
MGEScan-non-LTR: computational identification
and classification of autonomous non-LTR
retrotransposons in eukaryotic genomes
Mina Rho1 and Haixu Tang1,2,*

1School of Informatics and Computing, Indiana University, Bloomington, IN 47408 and 2Center for Genomics
and Bioinformatics, Indiana University, Bloomington, IN 47404, USA

Received April 13, 2009; Revised August 13, 2009; Accepted August 27, 2009

ABSTRACT

Computational methods for genome-wide identifi-
cation of mobile genetic elements (MGEs) have
become increasingly necessary for both genome
annotation and evolutionary studies. Non-long
terminal repeat (non-LTR) retrotransposons are a
class of MGEs that have been found in most
eukaryotic genomes, sometimes in extremely high
numbers. In this article, we present a computational
tool, MGEScan-non-LTR, for the identification of
non-LTR retrotransposons in genomic sequences,
following a computational approach inspired by a
generalized hidden Markov model (GHMM). Three
different states represent two different protein
domains and inter-domain linker regions encoded
in the non-LTR retrotransposons, and their scores
are evaluated by using profile hidden Markov
models (for protein domains) and Gaussian Bayes
classifiers (for linker regions), respectively. In order
to classify the non-LTR retrotransposons into one of
the 12 previously characterized clades using the
same model, we defined separate states for differ-
ent clades. MGEScan-non-LTR was tested on the
genome sequences of four eukaryotic organisms,
Drosophila melanogaster, Daphnia pulex, Ciona
intestinalis and Strongylocentrotus purpuratus.
For the D. melanogaster genome, MGEScan-non-
LTR found all known ‘full-length’ elements and
simultaneously classified them into the clades
CR1, I, Jockey, LOA and R1. Notably, for the
D. pulex genome, in which no non-LTR retrotrans-
poson has been annotated, MGEScan-non-LTR
found a significantly larger number of elements
than did RepeatMasker, using the current version
of the RepBase Update library. We also identified
novel elements in the other two genomes, which

have only been partially studied for non-LTR
retrotransposons.

INTRODUCTION

Non-long terminal repeat (non-LTR) retrotransposons
are a class of ‘mobile genetic elements’ (MGE, also
called ‘transposable elements’, TEs) that are found in
most eukaryotic genomes. They are often further classified
as autonomous and non-autonomous, depending on
whether or not a particular insertion encodes all the
proteins needed for its own transposition. Reverse
transcriptase (RT) is encoded by all autonomous non-
LTR retrotransposons, and thus it has been used as the
main signal to identify and classify these elements.
Another important protein domain encoded by most
non-LTR retrotransposons is the apurinic/apyrimidinic
endonuclease (APE). Transposition of non-LTR
retrotransposons requires the APE to cleave the chromo-
somal DNA at the target site. RT uses the 30-end of the
DNA break as the primer to reverse transcribe the
element’s RNA transcript into the new site (1). A small
number of non-LTR retrotransposons encode an RNaseH
domain. In the clades CRE, R2 and R4, the endonuclease
is a restriction-enzyme-like endonuclease (REL-endo)
instead of an APE domain (2–4).
Previous studies have shown that non-LTR

retrotransposons can be grouped into 11 ‘clades’ based
on RT phylogeny (2). These analyses also identified 11
regions of high conservation or identity in RT protein
domain sequences, by using a sliding-window similarity
index. In addition to the 11 clades that were initially clas-
sified, several clades, including L2, NeSL-1 and Rex1,
have recently been identified (5–9).
The MGEs, in particular the non-LTR retrotrans-

posons, and their derived sequences constitute a large
portion of eukaryotic genomes [e.g. at least 20% of the
human genome is derived from non-LTR retrotrans-
posons (10)]. Therefore, genome-wide identification and
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classification is necessary for a better understanding of
genome evolution, including changes in total genome
size and architecture. Within this context, computational
methods have been developed to identify MGEs in
genomic sequences. One of the approaches widely
applied is pair-wise sequence similarity-based search
by using a library of known MGE sequences.
RepeatMasker is one of the programs for this purpose,
and has been extensively used for the annotation of
newly sequenced genomes, to comprehensively identify
and classify TEs. While this approach has a simple
computational framework, which totally rely on the sim-
ilarity on DNA sequences, it shows low sensitivity for the
identification of novel MGEs, because of their low-
sequence similarities with known elements. Some other
methods utilizing the comparison of protein coding
sequences [e.g. by using tblastn (11)], have been applied
to find genomic fragments encoding RT domains (12).
Even though these methods showed better performance
than those based on reference DNA sequences, they
require post-processing steps to merge and classify the
protein matches. Finally, most of the pair-wise sequence
similarity-based methods require a significant amount of
computation time as the size of library increases, because
they carry out pair-wise comparisons against each
sequence in the library.
De novo approaches attempt to find repetitive sequences

