entropy	
modelling	 of	 species	 geographic	 distributions.	Ecological Modelling,	
190(3),	231–259.	https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips,	S.	J.,	&	Elith,	J.	(2010).	POC	plots:	Calibrating	species	distribution	
models	with	presence-	only	data.	Ecology,	91,	2476–2484.	https://doi.
org/10.1890/09-0760.1

Power,	 C.,	 Simms,	 A.,	 &	 White,	 R.	 (2001).	 Hierarchical	 fuzzy	 pattern	
matching	for	the	regional	comparison	of	land	use	maps.	International 
Journal Geographical Information Science,	15(1),	77–100.	https://doi.
org/10.1080/136588100750058715

Qiao,	H.,	Peterson,	A.	T.,	&	Soberon,	J.	(2015).	No	silver	bullets	in	correlative	
ecological	niche	modelling:	Insights	from	testing	among	many	poten-
tial	algorithms	for	niche	estimation.	Methods in Ecology and Evolution,	
6(10),	1126–1136.	https://doi.org/10.1111/2041-210X.12397

R	Core	Team.	 (2014).	A language and environment for statistical comput-
ing.	 Vienna,	 Austria:	 R	 foundation	 for	 Statistical	 Computing.	 ISBN	
3-900051-07-0.	http://www.R-project.org.

Raes,	N.,	&	ter	Steege,	H.	(2007).	A	null-	model	for	significance	testing	of	
presence-	only	species	distribution	models.	Ecography,	30,	727–736.	
https://doi.org/10.1111/j.2007.0906-7590.05041.x

Rodríguez	de	Rivera,	O.,	&	 López-Quílez,	A.	 (2017).	Development	 and	
Comparison	of	Species	Distribution	Models	 for	Forest	 Inventories.	
ISPRS International Journal of Geo-Information,	 6,	 176.	 https://doi.
org/10.3390/ijgi6060176

Rojas-Soto,	 O.	 R.,	 Mart,	 E.,	 &	 Navarro-sig,	 A.	 G.	 (2008).	 Modeling	
distributions	 of	 disjunct	 populations	 of	 the	 Sierra	 Madre	
Sparrow.	 Journal of Field Ornithology,	 79(3),	 245–253.	 https://doi.
org/10.1111/j.1557-9263.2008.00170.x

https://doi.org/10.1890/11-0826.1
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://cran.rstudio.com/web/packages/raster/raster.pdf
https://cran.rstudio.com/web/packages/raster/raster.pdf
https://doi.org/10.1111/j.1365-2656.2006.01048.x
https://doi.org/10.1111/j.1365-2656.2006.01048.x
https://doi.org/10.1146/annurev-ecolsys-112414-054400
https://doi.org/10.1146/annurev-ecolsys-112414-054400
https://doi.org/10.1016/j.ecoinf.2015.06.007
https://doi.org/10.1016/j.ecoinf.2015.06.007
https://doi.org/10.1016/j.actao.2007.02.001
https://doi.org/10.1016/j.actao.2007.02.001
https://doi.org/10.1111/j.1472-4642.2008.00496.x
https://doi.org/10.1111/j.1472-4642.2008.00496.x
https://doi.org/10.1111/j.1466-8238.2011.00683.x
https://doi.org/10.1111/j.1466-8238.2011.00683.x
https://doi.org/10.1890/1051-0761(2003)013
https://doi.org/10.1890/1051-0761(2003)013
https://doi.org/10.1371/journal.pone.0125113
https://doi.org/10.1371/journal.pone.0125113
https://doi.org/10.1002/ece3.3300
https://doi.org/10.1002/ece3.3300
https://doi.org/10.1111/j.1600-0587.2009.06039.x
https://doi.org/10.1111/j.1600-0587.2009.06039.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1111/j.1365-2699.2007.01779.x
https://doi.org/10.1186/s12898-018-0165-0
https://doi.org/10.1007/s00477-018-1548-7
https://doi.org/10.4067/S0716078X2011000200008
https://doi.org/10.4067/S0716078X2011000200008
https://doi.org/10.1111/ecog.00845
https://doi.org/10.1111/geb.12539
https://doi.org/10.1111/geb.12539
https://doi.org/10.1007/s10584-013-1019-6
https://doi.org/10.1111/ddi.12489
https://doi.org/10.1126/science.285.5431.1265
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1890/09-0760.1
https://doi.org/10.1890/09-0760.1
https://doi.org/10.1080/136588100750058715
https://doi.org/10.1080/136588100750058715
https://doi.org/10.1111/2041-210X.12397
http://www.R-project.org
https://doi.org/10.1111/j.2007.0906-7590.05041.x
https://doi.org/10.3390/ijgi6060176
https://doi.org/10.3390/ijgi6060176
https://doi.org/10.1111/j.1557-9263.2008.00170.x
https://doi.org/10.1111/j.1557-9263.2008.00170.x


     |  10509SARQUIS et Al.

