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Abstract
Species distribution models (SDMs) estimate the geographical distribution of species 
although with several limitations due to sources of inaccuracy and biases. Empirical 
tests arose as the most important steps in scientific knowledge to assess the effi-
ciency of model predictions, which are poorly rigorous in SDMs. A good approach to 
the empirical distribution (ED) of a species can be obtained from comprehensive em-
pirical knowledge, that is, well-understood distributions gathered from large amount 
of data generated with appropriate spatial and temporal samples coverage. The aims 
of this study were to (a) compare different SDMs predictions with an ED; and (b) 
evaluate if fuzzy global matching (FGM) could be used as an index to compare SDMs 
predictions and ED. Six algorithms with 5 and 20 variables were used to assess their 
accuracy in predicting the ED of the venomous snake Bothrops alternatus (Viperidae). 
Its entire distribution is known, thanks to thorough field surveys across Argentina, 
with 1,767 records. ED was compared with SDMs predictions using Map Comparison 
Kit. SDMs predictions showed important biases in all methods used, from 70% sub-
estimation to 40% over-estimation of ED. BIOCLIM predicted ≈31% of B. alternatus 
ED. DOMAIN predicted 99% of ED, but over-estimated 40% of the area. GLM with 
five variables calculated 75% of ED, while Genetic Algorithm for Rule-set Prediction 
showed ≈60% of ED; the last two presenting overpredictions in areas with favorable 
climatic conditions but not inhabited by the species. MaxEnt and RF were the only 
methods to detect isolated populations in the southern distribution of B. alternatus. 
Although SDMs proved useful in making predictions about species distribution, pre-
dictions need validation with expert maps knowledge and ED. Moreover, FGM 
showed a good performance as an index with values similar to True Skill Statistic, so 
that it could be used to relate ED and SDMs predictions.

K E Y W O R D S

experts maps, fuzzy global matching, niche modeling, similarity, snake

www.ecolevol.org
http://orcid.org/0000-0002-0213-1106
http://creativecommons.org/licenses/by/4.0/
mailto:juandres.sarquis@gmail.com


10498  |     SARQUIS et al.

1  | INTRODUC TION

In recent decades, increased use of GIS and technical tools that 
quantify species–environment relationships has encouraged the de-
velopment of algorithms to predict the spatial distribution of spe-
cies, called species distribution models (SDMs) (Elith & Leathwick, 
2009; Guisan & Zimmermann, 2000). SDMs relate species occur-
rence data with a set of variables selected under the assumption that 
they could be related to the distribution of the species (Guisan & 
Zimmermann, 2000). They are being increasingly used to assess con-
servation applications and climate change studies, and predict both 
ecological ranges and the potential of invasive species and explicit 
predictions about species environmental suitability (Bosso et al., 
2017; Chen, Zhang, Jiang, Nielsen, & He, 2017; Law et al., 2017). 
SDMs are favored by an increased access to public biodiversity (e.g., 
Biodiversity Information System for Europe, Global Biodiversity 
Information Facility and Sistema de Información de Biodiversidad) 
and environmental databases (e.g., Data Service and Information, 
Global Environmental Database, WorldClim), being also a promising 
tool to fill knowledge gaps in species distributions (Guillera-Arroita 
et al., 2015; Guisan et al., 2013). The lack of distributional data, the 
so-called Wallacean shortfall, stems from geographical biases, which 
often result in maps of observed biodiversity closely resembling 
maps of survey effort (Hortal, Borges, & Gaspar, 2006; Hortal et al., 
2015; Lomolino, 2004; Whittaker et al., 2005). However, unbiased 
species distribution information is important to make robust conser-
vation management decisions (Guisan et al., 2013).