in a particular genome, and then use similarity
comparisons to cluster TEs into repeat families (13,14).
Since this approach relies on multiple copies of highly
similar elements, it is difficult to identify MGE families
where individual insertions have diverged from each
other, or that have low-copy numbers in the target
genome.
The other approach utilizes a combination of features

obtained from the MGEs other than pairwise sequence
similarities (15–19). For example, the methods for
indentifying LTR retrotransposons (15,16) find a pair of
LTRs by using the string pattern matching methods at the
first step and locates the other features such as target site
duplication and protein domains. These methods could
detect better the insertion of entire long MGEs as a
unit, compared with Repeatmasker or de novo approaches
(13,14).
In this article, we develop a computational approach

to the identification and classification of non-LTR
retrotransposons in whole genomic sequences, using
probabilistic models. Our overall computational architec-
ture is inspired by the basic concept of a generalized
hidden Markov model (GHMM) (20). As we described
above, the most important features for identification in
non-LTR retroelements are protein domains needed for
their transposition. Protein domains are typically
conserved around the some regions (e.g. the active sites),
but the linker regions between these domains are far less
conserved. In support of this observation, previous studies
have confirmed that the 11 regions in reverse trans-
criptases are highly conserved (2). Under these circum-
stances, we considered that a profile HMM (pHMM) for
an entire subsequence, combining RT, linker, and APE,
might lower the overall sensitivity, primarily due to the

lower sequence similarity of the linker region. Thus, we
combine two seperate pHMMs for each domain, along
with inter-domain linker region. The inter-domain linker
regions represent a structural rather than functional com-
ponent in the folded protein, and therefore are less
conserved than domains. As such, more general criteria
should be used that rely less on the specific amino acid
sequences but more on the overall structural pattern that
can be quantified using parameterized and pre-calibrated
physical properties. We therefore used the well-established
hydrophobicity scale of 20 amino acids to evaluate
whether a given amino acid sequence flanked by
domains is likely an inter-domain linker. Modularity is
another advantage of our approach, which allows for
other method/function to be incorporated in future
studies. Finally, our model can be used as a classification
tool for non-LTR retrotransposons, which classifies each
element into one of the known ‘clades’ (2).

MATERIALS AND METHODS

The dataset

The genomic sequences of Drosophila melanogaster
(BDGP Release 5, dm3) (21), Ciona intestinalis (ci2) (22)
and Strongylocentrotus purpuratus (strPur2) (23) were
downloaded from the UCSC Genome Browser web site
(http://genome.ucsc.edu). The genomic sequence of
Daphnia pulux (Release 1, JGI060905) were downloaded
from the wfleaBase Daphnia Genome project web site
(http://wfleabase.org). For comparison, non-LTR
retrotransposons for the first three genomes, annotated
using RepeatMasker, were downloaded from the UCSC
Genome Browser web site (http://genome.ucsc.edu). In
order to train the pHMM, RT and APE sequences
(ds36752 and ds36736) used in the previous study
(2) were collected from EMBL-EBI (http://www.ebi
.ac.uk/webin-align/webin_align_listali.htm). The annota-
ted non-LTR retrotransposons collected from RepBase
Update (http://www.girinst.org/repbase/index.html)
(RepBase13.07) were used as the training sequences for
the overall model. The RT sequences used in the
phylogenetic analysis were obtained from Genbank:
Takifugu (AAD19348), Paralichthys (AAN15747),
Danio (BAE46429), Trimeresurus (D31777), Xiphophorus
(AF278692), Oryzias (AB054295), R2Ci-A-C (AB097121-
3), HEROFr (AB097130), HEROTn (AB097131),
HERODr (AB097132), YURECi (AB097133), EhRLE2
(AB097128), EhRLE3 (AB097129) and DongAg
(AB097127). Additional RT sequences (ALIGN_000231
and 000232) used in the previous study (24) were collected
from EMBL-EBI.