Rojas-Soto,	O.	R.,	Sosa,	V.,	&	Ornelas,	J.	F.	(2012).	Forecasting	cloud	for-
est	 in	 eastern	 and	 southern	 Mexico:	 Conservation	 insights	 under	
future	 climate	 change	 scenarios.	 Biodiversity Conservation,	 21(10),	
2671–2690.	https://doi.org/10.1007/s10531-012-0327-x

Saupe,	 E.	 E.,	 Barve,	 V.,	Myers,	 C.	 E.,	 Soberón,	 J.,	 Barve,	N.,	Hensz,	 C.	
M.,	 …	 Lira-Noriega,	 A.	 (2012).	 Variation	 in	 niche	 and	 distribution	
model	performance:	The	need	for	a	priori	assessment	of	key	causal	
factors.	 Ecological Modelling,	 1,	 11–22.	 https://doi.org/10.1016/j.
ecolmodel.2012.04.001

Scrocchi,	G.	J.,	Moreta,	J.	C.,	&	Kretzschmar,	S.	(2006).	Serpientes del nor-
deste argentino	Ed.	Fundación	Miguel	Lillo	Tucumán	Argentina.

Soberón,	J.	 (2007).	Grinnellian	and	Eltonian	niches	and	geographic	dis-
tributions	 of	 species.	 Ecology Letters,	 10,	 1115–1123.	 https://doi.
org/10.1111/j.1461-0248.2007.01107.x

Soberón,	 J.,	 &	 Nakamura,	 M.	 (2009).	 Niches	 and	 distributional	 areas:	
Concepts,	 methods,	 and	 assumptions.	 Proceedings of the National 
Academy of Sciences of the United States of America,	 106,	 19644–
19650.	https://doi.org/10.1073/pnas.0901637106

Soberón,	J.,	&	Peterson,	T.	A.	(2005).	Interpretation	of	models	of	funda-
mental	ecological	niches	and	species’	distributional	areas.	Biodiversity 
Informatics,	2,	1–10.	https://doi.org/10.17161/bi.v2i0.4

Stockwell,	 D.,	 &	 Peters,	 D.	 P.	 (1999).	 The	 GARP	 modelling	 system:	
Problems	and	solutions	to	automated	spatial	prediction.	International 
Journal of Geographical Information Science,	13(2),	143–158.	https://
doi.org/10.1080/136588199241391

Stockwell,	D.,	&	Peterson,	A.	(2002).	Effects	of	sample	size	on	accuracy	
of	 species	 distribution	 models.	 Ecological Modelling,	 148(1),	 1–13.	
https://doi.org/10.1016/S0304-3800(01)00388-X

Syfert,	M.	M.,	Joppa,	L.,	Smith,	M.	J.,	Coomes,	D.	A.,	Bachman,	S.	P.,	&	
Brummitt,	N.	A.	(2014).	Using	species	distribution	models	to	inform	
IUCN	Red	 List	 assessments.	Biological Conservation,	177,	 174–184.	
https://doi.org/10.1016/j.biocon.2014.06.012

Taylor,	A.	T.,	Papeş,	M.,	&	Long,	J.	M.	(2018).	 Incorporating	fragmenta-
tion	and	non-	native	species	 into	distribution	models	 to	 inform	 flu-
vial	fish	conservation.	Conservation Biology,	32,	171–182.	https://doi.
org/10.1111/cobi.13024

Thuiller,	W.,	Georges,	D.,	Engler,	R.,	&	Breiner,	F.	(2014).	Ensemble	plat-
form	 for	 species	 distribution	modelling.	 Package.	 1–104.	 https://r-
forge.r-project.org.

Tognelli,	M.	F.,	Roig-junent,	S.	A.,	Marvaldi,	A.	E.,	Flores,	G.	A.,	&	Lobo,	
J.	M.	(2009).	An	evaluation	of	methods	for	modelling	distribution	of	
patagonian	insects.	Revista Chilena de Historia Natural,	82(3),	47–360.