Although SDMs were assessed with different thresholds, sam-
ple sizes, variables, and background (Barbet-Massin, Jiguet, Albert, 
& Thuiller, 2012; Bucklin et al., 2015; Elith et al., 2006; Guisan & 
Thuiller, 2005; Guisan & Zimmermann, 2000; Jiménez-Valverde, 
Lobo, & Hortal, 2008; Peterson et al., 2011; Qiao, Peterson, & 
Soberon, 2015; Saupe et al., 2012), they present several limitations 
listed in Elith et al. (2006) and Mateo, Felicísimo, and Muñoz (2011). 
While many studies take into account these limitations (Araújo & 
Luoto, 2007; Elith et al., 2006; Fitzpatrick, Weltzin, Sanders, & Dunn, 
2007; Guisan et al., 2006; Jarnevich, Stohlgren, Kumar, Morisette, & 
Holcombe, 2015; Oliveira et al., 2016; Rojas-Soto, Mart, & Navarro-
sig, 2008; Rojas-Soto, Sosa, & Ornelas, 2012; Tsoar, Allouche, 
Steinitz, Rotem, & Kadmon, 2007; Varela et al., 2015), few compare 
model predictions with well-known distributions of species (e.g., 
Duan, Kong, Huang, Fan, & Wang, 2014; Elith et al., 2006) or virtual 
species with well known niches (e.g., Qiao et al., 2015; Saupe et al., 
2012), these last studies being really important steps to assess the 
accuracy of different SDMs predictions. In this context, Soberón and 
Peterson (2005) proposed a formal basis to clarify the use of tech-
niques towards estimating ecological niches. Ecological niches could 
be represented by the BAM diagram (biotic; abiotic; movement) (See 
figure 1 of Soberón & Peterson, 2005). This diagram combines three 
factors: biotic (B) and abiotic (A) factors, as well as dispersed accessi-
ble regions (M), whose intersections represent the geographic space 
occupied by the species (Soberón, 2007; Soberón & Nakamura, 2009)  
and the intersection of A + B represents the potential distribution 

(Soberón & Peterson, 2005), being one of the most expected ap-
plications in SDMs studies (e.g., Urbina-Cardona & Loyola, 2008). 
As in Saupe et al. (2012), we could use BAM diagram to distinguish 
between two conceptual frameworks in this field, one to estimate 
the occupied area (B + A + M) and the other to estimate the potential 
distribution (B + A). The first requires information about favorable 
conditions and factors that restrict its spread (biotic and geographic 
factors) to avoid over predictions (Peterson et al., 1999). The other 
needs only the favorable conditions, being the potential distribution 
areas (Saupe et al., 2012; Soberón & Peterson, 2005).

Nonetheless, studies that provide techniques to improve SDMs 
predictions in relation to expert maps are needed, as in Merow, 
Wilson, and Jetz (2016) where they sought to determine if expert 
maps can help reduce biased extrapolation in SDMs prediction. In 
a similar way, most of the accuracy measures from the confusion 
matrix (Barbosa, Real, Muñoz, & Brown, 2013; Fielding & Bell, 1997) 
and indices (e.g., area under the curve—AUC-ROC; Akaike informa-
tion criterion, see Guisan & Thuiller, 2005) used for this purpose 
does not provide a comparison of the model with the empirical dis-
tribution (ED) of the species (Loiselle et al., 2008). These last authors 
pointed out the importance of validating models with independent 
data, and warned that failure to include independent model valida-
tion, especially in cases where training points are limited, may po-
tentially lead to serious errors in conservation decision-making. In 
this sense, one of the most important steps in scientific knowledge 
is carrying out empirical tests to assess the efficiency of model pre-
dictions. A good approach to the “ED” of a species can be obtained 
from empirical knowledge (Merow et al., 2016). Expert maps, in fact, 
are usually an excellent resource for delimiting the broad areas out-
side which a species is not expected to occur (Merow et al., 2016) 
and, in the case of well-understood distributions with large amount 
of data generated by specialists and appropriate spatial and tempo-
ral unbiased sample coverage, they could be considered the best 
approach to define empirical geographical distributions (Loiselle 
et al., 2008; Merow et al., 2014). On the other hand, Power, Simms, 
and White (2001) and White (2006) have previously demonstrated 
that the fuzzy global matching (thereafter FGM) function used as 
comparison tool provide a good interpretation to compare empiri-
cal maps and models prediction. The FGM function offers a visual 
representation of where differences have occurred between two 
maps. Recent findings as Barbosa and Real (2012) highlighted sev-
eral advantages of fuzzy logic over as a tool to compare models pre-
dictions, such as the possibility to combine multiple species models. 
In this context, the aims of this study were to (a) compare different 
SDMs predictions with an ED of Bothrops alternatus; and (b) evaluate 
if FGM could be used as an index to compare SDMs predictions with 
ED. As a model for this study, we selected B. alternatus, a poisonous 
snake species with public health importance. Thorough and contin-
uous efforts have been made for decades to perform unbiased sam-
plings throughout its distribution area in Argentina (e.g., Arzamendia 
& Giraudo, 2009; Bellini, Giraudo, Arzamendia, & Etchepare, 2015; 
Giraudo, 2001; Giraudo & Arzamendia, 2014; Giraudo et al., 2008; 
Nori, Carrasco, & Leynaud, 2013). Besides, B. alternatus: (a) presents 
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a well-understood distribution; (b) is easily detectable (it lives in rel-
atively wet mesophilic open areas including grasslands, savannas, 
wetlands, and open forests in the Espinal, where exhaustive surveys 
are possible; (c) has a large and conspicuous size and is relatively 
abundant throughout its spatial distribution); (d) offers plenty of in-
formation about its natural history such as diet, habitat use, and re-
production (Bellini et al., 2015; Giraudo, 2012; Giraudo et al., 2008; 
Scrocchi, Moreta, & Kretzschmar, 2006); (e) presents peculiarities 
in its distribution which constitute real challenges in modeling; for 
example, it has not been found in humid forests to the northeast 
of its distribution (Giraudo, 2001) and two disjunctive and isolated 
populations occur in coastal areas and the Pampean hills in Buenos 
Aires province (South distribution).