The model architecture

In order to model common features of non-LTR
retrotransposons in a large variety of genomes, we built
a model consisting of 12 super states, each corresponding
to a different clade (Figure 1). Considering the current
annotations and resolution in the phylogeny of non-
LTR elements (2), we used two super states to represent
two groups of closely related clades, one state (denoted
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as R1) for the group of R1 and LOA clades, and the other
state (denoted as R2) for the group of R2, R4, GENIE
and NeSL clades. Because the clades LOA, R4, GENIE
and NeSL contain very few known elements and thus are
difficult to model separately, we combined them with the
closest clades containing a sufficient number of known
elements (the clades R1 and R2), into single super states.
The other 10 super states correspond to single clades of
non-LTR retrotransposons, including the L1, L2, RTE,
Tad1, CRE, Jockey, CR1, I, Rex1 and RandI clades.
Each super state consists of various numbers (numbers
1–3) of states, corresponding to protein domains and
linker regions encoded by the non-LTR elements. The
key components in our model can be summarized as
follows.

(1) The states representing the RT domains, the APE
domains and the linker regions encoded by the
elements in each clade, and a separate state repre-
senting the genomic regions outside the non-LTR
elements.

(2) The length distribution associated with each state.
Since the length distributions of the same domains
in different clades are similar, we use the same length
distribution for the same domain (RT or APE) in all
clades.

(3) The scores for each state. The scores from the states
of protein domains are modeled by a pHMM, while
the linker regions are modeled by Gaussian Bayes
classifiers.

Searching non-LTR elements can then be expressed as a
parsing problem by using dynamic programming
approach. In order to evaluate the scores for the state of
protein domains and inter-domain region, we adopted two
probabilistic models, a pHMM (for the protein domains)
and a Gussian Bayes classifier (for the linker regions).
These models will be described in detail in the next
sections. In general, the computational complexity of
‘viterbi’-like parsing algorithm allowing variable length
of segments is O(Q2L2), in which Q is the number of
states and L is the sequence length. This is practically
infeasible for our problem when the genome sequence is
very long. To reduce the complexity to O(Q2L), we fix the
length of sequences in a state by locating potential signals
for the start and end site of the protein domains in a
pre-processing step.

pHMMs for domains

Most autonomous elements of non-LTR retrotrans-
posons encode more than one protein domain essential
for transposition. Among the 12 clades considered here,
elements in 10 clades encode both APE and RT domains
in a single ORF, whereas elements in the clades CRE
and R2 encode only a RT domain (Figure 1). Previous
studies have shown that these domains are conserved
among non-LTR retrotransposons in each clade and
across the clades (2). Although the domains in different
genomes show a range of sequence similarities, 11
regions are well conserved across many elements from
different organisms. Eight of them are in the catalytic

finger/palm region and three of them is in the thumb
region of the ‘right hand’ structure (2,25). In addition,
the positions of the conserved amino acids and the
degree of their conservation show different patterns in
different clades. Therefore, pHMM are a straightforward
approach to representing these conservation patterns in
the protein domain sequences (26,27). We applied differ-
ent pHMMs to compute the score for the states of
protein domains in each clade, which is the logarithm
of the E-value from the pHMM divided by the logarithm
of estimated minimum E-value (i.e. a constant value of
1.0E�300).

Figure 1. The model for identifying and classifying non-LTR
retrotransposons. The circles represent states corresponding to protein
domains and linker regions. The shaded ovals represent super states
corresponding to clades. This model classifies the elements in 12 clades
independently.

PAGE 3 OF 12 Nucleic Acids Research, 2009, Vol. 37, No. 21 e143



We adopted an iterative method to build the pHMMs.
Initially, we built two unified pHMMs for RT and APE
domains, by using well-studied protein domain sequences
as training sequences (2). Note that these models are
common to the respective protein domains (RT or APE)
of non-LTR retrotransposons in all clades. In the subse-
quent step, we used these pHMMs to search against all
non-LTR retrotransposons in the RepBase Update library
and identified the RT and APE sequences of non-LTR
elements. In order to validate the clades that are
assigned to these elements in RepBase Update, we built
neighbor-joining trees with a Poisson correction model for
all these domain sequences, along with those from the
previously characterized reference elements (2). After
eliminating 12 misclassified elements, a total of 470 RT
sequences and 331 APE sequences were retained in order
to train models. The number of elements from each of the
12 clades was shown in Supplementary Table S1. We
carried out multiple alignments of the domain sequences
in each clade using ClustalW (28) with the default param-
eter setting. The final pHMM models were then trained by
using ‘hmmbuild’ in the HMMER package, based on the
multiple alignments (27).
To validate the performance of the pHMMs in classifi-

