
ll
OPEN ACCESS
Protocol
An in silico drug repositioning workflow for
host-based antivirals
Zexu Li, Yingjia Yao,

Xiaolong Cheng,

Wei Li, Teng Fei

zeki2019@163.com (Z.L.)

feiteng@mail.neu.edu.cn

(T.F.)

Highlights

A step-by-step

protocol for host-

based antiviral drug

repositioning

Drug-target

interaction predicted

by artificial

intelligence-based

algorithms

Protocol applicable

to other scenarios

given a druggable

target gene set
Drug repositioning represents a cost- and time-efficient strategy for drug development. Artificial

intelligence-based algorithms have been applied in drug repositioning by predicting drug-target

interactions in an efficient and high throughput manner. Here, we present a workflow of in silico

drug repositioning for host-based antivirals using specially defined targets, a refined list of drug

candidates, and an easily implemented computational framework. The workflow described here

can also apply to more general purposes, especially when given a user-defined druggable target

gene set.
Li et al., STAR Protocols 2,

100653

September 17, 2021 ª 2021

The Author(s).

https://doi.org/10.1016/

j.xpro.2021.100653

mailto:zeki2019@163.com
mailto:feiteng@mail.neu.edu.cn
https://doi.org/10.1016/j.xpro.2021.100653
https://doi.org/10.1016/j.xpro.2021.100653
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100653&domain=pdf


Protocol

An in silico drug repositioning workflow for host-based
antivirals

Zexu Li,1,2,5,6,* Yingjia Yao,1,2,5 Xiaolong Cheng,3,4 Wei Li,3,4 and Teng Fei1,2,7,*

1College of Life and Health Sciences, Northeastern University, Shenyang 110819, People’s Republic of China

2Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education,
Shenyang 110819, People’s Republic of China

3Center for Genetic Medicine Research, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC 20010, USA

4Department of Genomics and Precision Medicine, George Washington University, 111 Michigan Ave NW, Washington,
DC 20010, USA

5These authors contributed equally

6Technical contact

7Lead contact

*Correspondence: zeki2019@163.com (Z.L.), feiteng@mail.neu.edu.cn (T.F.)
https://doi.org/10.1016/j.xpro.2021.100653

SUMMARY

Drug repositioning represents a cost- and time-efficient strategy for drug devel-
opment. Artificial intelligence-based algorithms have been applied in drug repo-
sitioning by predicting drug-target interactions in an efficient and high
throughput manner. Here, we present a workflow of in silico drug repositioning
for host-based antivirals using specially defined targets, a refined list of drug can-
didates, and an easily implemented computational framework. The workflow
described here can also apply to more general purposes, especially when given
a user-defined druggable target gene set.
For complete details on the use and execution of this protocol, please refer to Li
et al. (2021).

BEFORE YOU BEGIN

Overview

Artificial intelligence-based algorithms have been applied in drug repositioning as well as other rele-

vant fields (Hao et al., 2016; Pushpakom et al., 2019; Tanoli et al., 2021; Wang et al., 2020; Yang

et al., 2020; Zhou et al., 2020). This protocol below describes the specific steps of in silico drug re-

positioning for antivirals against Coronaviridae viral families including SARS-CoV-2 (severe acute

respiratory syndrome coronavirus 2), SARS-CoV (severe acute respiratory syndrome coronavirus)

and MERS-CoV (Middle East respiratory syndrome coronavirus) using Coronaviridae-specific host

dependency gene set, refined drug candidate list covering 2457 marketed drugs and 1062 natural

compounds, and DeepCPI algorithm for drug-target interaction (DTI) prediction. Moreover, this

workflow can be extended for broader drug repositioning purposes, given a user-defined target

gene set, a custom list of candidate drug chemicals and implementation of more DTI prediction

algorithms.

For specific drug repurposing against Coronaviridae family viruses, we should firstly define the

proper gene set for candidate drugs to target. In addition to limited number of virus-specific genes,

host dependency genes (HDGs) with functional implications whose loss-of-function renders host

resistance to specific viral infection may serve as an ideal target gene pool for inhibitory drugs to

exert antiviral effect. Public datasets derived from functional genetic screens using techniques

such as gene-trap, RNA interference (RNAi) and clustered regularly interspaced palindromic repeats
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(CRISPR) have provided a wealth of resource about virus-specific HDGs. We have collected Corona-

viridae-specific HDGs in our previous study (Li et al., 2021) and use them as target gene set in this

protocol. HDGs for a broader range of RNA viruses can also be found in Li et al., 2021. For the inter-

rogated drug candidates, we build a chemical cohort by collecting 2457 Food and Drug Administra-

tion (FDA) approved drugs (Database: DrugBank, version 5.1.7, released 2020-07-02; https://www.