Tsoar,	A.,	Allouche,	O.,	Steinitz,	O.,	Rotem,	D.,	&	Kadmon,	R.	 (2007).	A	
comparative	evaluation	of	presence-	only	methods	for	modelling	spe-
cies	distribution.	Diversity and Distributions,	13(6),	397–405.	https://
doi.org/10.1111/j.1472-4642.2007.00346.x

Urbina-Cardona,	 J.	 N.,	 &	 Loyola,	 R.	 D.	 (2008).	 Applying	 niche-	
based	 models	 to	 predict	 endangered-	hylid	 potential	 distribu-
tions:	 Are	 neotropical	 protected	 areas	 effective	 enough?	 Tropical 
Conservation Science,	 1,	 417–445.	 ISSN	 1940-0829.	 https://doi.
org/10.1177/194008290800100408

Varela,	 S.,	 Anderson,	 R.P.,	 García-Valdés,	 R.,	 &	 Fernández-González,	
F.	 (2014).	 Environmental	 filters	 reduce	 the	 effects	 of	 770	 sam-
pling	 bias	 and	 improve	 predictions	 of	 ecological	 niche	 models.	
Ecography,	 37(JANUARY	 771	 2014),	 1084–1091.	 https://doi.
org/10.1111/j.1600-0587.2013.00441.x

Visser,	 H.,	 &	 Nijs,	 T.	 (2006).	 The	 Map	 Comparison	 Kit.	 Environmental 
Modelling & Software,	 21(3),	 346–358.	 https://doi.org/10.1016/j.
envsoft.2004.11.013

Wang,	H.,	Liu,	D.,	Munroe,	D.,	Cao,	K.,	&	Biermann,	C.	(2016).	Study	on	
selecting	sensitive	environmental	variables	in	modelling	species	spa-
tial	distribution.	Annals of GIS,	22(1),	57–69.	https://doi.org/10.1080/
19475683.2015.1114523

White,	R.	(2006).	Pattern	based	map	comparisons.	Journal of Geographical 
Systems,	8(2),	145–164.	https://doi.org/10.1007/s10109-006-0026-9

Whittaker,	 R.	 J.,	 Araújo,	 M.	 B.,	 Jepson,	 P.,	 Ladle,	 R.	 J.,	 Watson,	 J.	 E.	
M.,	&	Willis,	K.	 J.	 (2005).	Conservation	biogeography:	Assessment	
and	 prospect.	 Diversity and Distributions,	 11(1),	 3–23.	 https://doi.
org/10.1111/j.1366-9516.2005.00143.x

Wisz,	M.	S.,	Hijmans,	R.,	Li,	J.,	Peterson,	A.	T.,	Graham,	C.,	&	Guisan,	A.	
(2008).	Effects	of	sample	size	on	the	performance	of	species	distri-
bution	models.	Diversity and Distributions,	14(5),	 763–773.	 https://
doi.org/10.1111/j.1472-4642.2008.00482.x

Diversidad	de	serpientes	de	 la	selva	Paranaense	y	del	Chaco	Húmedo.	
Taxonomía,	 biogeografía	 y	 conservación.	 Ed,	 Literature	 of	 Latin	
America,	Buenos	Aires,	Argentina.	285	pp.

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.	

How to cite this article:	Sarquis	JA,	Cristaldi	MA,	 
Arzamendia	V,	Bellini	G,	Giraudo	AR.	Species	distribution	
models	and	empirical	test:	Comparing	predictions	with	
well-	understood	geographical	distribution	of	Bothrops 
alternatus	in	Argentina.	Ecol Evol. 2018;8:10497–10509. 
https://doi.org/10.1002/ece3.4517

https://doi.org/10.1007/s10531-012-0327-x
https://doi.org/10.1016/j.ecolmodel.2012.04.001
https://doi.org/10.1016/j.ecolmodel.2012.04.001
https://doi.org/10.1111/j.1461-0248.2007.01107.x
https://doi.org/10.1111/j.1461-0248.2007.01107.x
https://doi.org/10.1073/pnas.0901637106
https://doi.org/10.17161/bi.v2i0.4
https://doi.org/10.1080/136588199241391
https://doi.org/10.1080/136588199241391
https://doi.org/10.1016/S0304-3800(01)00388-X
https://doi.org/10.1016/j.biocon.2014.06.012
https://doi.org/10.1111/cobi.13024
https://doi.org/10.1111/cobi.13024
https://r-forge.r-project.org
https://r-forge.r-project.org
https://doi.org/10.1111/j.1472-4642.2007.00346.x
https://doi.org/10.1111/j.1472-4642.2007.00346.x
https://doi.org/10.1177/194008290800100408
https://doi.org/10.1177/194008290800100408
https://doi.org/10.1111/j.1600-0587.2013.00441.x
https://doi.org/10.1111/j.1600-0587.2013.00441.x
https://doi.org/10.1016/j.envsoft.2004.11.013
https://doi.org/10.1016/j.envsoft.2004.11.013
https://doi.org/10.1080/19475683.2015.1114523
https://doi.org/10.1080/19475683.2015.1114523
https://doi.org/10.1007/s10109-006-0026-9
https://doi.org/10.1111/j.1366-9516.2005.00143.x
https://doi.org/10.1111/j.1366-9516.2005.00143.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1111/j.1472-4642.2008.00482.x
https://doi.org/10.1002/ece3.4517