cation, we designed a genome-specific cross-validation
method. Instead of partitioning the whole set of
elements into subsets and using one of them at a time
for the validation, we used the set of elements identified
in a specific genome as the validation data and used the
remaining elements to train the pHMMs. Since our main
goal is to identify novel elements in the newly sequenced
genomes, a genome-specific validation is desirable. We
carried out the validations using the three phylogenetically
distant D. melanogaster, D. rerio and S. purpuratus
genomes (Table 1). For the D. melanogaster genome,
elements in other Drosophila genomes were also excluded
in the training set, because many elements are shared
across Drosophila genomes. In these three independent
cross-validation experiments, all the non-LTR elements
were correctly classified into the annotated clade, thus
reaching 100% accuracy. However, this might be

explained by the fact that the annotated set consists of
elements containing well-conserved protein domains.
Additionally, we investigated the distribution of E-values
among all putative clades reported by HMMER, for each
of the domains in the annotated elements. A logarithmic
plot of E-value distribution for the RT domains in the
annotated non-LTR elements from the Drosophila
genome is shown in Figure 2. In each vertical position
(representing a separate element’s domain), the highest
point corresponds to the lowest E-value received for a
particular clade, whereas the lower points correspond to
the E-values received for the other 11 clades. In all cases,
the highest point represents the annotated clade, and all
the elements in the training set show clear differences
in the E-values between the annotated clade and
other clades, except for two elements (26 and 30). Plots
constructed from the genomes of D. rerio and
S. purpuratus showed similar trends (data not shown).
Based on these analyses, we computed an ad hoc signifi-
cance of the assigned clade for a given element using
Equation (1).

Q ¼
Eassigned

Ealternative
: 1

where Eassigned is the E-value obtained from the assigned
clade; Ealternative is the E-value that is the smallest one
among the rest of the clades. Thus, a lower Q implies
that the assigned clade is more significant. Two elements
in the training set are weakly assigned (Q> 10�3), whereas
the other elements are reliably assigned (Q< 10�10)
(Supplementary Table S2). Our program reports the
Q-value for all identified elements, to provide significance
estimations for the predicted clade.

Classifiers for the linker regions

Non-LTR retrotransposons in 10 (out of 12) clades
encode both RT and APE domains in a single ORF
(Figure 1). For these clades, we define a state to model
the ‘linker regions’, i.e. the amino acid sequence between
APE and RT domains, attempting to build a predictor to
compute the score for each of these regions that will dis-
tinguish the linker region encoded by an element from the
linker regions encoded by the elements of the other clades,
as well as arbitrary protein sequences. We observed that
hydrophilic amino acid residues occur much more
frequently than hydrophobic residues in the linker
regions. This is consistent with previous studies showing
that the linker regions between two active domains are
often solvent-accessible and therefore contain more
hydrophilic residues. In order to capture this sequence
feature, we computed three hydrophobicity indices for
the linker regions in known non-LTR retrotransposons.
The classical Kyte and Doolittle (KD) scale (29) is derived
from the changes in free energy upon transferring individ-
ual amino acids from water to a non-interacting isotropic
phase. The partitioning of small model peptides between
phospholipid membranes and buffer form the basis of the
Wimley and White (WW) scale (30). A more biologically
relevant hydrophobicity index, proposed by Hessa and
von Heijne (HH) (31), was also used in our study. Since

Table 1. The number of non-LTR retrotransposons used in the

genome-specific cross-validation

Clade D. melanogaster D. rerio S. purpuratus

CR1 3 (71) 0 (74) 2 (72)
CRE 0 (4) 0 (4) 0 (4)
I 2 (7) 1 (8) 0 (9)
Jockey 23 (6) 0 (29) 0 (29)
L1 0 (203) 10 (193) 1 (202)
L2 0 (57) 4 (53) 16 (41)
R1 5 (21) 0 (26) 0 (26)
R2 2 (25) 0 (27) 0 (27)
RandI 0 (6) 0 (6) 0 (6)
Rex 0 (7) 1 (6) 0 (7)
RTE 0 (14) 1 (13) 0 (14)
Tad1 0 (3) 0 (3) 0 (3)