2  | MATERIAL S AND METHODS

2.1 | Study area and data

Of 21,032 records of Argentinean snakes in our database 
(Arzamendia & Giraudo, 2004, 2012; Giraudo & Arzamendia, 2018) 
(Figure 1a), we extracted 1,767 occurrence data of B. alternatus 
(Figure 1b). These data were recorded in 385 of our own field works, 
in different seasons and throughout the country, between 1989 and 
2017, mainly in poorly sampled areas (gap areas) in order to comple-
ment biases in the database. In addition, we revised museum col-
lections to confirm taxonomic identification and obtained reliable 
georeferenced data from the scientific literature, both tasks dating 
back to the beginning of the 20th century.

We defined the ED of B. alternatus (Figure 1b) mainly based 
on both collected data with intensive spatial and temporal sample 
coverage and our knowledge (Bellini et al., 2015; Giraudo, 2001; 

Giraudo & Arzamendia, 2014; Giraudo et al., 2008) as well as by 
delimiting areas inhabited and not inhabited by the species. We in-
cluded some areas without data in the inhabited territory of B. alter-
natus because we know that, they can be occupied by the species 
(Hortal et al., 2015). More specifically, ED was delimited following 
the peripheral presences, leaving a buffer distance of 30 km for 
similar environmental areas and 5 km when the climatic conditions 
changed abruptly (e.g., a mountain; like in the south of B. alternatus 
distribution). So, we combined our knowledge to generate the ED 
and the presence data following Merow et al. (2014). This ED was 
compared with the predictions produced by each model. For B. alter-
natus, some environmental areas present suboptimal conditions that 
change throughout the country, comprising large areas in the North 
and smaller areas in the South, where some disjunctive populations 
inhabit the Tandil and Ventana hills in Buenos Aires province.

The minimum allowed distance (5 km) function in ArcGis 10.1 
was used to randomly select a total of 350 occurrences. As a sam-
ple size of <70 observations reduces model performance (Kadmon, 
Farber, & Danin, 2003), and increasing sample size decreases the 
variability in predictive accuracy (Wisz et al., 2008), we selected 
100 presences for calibration and the evaluation process (Figure 1c). 
In this way, we evaluated SDM performances with a small sample 
size, a situation pointed out in numerous studies (e.g., Barbet-Massin 
et al., 2012; Wisz et al., 2008). Although random selection for the 
presence/absence of data does not allow to obtain independent 
samples and therefore can overfit the calibration or training data 
(Araújo, Thuiller, Williams, & Reginster, 2005), this is not considered 
a problem if the goal is to describe a pattern and simultaneously re-
duce false-negatives (Araújo & Guisan, 2006). If SDMs are intended 
to be used for conservation planning, verification becomes an ap-
proved method to test whether an SDM performs as intended (Raes 
& ter Steege, 2007).

F IGURE  1 Records of the snakes that inhabit Argentina. (a) 21,032 records of Argentinean snakes, obtained in 382 field works between 
1989 and 2017 throughout the country plus museums and literature data. (b) Black points correspond to 1,767 georeferenced records of 
B. alternatus, while the black lines represent the area delimited by us where B. alternatus does not occur. (c) Subset of 100 randomly selected 
presence records (training data) and 1,000 randomly created absences in the area where the species does not occur
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2.2 | Environmental predictors