drugbank.ca) and 1062 selected natural compounds embedded in herbs of traditional Chinesemed-

icine with favorable druggability (Li et al., 2021). This refined drug candidate list does not include

experimental and investigational chemicals. Since FDA approved drugs and herbs of traditional Chi-

nese medicine have already been applied in humans, this refined cohort may represent the safest

drug candidates to be readily tested for clinical trials. Precise and efficient DTI prediction stands

in a central position for successful drug repositioning. Multiple artificial intelligence-based algo-

rithms have been developed to predict DTI between multiple drugs and targets. In this protocol,

we employ DeepCPI, a computational framework using feature-embedding and deep learning,

for DTI prediction (Wan et al., 2019). Compared to other pipelines, DeepCPI is quite computation-

ally efficient which can be run even by a personal computer while maintaining decent predicting po-

wer (For example, in the current protocol, DeepCPI can be run on the MacBook Pro with 8 GB of

memory to predict 405,405 hypothetical DTI pairs in about 1 h). Each drug-target pair is scored

by DeepCPI for their potential interaction, and repurposed drug candidates are then prioritized ac-

cording to their targeting range (the number of predicted targets) and strength for interrogated tar-

gets (targeting potential reflected by DTI score). For the top ranked drug candidates, molecular

docking analysis is performed to take a closer examination for the binding interface and free energy

of potential drug-target interaction. The workflow generates a ranked list of potential repurposed

drug candidates against Coronaviridae viruses that are ready for in-depth experimental and clinical

evaluation.

Software setup and installation

Timing: �1 day

A personal computer with Linux- or Unix-based operating system is required to execute this proto-

col. The prerequisite software (in key resources table) can be downloaded from the corresponding

websites. The accompanying user manuals provide detailed information about their functions and

uses.

1. Set up the operating environment for DeepCPI.

a. Requirement: Python2.7, Keras=1.2.2, Gensim=0.10.2, Tensorflow=1.2.0, RDKit.

b. The source code of DeepCPI can be downloaded from https://github.com/FangpingWan/

DeepCPI.

c. We also recommend the user to install conda (environment management system) (https://

docs.conda.io/projects/conda/en/latest/user-guide/install/index.html).

2. Install DeepCPI using command line under Unix or Linux system.

a. Open Terminal

b. conda create -n DeepCPI python=2.7 (#create a Python 2.7 environment)

c. source activate DeepCPI (#activate virtual environment)

d. conda install RDKit

e. conda install Keras=1.2.2

f. conda install Gensim=0.10.2

g. cd [The path of DeepCPI] (e.g., ‘‘cd /./DeepCPI-master’’. #Change directory to the home

directory of the DeepCPI folder named ‘‘DeepCPI-master’’)

h. python DeepCPI.py (#Run test data)

i. For advanced help, please see page on the GitHub (https://github.com/FangpingWan/

DeepCPI).

3. Download and install software for molecular docking analysis.
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a. Download and install AutoDock software (http://autodock.scripps.edu; version 4.2.6) (Morris

et al., 2009).

b. Download and install MGLTools software (http://mgltools.scripps.edu/downloads; version

1.5.6).

c. Download and install PyMOL software (https://pymol.org/2/, version 2.3.2, open-source proj-

ect).

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Define the druggable target gene set

Timing: �3 days

Any user-defined target gene set can be used for this protocol towards more general applications.

As a specific example, the definition of target gene set against Coronaviridae viruses is shown in the

following steps.

1. Collect public datasets to define Coronaviridae-specific HDGs.

a. Collect the references performing high throughput genetic perturbation screening for Coro-

naviridae virus resistance in human cells. In these studies, gene-trap, RNAi and CRISPR tech-

niques are employed to perturb a gene’s function. For example, use the search key word

‘‘SARS-CoV-2 AND screen’’ to collect SARS-CoV-2 virus-related screening references from

PubMed (https://pubmed.ncbi.nlm.nih.gov/). References for other Coronaviridae viruses

such as MERS-CoV and SARS-CoV can be collected similarly. Pinpoint the datasets reporting

the viral resistance HDGs associated with these references.

b. Collect scattered HDGs for Coronaviridae viruses from individual literatures in which specific

genes are shown to be critical or essential for complete viral life cycle (non-screen study).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Target gene set of Coronaviridae-specific HDGs with
amino acid sequence information