The numbers in each column denote the number of elements used for
cross-validation. The numbers of elements from the other genomes used
in the training are shown in parentheses.
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lower values in KD and WW scales correspond to
increasing hydrophilicity, we negated the values in these
two indices to make all values have consistent representa-
tion, i.e. the higher value indicates higher hydrophilicity.
We obtained the APE, RT and linker regions separately
from 325 elements in 10 clades in the training data set
(Supplementary Table S1) and calculated the average
values from the KD, WW and HH scales. The average
KD values of the linker and domain regions are
compared in Supplementary Figure S1. The values of
the linker regions are consistently higher than those
from both of the domain regions in 321 (out of 325)
elements, which correspond to >99% of the training
dataset. The other two indices, WW and HH, showed
similar trends. We subsequently generated the distribution
of the average hydrophobicity values both in the linker
region and in a random model. A consistent and statisti-
cally distinctive distribution of the average hydrophobicity
values was observed when comparing all three scales
for the linker regions and random sequences (Figure 3).
Three Gaussian models were trained using each of these
indices, respectively, and then combined to calculate
the probability that the region evaluated is a real linker
region or a random protein sequence using Equations (2)
and (3). The score of a sub-sequence Si is the likelihood
that Si [with average hydrophobicity index h(Si)] is a
linker region, i.e. h(Si) is sampled from the distribution
of average hydrophobicity index of linker regions, versus
a random sequence (Equation 2). Thus, this predictor
evaluates the probability that a subsequence Si is

from the linker region. The distribution of average
hydrophobicity index of linker regions was fitted into a
Gaussian distribution in Equation (3).

P Lhjh Sið Þð Þ ¼
P Lhð ÞP h Sið ÞjLhð ÞP

C2 Lh,Rhf g

P Cð ÞP h Sið ÞjCð Þ
2

P h Sið ÞjLhð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2��2Lh

q e

� h Sið Þ��Lhð Þ
2

2�2
Lh 3

where Lh is a model for linker regions analyzed by
a hydrophobicity index h, which is one of {KD, WW,
HH}, and Rh is a model for random sequences. The
maximum probability among the three ones computed
using three different hydrophobicity indices was defined
as the final emission probability for the hidden states of
the linker region (Figure 3).

Length distribution of states

The lengths of domains and linker regions were obtained
from the same set of 470 elements that was used to obtain
the scores for the domains. With a bin size of 100 bp, all
the length distributions were displayed approximately as
normal distributions (Supplementary Figure S2), which
showed that 97% of the elements encode an APE
domain with lengths from 600 to 800 bp, whereas 91%
of the elements encode a RT domain with lengths from
1200 to 1400 bp.
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Figure 2. The distribution of E-values estimated by the pHMMs of 12 clades in Drosophila genomes. The x-axis represents each element (listed in the
Supplementary Table S2) and the y-axis represents E-values. For each element, the E-values measured by 12 clades pHMMs are plotted. Each
element was assigned to the clade from which the lowest E-value was obtained. Note that the highest point in each element (x-axis) does not mean
that they belong to the same clade. Lines connecting each point were added for visualization purpose.
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Implementation

We implemented a software tool named MGEScan-non-
LTR in three modules. The first module prepares the input
for evaluation process by locating the signals of domains
in a given genomic sequence. The second module finds the
optimal path of states, which corresponds to the annota-
tion of the protein domains and linker regions in the
clades. The third module post-processes the results and
reports the coordinates and sequences of non-LTR
retrotransposons classified into specific clades. The
second (main) module was implemented in C and the
other two modules were implemented in Perl. We used
ClustalW (32) and HMMER (27) to build pHMMs for
each domain. Since our method focuses on the identifica-
tion of elements which retain the protein domains, the
results include elements containing all the domains in
ORFs, and those containing one of the domains but
with partially truncated 50- or 30-ends. MGEScan-non-
LTR can be freely downloaded at the Supplementary
web site (http://darwin.informatics.indiana.edu/cgi-bin/
evolution/nonltr/nonltr.pl).

RESULTS

We applied MGEScan-non-LTR to the complete
eukaryotic genomes of D. melanogaster, D. pulex,
S. purpuratus and C. intestinalis. In order to evaluate the
sensitivity of the method, we first applied MGEScan-non-
LTR to the D. melanogaster genome, which has been
extensively studied for TEs in the entire genomic
sequence. The D. pulex genome has recently been
sequenced and no non-LTR retrotransposon had
previously been annotated. This offers the opportunity
to use MGEScan-non-LTR to investigate the diversity of
elements in a newly sequenced genome. Even though
many elements have been identified in the S. purpuratus
and C. intestinalis genomes by previous studies (5,33),
we were able to identify novel elements from several

different clades. In comparison to RepeatMasker, we
observe significantly more elements identified by
MGEScan-non-LTR. We also present phylogenetic
analysis of the elements identified in this study. The
novel elements identified in this study were deposited in
Genbank (accession numbers FJ905841-6).