We used 19 climatic variables taken from WorldClim (http://www.
worldclim.org/bioclim) and one topographical variable (altitude 
with a 1 km-  resolution) taken from R-package Raster (http://
srtm.csi.cgiar.org/ in Hijmans, Cameron, Parra, Jones, & Jarvis, 
2005; Hijmans et al., 2016). We used only environmental pre-
dictors because evidence (historical and modern) demonstrates 
that climatic variables play a primary role in shaping species’ dis-
tributions (Fourcade, Besnard, & Secondi, 2018). We chose this 
resolution because it represents more effectively the variability 
of the species in the 20 variables used for the analysis. Soberón 
and Nakamura (2009) said that grid resolution should be estab-
lished by biological considerations of the size, mobility, and ecol-
ogy of the species. In this case, B. alternatus’s home-range is 
usually not very wide and there are areas within its distribution 
(the Pampean hills in Buenos Aires province) where the species 
presents environmental differences in the presence/absence at 
1 km resolution in its distribution (Bellini et al., 2015; Giraudo, 
2001; Giraudo & Arzamendia, 2014; Giraudo et al., 2008; Scrocchi 
et al., 2006). We performed a Spearman correlation test in order 
to get the least collinear predictor subset using Infostat 5.1 (Di 
Rienzo et al., 2005). We chose variables with a correlation value 
lower than 0.7 and confirmed the selection of the variables with 
the knowledge about the natural history of the species (Bellini 
et al., 2015; Giraudo, 2012; Giraudo et al., 2008; Scrocchi et al., 
2006) (Supporting Information Appendix S1). This to ensure a con-
trolled collinearity between predictors and to avoid biased results 
(Acevedo, Jiménez-Valverde, Lobo, & Real, 2012). We confirmed 
that the selected predictor variables were related to likely oc-
cupied areas rather than potentially suitable areas, thus avoiding 
the influence of accuracy on SDM predictions (Elith & Leathwick, 
2009; Syfert et al., 2014). The modeling process was performed 
with two sets of predictors (a set of 5 and a set of 20 variables) 
following previous studies which concluded that some algorithms 
are more sensitive to collinearity, while others are very restrictive 
when using more predictor variables (Elith et al., 2006; Stockwell 
& Peterson, 2002; Wang, Liu, Munroe, Cao, & Biermann, 2016). 
For the set of 20 variables, we used the 19 climatic variables and 
altitude (m).

2.3 | Modeling procedure

We assessed six of the most commonly used modeling methods 
(Graham & Hijmans, 2006), following Elith et al. (2006), grouped 
in two types of algorithms. One group includes presence-only al-
gorithms (e.g., BIOCLIM, DOMAIN). BIOCLIM characterizes sites 
that are located within the environmental hyper-space occupied 
by a species and calculates suitability values across the geographic 
region in terms of climatic and topographical conditions similar to 
the hyper-space (Busby, 1991). DOMAIN uses a point-to-point 
similarity metric to assign a classification value to a candidate site 
based on the proximity of the environmental space to the most 

similar record site (Gower distance), resulting in a probabilistic map 
(Carpenter, Gillison, & Winter, 1993). The second group of algo-
rithms is composed of methods that characterize the background 
with a sample, such as Genetic Algorithm for Rule-set Prediction 
(GARP) and Maximum Entropy (MaxEnt), or that sometimes use 
pseudo-absences and/or presence data, like several general lin-
eal models (GLM) regression approaches and Random Forest (RF). 
GARP uses a genetic algorithm to select a set of rules (e.g., adap-
tations of regression and range specifications) that best predict 
species distribution (Stockwell & Peters, 1999). MaxEnt estimates 
the distribution of maximum entropy constrained in such a way 
that expected values for predictor variables match their empirical 
average (Phillips, Anderson, & Schapire, 2006). GLM is based on 
an assumed relation between the mean of the response variable 
and the linear combination of the explanatory variables (Guisan, 
Edwards, & Hastie, 2002). RF is considered an “ensemble learn-
ing” method of classification trees, each capable of producing a 
response when presented with a set of predictor values. Each tree, 
constructed using a different bootstrap sample of the data, grows 
to maximum size without pruning, trying to maintain some pre-
diction strength while inducing diversity among trees (Breiman, 
2001). We included presence–absence models to compare with 
presence-only models because tend to performed better (Elith 
et al., 2006). BIOCLIM and DOMAIN were implemented with 
DIVA-GIS (www.diva-gis.org), both using default settings (Busby, 
1991; Carpenter et al., 1993). GARP was used choosing the 
best result subset, as explained in the “Open Modeller” module 
(Anderson, Lew, & Peterson, 2003). MaxEnt was employed follow-
ing Phillips et al. (2006). GLM and RF were performed in R (R Core 
Team, 2014) with R-package Biomod2 (Thuiller, Georges, Engler, & 
Breiner, 2014). For those models that needed presence/absence 
data, we generated 1,000 random absence records outside the 
distribution area (ED) (Tognelli, Roig-junent, Marvaldi, Flores, & 
Lobo, 2009), where the evidence in the last 100 years showed 
that B. alternatus does not presently occur but rather became true 
absences, which are based on reliable field evidence of nonoccur-
rence (Figure 1c) (Saupe et al., 2012). Moreover, several studies 
obtained good performance using pseudo-absence/absence data 
outside a predefined region based on a minimum distance to the 
presence (Barbet-Massin et al., 2012; Lobo, Jiménez-Valverde, & 
Hortal, 2010). This way of generated absence records is recom-
mended when using classification and machine-learning tech-
niques (Barbet-Massin et al., 2012). These last authors pointed out 
that the accuracy increases until an asymptote when the number 
of presences reached one tenth of the number of absences for 
GLM and RF.