Performance evaluation

In D. melanogaster, a total of 179 ‘ORF-conserving’
elements were identified from the five clades of CR1, I,
Jockey, LOA and R1 (Table 2). In good agreement with
previous studies (34,35), ‘Jockey’ is the most abundant
clade among these five. For comparison, we collected
previously known non-LTR retrotransposons from the
Berkeley Drosophila Genome Project site and used
RepeatMasker to map them to the genome. MGEScan-
non-LTR identified all of the 107 ‘full-length’ elements
that were previously identified (>97% of the canonical
element, excluding non-autonomous) (35). The other 72
identified elements overlapped with the ‘fragmented’
elements reported by RepeatMasker. This result indicates
that there is no mis-identified element (false positive).
Even though the currently annotated elements in the
training set might be biased for Drosophila genomes,
the genome-specific cross-validation that we conducted
in the training process confirmed that MGEScan-non-
LTR can successfully identify and classify novel elements.

MGEScan-non-LTR is fast enough for genome-wide
annotation. The running time was measured for the
entire process for the given genomic sequences (Table 3).
The experiment was performed on an Intel xeon CPU 2
GHz running on Red Hat 4.1.2. For the D. melanogaster,
D. pulex and C. intestinalis genomes, the running time was
nearly linear to their genome sizes. In the case of
S. purpuratus genome, however, the running time
deviated from this general trend. The longer running
time observed in this case might be explained by the fact
that the large number of scaffolds slowed down the
program since MGEScan needs extra cost for significantly
larger amount file I/Os each scaffold file.

Non-LTR retrotransposons in the D. pulex genome

We identified 136 ‘ORF-preserving’ non-LTR retrotrans-
posons in the D. pulex genome, which were classified in the
five clades I, L1, L2, LOA and NeSL. In contrast to other
arthropod genomes, the most abundant clade in the
D. pulex genome is the L2 clade, which has mainly been
identified in Deuterostomia genomes, such as vertebrates
and echinoderms (5) (Table 2). Interestingly, the D. pulex

Table 2. The number of ‘ORF-preserving’ non-LTR retrotransposons

identified in the genomes of D. melanogaster, D. pulex, S.purpuratus

and C. intestinalis

Cladesa D. pulex S. purpuratus C. intestinalis D. melanogaster

R2b – – 11 –
R4b – – 1 –
NeSLb 27 37 5 –
L1 12 133 36 –
RTE – 86 1 –
LOAb 23 – 4 3
R1b – – – 18
Jockey – – – 143
CR1 – 183 – 2
I 25 61 4 13
L2 49 489 – –
Rex1 – 19 – –

Total 136 1008 62 179

aNo elements was found in three clades, Tad1, RandI and CRE.
bElements in R1 and R2 groups were further classified by using
phylogenetic analysis.

Table 3. Summary of running time on the genomes of D. melanogaster,

D. pulex, S.purpuratus and C. intestinalis

Genome Length
(MB)

Number of scaffolds
(chromosomes)

Running
time (h:min)

C. intestinalis 173 4390 2:18
D. pulex 227 9079 2:48
D. melanogaster 120 6 1:20
S. purpuratus 907 114 223 28:00
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L2 elements are closely clustered with the L2 elements
from fish genomes such as Takifugu rubripes, Oryzias
latipes and Danio rerio (Figure 4). The two representa-
tive elements in insect genomes Bombyx mori and Aedes
agypti are clustered each other, but are further from
the D. pulex L2 elements than the fish elements. In
addition, a high level of conservation in RT protein
sequences (�56%) between the L2 elements in the
D. pulex genome and the elements in Takifugu (>700
MYA apart) was observed.

Of the LOA clade, 22 elements were identified in the
D. pulex genome. The LOA elements have mostly been
identified in the Drosophila (LOA, TRIM, and Bilbo)
(36,37), Aedes (Lian) (38) and Ciona (CiLOA) (33)
genomes. Phylogenetic analysis of the LOA elements
showed a strong relationship with known LOA elements
(boostrap value > 65%) (Figure 4). However, while all
known LOA elements (LOA, TRIM, Bilbo, Lian and
CiLOA) contain an RNase H domain downstream of
the RT domain, no evidence was observed for the