In spite of knowing the distribution of B. alternatus, there is al-
ways the possibility of finding individuals in the periphery of their 
distribution. So, the area in Figure 1c where the species does not 
occur was outlined considering suboptimal areas with low abun-
dance (Figure 1c). Although large backgrounds are merely informa-
tive, it is worth noting that they result in high discriminatory power 
in model prediction (Acevedo et al., 2012).

http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
http://www.diva-gis.org
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We generated only one kind of absence data because the vari-
ability arising from each methodological choice regarding the use of 
absences was lower than that arising from the use of different SDMs 
(see Barbet-Massin et al., 2012), especially when at least 100 pres-
ence records were sampled. We ran each algorithm with both sets 
of 5 and 20 variables. Therefore, we had B5 and B20 for Bioclim, 
D5 and D20 for Domain, G5 and G20 for GARP, M5 and M20 for 
MaxEnt, GL5 and GL20 for GLM, and RF5 and RF20 for Random 
Forest.

2.4 | Validation and evaluation methods

Each prediction was converted into a binary map (presence/absence) 
using ArcGis 10.1 (ESRI 2009). Although a binary map may lead to 
unnecessary information loss and hence be detrimental in the con-
text of the intended application (Guillera-Arroita et al., 2015), our 
purpose was to compare the output prediction map and the ED of 
B. alternatus. We used the threshold value that optimizes specific-
ity and sensitivity for each model. This has the advantage of giv-
ing equal weight to both presence and absence success probability 
when species presence/absence distribution records are unbalanced 
(Jiménez-Valverde & Lobo, 2007).

The ED was compared with the cartographic representation 
of each prediction (12 in total). This analysis was performed after 
the modeling process and the transformation to a binary map (cat-
egorical maps). We established the similarities of each prediction 
with the ED of B. alternatus (Figure 1), overlapped each prediction 
with the ED and obtained 12 overlapped maps (Hagen, 2003). We 
quantified the differences between the ED and the cartographic 
representation of each prediction using the FGM function in the 
Map Comparison Kit (MCK) 3.2.3 software (Hagen, 2003; http://
www.riks.nl/mck). This compares the overlap of two maps, one 
considered as “reference” (ED) and the other as “comparison” (the 
models), and results in an overall similarity value, taking into ac-
count the intersection area, the area of agreement/disagreement 
and the polygon size (White, 2006). This analysis was comple-
mented with the Per Category function, which makes a cell-by-
cell comparison and provides information about the occurrence 

of the selected category between both maps (Visser & Nijs, 2006) 
(Figure 3). We calculated percentage indices to show the propor-
tion of cells correctly and incorrectly predicted by the models. 
These indices were determined with MCK, using the values ob-
tained from each cell and overlaying each prediction with the ac-
tual distribution of B. alternatus.

In addition, we carried out a Spearman correlation analysis 
(p < 0.05) between FGM and the precision measurements to find 
which measures were most related to FGM and, therefore, which 
measure gave more information about the ED. We used several 
discrimination indices derived from the confusion matrix, namely 
sensitivity, specificity (Fielding & Bell, 1997), and the under-
prediction and overprediction rates (UPR and OPR, respectively). 
The latter rates refer to the proportion of observed presences 
in the predicted absence area and the proportion of observed/
assumed absences in the predicted presence area, respectively 
(Barbosa et al., 2013). We obtained the ROC curve, that is, AUC 
index, which represents the probability that the model correctly 
predicted the observed presences and absences and varies from 
0 to 1, 1 being perfect discrimination and 0.5 to 0 implying a dis-
crimination worse than random (Araújo et al., 2005; Elith et al., 
2006). One of the greatest advantages of the ROC curve (AUC) is 
that it is threshold independent (Lobo, Jiménez-Valverde, & Real, 
2008); however, its use and efficiency has been widely criticized 
(Jiménez-Valverde, 2012; Lobo et al., 2008), although it continues 
to be used in the literature (e.g., Ma & Sun, 2018; Taylor, Papeş, 
& Long, 2018). Other metrics have been proposed to evaluate 
SDMs (see Hijmans, 2012; Phillips & Elith, 2010), despite this, 
no measure has succeeded in replacing AUC, which is still being 
used in more than 80% of SDMs studies (Fourcade et al., 2018). 
We calculated the true skill statistic (TSS), which does not depend 
on the prevalence or the sample size (Allouche, Tsoar, & Kadmon, 
2006). TSS ranges from −1 to +1, where +1 indicates perfect agree-
ment and values of zero or less indicate a performance no better 
than random (Allouche et al., 2006). These indices were obtained 
for both training and test data (Figure 4), values >0.7 being con-
sidered good predictive accuracies (Faleiro, Machado, & Loyola, 
2013).

F IGURE  2 Graphic with fuzzy global matching values for each model compared to the real distribution, where (B5–B20) Bioclim, (D5–
D20) Domain, (G5–G20) Garp, (M5–M20) MaxEnt, (GL5–GL20) GLM, and (RF5–RF20) Random Forest

http://www.riks.nl/mck
http://www.riks.nl/mck
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3  | RESULTS

3.1 | Comparison between models and real 
distribution

The FGM values were between 0.681 (D20) and 0.740 (RF20) 
(Figure 2). RF and M20 reached the highest FGM values (0.740 and 
0.726, respectively, Figure 2).

DOMAIN predicted the highest percentage of the ED (close to 
99%), but overestimated almost 40% of the area, while BIOCLIM 
predicted the lowest proportion of the ED (29%–31%) and showed 
the highest omission error values (≈70%, Table 1). The rest of the 
models showed a more balanced trade-off in overlapping propor-
tions between ED and modeled distribution maps, from intermediate 
to high overlapping values (43%–75%, Figures 3 and 4). GLM5, for 
example, predicted 75% of the ED, but it presented a high overpre-
diction rate (Table 1). GARP showed intermediate ED percentages 
(more than 60%), with relatively poor rates of under- and overpre-
diction, but better values than BIOCLIM and DOMAIN. RF predicted 
54%–57% of the ED and MaxEnt between 43% and 56%. It is re-
markable that the only methods that detected isolated and gap pop-
ulations in the Pampean hills in Buenos Aires province were M20 and 
RF5-20 (see Figures 1 and 3). Moreover, except for B5 and RF5, the 
rest of the predictions indicated that the same area in Tucumán had 
high values of suitability (Figure 4, region with white background 

and black points). We found important differences between the ED 
of B. alternatus and each of the 12 predictions obtained for the spe-
cies (Figure 3).

Accuracy measure values were higher than would be expected 
from a null model (Figure 4). We did not find large differences 
in sensitivity, specificity, AUC, and TSS values obtained from 
the training and test data. Conversely, we detected differences 
in under-  and overprediction (Figure 4). Under-prediction rates 
from the training data showed lower values in all methods except 
DOMAIN, and higher values in overprediction rates than those 
obtained with the test data. These rates precisely represent the 
similarity of the models with the ED; BIOCLIM, DOMAIN, and 
GARP, for example, showed high values of overprediction rates 
(Figures 3 and 4). On the other hand, RF and MaxEnt presented 
low values for these rates and their predictions adjusted well 
with the ED (Figures 3 and 4). The maximum sensitivity value 
came from DOMAIN (D5–D20), followed by Random Forest 
(RF5–RF20). DOMAIN, in turn, had the lowest specificity val-
ues, while RF presented the highest. BIOCLIM and GARP had the 
lowest sensitivity values, with high specificity values. This last 
index was the only accuracy measure with the same values for 
the training and test data. Maximum TSS and AUC values were 
obtained in RF, followed by M20, GLM, and M5. TSS showed the 
highest values in the training data (Figure 4). AUC (ROC curve) 

TABLE  1 Proportion of cells correctly and incorrectly predicted between each model and the empirical realized distribution of 
B. alternatus

Model types Sensitivity Specificity Overprediction rate Under-prediction rate
Total cells 
detected

B20 34.51 59.34 9.36 65.45 31.32

B5 29.52 64.21 8.82 70.45 26.94

D20 99.61 0.18 41.74 0.31 58.01

D5 99.43 0.35 39.45 0.59 60.23

G20 65.42 28.64 17.16 34.52 54.21

G5 62.71 28.92 22.38 37.23 48.74

GLM20 57.43 38.71 8.81 42.52 52.36

GLM5 75.32 19.04 22.92 24.65 58.18

M20 43.61 55.42 1.61 56.36 42.92

M5 56.84 37.91 11.94 43.12 50.04

RF20 57.84 42.01 0.31 42.16 57.62

RF5 54.41 45.11 0.71 45.52 54.10

Note. These proportions were obtained from the analysis of cell-by-cell data from the maps of Figure 3, where (B5–B20) Bioclim, (D5–D20) Domain, 
(G5–G20) Garp, (M5–M20) MaxEnt, (GL5–GL20) GLM, and (RF5–RF20) Random Forest.