Figure 3. (a) The distribution of hydrophobicity values in KD, (b) WW and (c) HH hydrophobicity scales, and (d) probability for linker region. In
(a)�(c), the x-axis represents the hydrophobicity scale and the y-axis represents the frequency. The distribution on the left-hand side with green dots
was plotted with the values obtained from random sequences. The distribution on the right-hand side with blue dots was plotted with the values
obtained from the elements in the training set. The yellow and red lines represent Gaussian distribution fitting of the data plotted. In (d), the x-axis
represents the probability for the linker region and the y-axis represents the frequency.
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domain in the D. pulex elements by BLAST and Pfam
domain search (against PF00075).
Even though we could not generate separate models for

the ancient clades CRE, GENIE (24), R2 (3), R4 and
NeSL (6) because there are too few known members, (4)
(see ‘Materials and Methods’ section), we conducted
phylogenetic analysis of the elements identified as in the

R2 group, in order to obtain further resolution of their
classification. A neighbor-joining tree with bootstrapping
was constructed with the intact RT sequences from the
five ancient elements, along with RT sequences
from known elements of other organisms. As shown in
Figure 5, the elements Dpul_a1-5 cluster with the
elements HEROFr, HEROTn and HERODr in the

Figure 4. Phylogenetic analysis of RT domain sequences in the D. pulex elements, along with previously known elements from other genomes. For
the D. pulex elements, LOA elements are highlighted in red, I elements in blue, L2 elements in green, L1 elements in pink and NeSL elements in cyan.
A cluster of L2 elements (L2_Tr_AF086712, L2_Maul_2, L2_Poll_AAN15747, L2 Danio, L2_Oryzlas, L2_Xlphophorus and L2_L2_Mars_1) from
fish genomes were indicated by green circle.
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NeSL clade with very high-boostrap value (100%),
although with quite deep branches. The cysteine-histidine
motif (C-X2-C-X8-H-X4-C) and the REL domains motif
(PD..D), which are downstream of the RT domains, are
observed in all five elements (Figure 5b). This is a common
feature of the ancient clades (6). However, upstream of the
RT domains, no motifs were observed in either HERO or
Dpul_a elements, while the other ancient clades had
cysteine�histidine motifs upstream of the RT domain
(39). Given the definition of ‘clade’ (2), it might not be

appropriate to combine all five elements (Yureci, R5,
NeSL, HERO and Dpul_a) into the same clade, since
they have different structural features (Figure 5).
However, considering that a limited number of elements
have been identified to date, the classification can only be
refined after more elements have been identified.
In order to compare the performance of MGEScan-

non-LTR with RepeatMasker, we ran RepeatMasker on
the D. pulex genome using the current version of Repbase
Update library. This is an interesting comparison, since

Figure 5. (a) Phylogenetic tree and (b) schematic representation of the elements in five ancient clades of CRE, GENIE, R2, R4 and NeSL. The
neighbor-joining tree was built with 1000 rounds of bootstrapping. Note that the cluster of D. pulex elements is connected with the cluster of HEROs
in the NeSL clades with a very high-bootstrap value (100%). The schematic representation of the D. pulex NeSL elements is most similar with one of
the HERO elements. The gray bars downstream of the RT are cysteine�histidine motif (C-X2-C-X8-H-X4-C). The blank bars downstream of RT
represent the REL domain motif (PD..D).
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MGEScan-non-LTR used the same library as the training
set for its model. RepeatMasker identified 19 elements
(length >1000 bp), compared to our 136 elements, and
15 of them overlapped with our results. This result
clearly shows that our method performs better than
homology-based searches in identifying novel elements.
Interestingly, all the elements identified by
RepeatMasker were classified as L2 clade. This result is
consistent with the high level of sequence conservation
among L2 elements.

Non-LTR retrotransposons in the S. purpuratus genome

We identified a total of 1008 non-LTR retrotransposons,
which were classified into the seven clades CR1, I, L1, L2,
NeSL, RTE and Rex1. To the best of our knowledge, this
is the first genome-wide survey of non-LTR retrotrans-
posons in the S. purpuratus genome, although elements
in the CR1, L1, L2, NeSL and RTE clades have been
identified by previous studies (39,40). Even though the
number of ‘ORF-preserving’ non-LTR retrotransposons
identified is much higher than those in other three
genomes studied here, the density (1.11 elements/MB) is
only slightly higher than in the D. pulex genome (1.06
elements/MB). The Rex1 clade has mostly been found in
fish genomes, such as F. rubripes and T. nigroviridis (7).
Notably, we found 19 Rex1 elements in the S. purpuratus
genome and six of them contain intact RT sequences that
have not been degraded by a stop codon or frameshift
mutation. Phylogenetic analysis of these six elements
with known elements, mostly from fish genomes, showed
that the S. purpuratus Rex1 elements are more closely
related with Babar elements from Battrachocottus
baikalensis, Oncorhynchus keta and T. nigroviridis
(bootstrap value 97%) (Supplementary Figure S2).
RepeatMasker identified two of them as in the CR1
clade, while four of them were not identified.

Non-LTR retrotransposons in the C. intestinalis genome

The C. intestinalis is an important model organism, as
a chordate that predates the vertebrate lineage.
Interestingly, the C. intestinalis genome has divergent
elements from the clades that do not have APE domain:
11 R2 elements, one R4 element and five NeSL elements.
In the phylogenetic analysis (Supplementary Figure S3),
the NeSL elements are most closely related with the
D. pulex elements identified in this study, with a
boostrap value of 68%. However, the similarities of the
elements between the genomes are low (<40%), suggesting
that both lineages have evolved through vertical transmis-
sion. The similarities of RT sequences between the NeSL
elements in the C. intestinalis genome were quite high
(>86%); but all of them have suffered multiple stop
codons. MGEScan-non-LTR also reported a novel
element in the RTE clade. We call this element ‘CiRTE’,
following the naming scheme used in the previous paper
(33). A BLASTX search with ‘CiRTE’ as query showed
the most significant hit (E-value: 2e–54) in the
S. purpuratus genome. The RT sequence of ‘CiRTE’ was
aligned with those of the previously annotated elements
CiI, CiL1, CiL2, CiLOA and CiR2 from the C. intestinalis

genome to identify the highly conserved sequences of the
RT domain, showing seven well-conserved regions (Figure
6). In phylogenetic analysis (Supplementary Figure S3),
‘CiRTE’ clustered with RTE elements in the Cow and
Vipera genomes with a high bootstrap value (>94%).

DISCUSSION

With an increasing number of sequenced genomes
available, efficient computational methods are required
for genome-wide identification of MGEs, to assist both
genome annotation and evolutionary studies. MGEScan-
non-LTR can identify novel elements from the diverse
clades of non-LTR retrotranposons from genomic
sequences, and has three important advantages as
described below.

First, it is fully automated. Given a genomic sequence,
MGEScan-non-LTR will report as the final output all
non-LTR retrotransposons that are identified and clas-
sified to specific clades. Due to the mechanism of the
reverse transcription, 50 truncation occurs frequently
when new elements were inserted into the host genome.
As a result, it is difficult to find ‘full-length’ non-LTR
retrotransposons, although the structure of ORFs
encoding protein domains may be well-preserved in
many elements. Our method mainly focuses on the iden-
tification of non-LTR retrotransposons preserving all the
required domain regions for transposition. These ‘ORF-
preserving’ elements identified in the entire genomic
sequences serve as a basic set to analyze MGEs. After
they are identified, fragmented or truncated copies can
be found with a RepeatMasker search, using these
‘ORF-preserving’ elements as the library.

Second, MGEScan-non-LTR is modular and
extendible. It assigns each essential segment of non-LTR
retrotransposons to a state that has an independent model
for calculating scores. As such, these models can be
modified or replaced by better probabilistic models, and
new models can be incorporated for more diverged
elements (clades) in the future. Our method has a more
generalized architecture that can have separate methods or
functions to capture the best features associated with the
specific region. Note that the inter-domain linker regions
need to be analyzed using more general criteria that do not
rely on sequence homology, we used parameterized and
pre-calibrated physical properties such as hydrophobicity
of amino acid residues.

Third, MGEScan-non-LTR scales well with increasing
element types and numbers. Models are built upon the
best knowledge and data that are presently available.
When the first element in a new clade is encountered,
MGEScan might not be able to unambiguously differen-
tiate it from those in the closest clade. Our approach to
addressing this issue is to devise a method that allows one
to incorporate a new clade. After a number of elements
cluster together with high-bootstrap value in phylogeny
and have the same structure of domains, one could
suggest a new clade for this putative new group. Our
current model can easily incorporate a newly defined
clade by adding new superstates. Extendibility to handle
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such situation is one of the important advantages of our
model.
In addition, the increased number of elements does not

increase searching time significantly since all the elements
in the training set are not compared with the genome indi-
vidually, but are used to train the model, which is
subsequently used for the genome-wide search. This
feature will increasingly give MGEScan-non-LTR an
advantage, as more elements become available. Given
these advantages, MGEScan-non-LTR should facilitate
further systematic analysis of non-LTR retrotranposons
in eukaryotic genomes. Based on the results from
four different genomes in this initial study, we showed
that MGEScan-non-LTR is ready to be used for the
identification and classification of novel non-LTR
retrotransposons.
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