F IGURE  3 Cell by cell comparison per category between each model (with 5 and 20 climatic variables) and the empirical realized 
distribution of Bothrops alternatus. The light gray area represents areas where B. alternatus does not occur (for the model and the real 
distribution); the dark gray area shows the correct overlap of the model and the real distribution; the black area refers to the empirical 
realized distribution that is not predicted by the algorithms (omission errors); black points with white background are part of the prediction 
where B. alternatus does not occur (commission errors). Where (B5–B20) Bioclim, (D5–D20) Domain, (G5–G20) Garp, (M5–M20) MaxEnt, 
(GL5–GL20) GLM, and (RF5–RF20) Random Forest
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was higher than 0.74 in all algorithms. BIOCLIM presented the 
highest under-prediction rate, while DOMAIN, GLM5, and RF 
presented the lowest rate. The highest overprediction rate came 
from DOMAIN, whereas M20 and RF showed the lowest values. 
The under-prediction rate obtained for the training data was 

between 0 (D5, RF5 and RF20) and 0.0438, with B5 reaching the 
lowest values. The overprediction rate showed values between 
0 and 0.83, with the highest value in D5 (0.8379) and the low-
est in RF20 (0), RF5 (0.0014), M20 (0.0109), and GLM20 (0.0624). 
Once more, D5 reached the highest value (0.403) (Figure 4). 

F IGURE  4 Comparison between the 
training and test data of the species using 
the accuracy of sensitivity, specificity, 
true skill statistic (TSS), area under the 
curve (AUC), under-prediction rate, 
and overprediction rate. Plots showing 
sensitivity, specificity, Under-predictions 
rate, Overpredictions rate, AUC, and TSS 
for each method of modeling. Diamonds 
represent values obtained for the training 
(N = 100), while black squares represent 
values obtained for the test data (N = 766). 
Where (B5–B20) Bioclim, (D5–D20) 
Domain, (G5–G20) Garp, (M5–M20) 
MaxEnt, (GL5–GL20) GLM, and (RF5–
RF20) Random Forest
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We obtained a positive correlation between FGM and the accu-
racy measures (Table 2) for Specificity, AUC and TSS (p < 0.05) 
(Figures 2 and 4). Therefore, projections of the models with 
higher ability of discrimination presented greater similarity with 
the ED of B. alternatus.

4  | DISCUSSION

Soberón and Peterson (2005) proposed that SDMs find regions that 
“resemble,” in terms of the layers provided, those areas where oc-
currence points are located, so the rest of the process is interpreta-
tion. Our results show that model predictions recognized correctly 
some regions inhabited by B. alternatus, as is also reported by other 
studies with different taxa that do not used ED, like in Braunisch 
et al. (2013); Elith et al. (2006); Tognelli et al. (2009). Although com-
parisons between model predictions and expert maps with empiri-
cal data were barely assessed (Duan et al., 2014; Guisan & Thuiller, 
2005), evaluating the performance of the model appears as a good 
alternative when EDs are available (Peterson et al., 2011). These 
comparisons become necessary when public health actions such 
as provision of antiophidic serum, conservation actions, establish-
ment of protected areas, among others, are required (Giraudo, 2012; 
Mateo et al., 2011). In addition, we found more differences between 
algorithm predictions than between the environmental predictor 
sets of 5 and 20 variables within each algorithm, as in Bucklin et al. 
(2015). We used only environmental variables because climate plays 
a primary role in shaping species’ distributions and additional predic-
tors have minor effects on the accuracy of SDMs and spatial predic-
tions (Bucklin et al., 2015; Fourcade et al., 2018). Also, Merow et al. 
(2014) express that insights from ecological theory and knowledge 
of species can guide which type of variables have to be include in the 
modeling process.

However, we observed differences within the predictors set only 
in DOMAIN and MaxEnt, where five variables correctly detected 
more regions inhabited by B. alternatus than 20 in agreement with 
most of the specific literature (like Wang et al., 2016). The most 

conservative predictions belonged to BIOCLIM, which did not de-
tect most areas inhabited by B. alternatus. In accordance with the 
works of Elith et al. (2006) and Tognelli et al. (2009), our BIOCLIM 
predictions achieved low values of precision measures. Conversely, 
DOMAIN predictions achieved high sensitivity values and the lowest 
specificity values, as was the case in Tognelli et al. (2009). BIOCLIM 
presented slightly better values than DOMAIN, like in Graham and 
Hijmans (2006). GARP, GLM, MaxEnt, and RF predictions more 
closely resembled the ED of B. alternatus, but only RF and M could 
detect the isolated populations in the Southern distribution of the 
species.

Genetic Algorithm for Rule-set Prediction correctly detected al-
most 50% of the inhabited areas and presented higher values than 
BIOCLIM and DOMAIN. Random Forest and MaxEnt performed well 
in all the accuracy measures used. These results are similar to those 
obtained by Bucklin et al. (2015) and Tognelli et al. (2009). Moreover, 
they are a good alternative for species with disjunct distributions, as 
was indicated by Bucklin et al. (2015) and Kesler and Walker (2015). 
Bucklin et al. (2015) and Duan et al. (2014) found that their better 
predictions presented high values of AUC and TSS. Our high values 
of positive correlations between FGM and some accuracy measures 
such as AUC and TSS showed that the greater discrimination capac-
ity of the model is correlated with a greater similarity between its 
projections and the ED. AUC always indicated better predictions 
than a null model, even in projections that under- or overpredict the 
ED of B. alternatus, making it impossible to make a decision based 
on this matrix (see Lobo et al., 2008). TSS was the only helpful ac-
curacy measure to assess the performance of SDMs (Allouche et al., 
2006), with the same pattern as FGM. In spite of this, the models 
that reached the highest FGM values (RF and Maxent 20) under- or 
over-estimated more than 25% of the ED of B. alternatus. These dif-
ferences could be related to the information given by presence-only 
models, providing a suitability gradient of observation of the species 
but without making a difference between presence/absence or de-
tectability (Guillera-Arroita et al., 2015). Moreover, such differences 
could be due to not including in the analysis interspecific interactions 
and dispersion capacity of the species (Soberón & Peterson, 2005).

Variable I Variable II N Spearman
p-Value 
(p < 0.05)

Fuzzy global 
matching

Sensitivity 12 0.31 0.324

Fuzzy global 
matching

Specificity 12 0.82 0.001

Fuzzy global 
matching

Under-prediction rate 12 −0.31 0.319

Fuzzy global 
matching

Overprediction rate 12 −0.88 0.00015

Fuzzy global 
matching

AUC 12 0.89 0.000067

Fuzzy global 
matching

TSS 12 0.90 0.000052

Note. AUC, area under the curve; TSS, true skill statistic.

TABLE  2 Spearman’s correlation 
coefficients between fuzzy global 
matching and discrimination measures 
(p < 0.05)
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Di Cola and Chiaraviglio (2011) predicted high suitability values 
for B. alternatus in the north and center of Misiones, throughout 
Tucumán and in the east of Salta and Jujuy, while Nori et al. (2013) 
predicted similar values in the north of Misiones, throughout Buenos 
Aires and in a disjunct area in Tucumán. Conversely, in our study, 
model predictions (except DOMAIN and GLM) did not achieve high 
suitability values for these areas. This may be due to the fact that 
B. alternatus is a species that does not occur in forests (Giraudo, 
2001; Scrocchi et al., 2006).

We concluded that certain algorithms, like DOMAIN, produce 
predictions which are too inclusive, while others present more re-
strictive predictions, such as BIOCLIM. The rest of the algorithms 
make under- and overpredictions, with RF better resembling the ED 
of B. alternatus. Because of the consistent under- or overprediction 
in the models, our results also confirmed the importance of validating 
them with independent data or expert opinion. According to Loiselle 
et al. (2008), failure to include independent model validation may 
potentially lead to serious errors in conservation decision-making 
and planning. These issues need to be further analyzed with others 
focuses. Recently, advances approaches were developed most of 
them through the Bayesian approach, that has become a good option 
to deal when the distribution of the species is modeled using point-
references data due to the ease with which prior information can be 
incorporated along with the fact that it provides a more realistic and 
accurate estimation of uncertainty (Dutra Silva, Brito de Azevedo, 
Bento Elias, & Silva, 2017; Martínez-Minaya, Cameletti, Conesa, & 
Pennino, 2018; Rodríguez de Rivera & López-Quílez, 2017). So, more 
studies testing and comparing ED, FGM, and Bayesian approach 
are need it, even if our study was not focuses on recent developed 
Bayesian approach (see Martínez-Minaya et al., 2018 for a revision).

Finally, we found that both expert maps with ED and FGM func-
tion appear as appropriate tools to complement performance indices 
used in species distribution modeling since they offer an assessment 
alternative to compare the characteristics of the predictions when 
EDs are available.
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