Supplemental File S1 Coronaviridae_HDGs.txt

Approved drug list with InChI information Supplemental File S1 Drugbank_Approved.txt

Selected natural compound list with InChI information Supplemental File S1 TCM_selected.txt

Drug candidate cohort information Table S1 Drug_cohort_information.xlsx

Predicted DTI and ranked list of repositioned drugs
against Coronaviridae viruses

Table S2 DTI_and_ranked_drug_list.xlsx

DrugTargtPairGenerator.py This study https://github.com/zexuneu/computational-framework-of-host-
based-drug-repositioning

MatricesGenerator.py This study https://github.com/zexuneu/computational-framework-of-host-
based-drug-repositioning

FilterOutNonSignificant.py This study https://github.com/zexuneu/computational-framework-of-host-
based-drug-repositioning

ZscoreNormalization.Rmd This study https://github.com/zexuneu/computational-framework-of-host-
based-drug-repositioning

Software and algorithms

DeepCPI (Wan et al., 2019) https://github.com/FangpingWan/DeepCPI

AutoDock (Morris et al., 2009) http://autodock.scripps.edu

MGLTools MGLTools Website http://mgltools.scripps.edu/downloads

PyMOL Schrödinger https://pymol.org/2/
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2. Filter the collected data to pinpoint HDGs.

If a host gene or its encoding protein is shown only to physically interact with viral proteins or

regulated by viral genes but without functional implication on viral life cycle upon gene’s loss-

of-function, the gene is not classified as a HDG.

A gene is defined as a HDG only when it meets any of the following criteria:

a. Its loss-of-function impedes or reduces viral infection or activity by experimental evidence in

non-screen studies.

b. It has been clearly classified into HDG group in screen studies.

c. When HDG group is not specified in screen studies, arbitrarily take the top�5% of all the inter-

rogated genes in the positive selection list as HDGs with a custom log-fold change cutoff in

CRISPR knockout or RNAi screens. For example, in a typical result output generated by

MAGeCK (Li et al., 2015; Li et al., 2014) analytic pipeline for CRISPR screens, genes can be

ranked according to their negative or positive selection trend by jointly considering the log-

fold change and statistical significance of their corresponding guide RNAs. HDGs can be arbi-

trarily defined as the top�5% of all the genes with a log-fold change of 1.0 (loose cutoff) or 2.0

(stringent cutoff).

3. Define high confidence HDG gene set for Coronaviridae family viruses.

As there are several independent studies and datasets for HDG identification against Coronaviridae

family viruses, we only take a subset of HDGs that occurs more than once among different datasets

as high confidence HDGs for further analysis. A total of 165 high confidence HDGs are defined for

Coronaviridae viruses (Figure 1A). After that, prepare a HDG file in the structure of ‘‘gene symbol +

amino acid sequence’’ (Figure 1B, Supplemental File S1).

Figure 1. Prepare DeepCPI input file

(A) Gene symbol list of target gene set exemplified by 165 high confidence HDGs for Coronaviridae viruses.

(B) The structure, layout and information of the text files for drugs and targets.

(C) The structure, layout and information of the merged text file generated as DeepCPI input.
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Note: In addition to PubMed, public integrated database such as ‘‘CRISP-view’’ (http://

crispview.weililab.org/) can also be used to search high throughput genetic screen studies

or datasets (Cui et al., 2021). In addition, virus-specific HDGs for 10 families and 29 species

of RNA viruses can be downloaded from (Li et al., 2021).

Define the cohort of candidate drugs or chemicals for repurposing

Timing: �1 day

4. Collect FDA approved drug information.

a. Drug information is extracted from Database: DrugBank (version 5.1.7, released 2020-07-02;

https://www.drugbank.ca) (Wishart et al., 2018). Open DrugBank website -> Download ->

Structures -> Structure External Links -> Approved -> Download. (#Download FDA approved

drug data with InChI (the IUPAC International Chemical Identifier) information from the Drug-

Bank website)

b. Extract the DrugBank ID and InChI, and save them as separate files in the structure of ‘‘Drug-

Bank ID + InChI’’ (Supplemental File S1).

c. A total of 2457 FDA approved drugs are collected with InChI information. Note that the InChI

value is required for DeepCPI.

5. Collect natural compound information.

a. Natural compound information is downloaded from Database: Traditional Chinese Medicine

Systems Pharmacology (TCMSP) (version 2.3, released 2014-05-31; https://tcmspw.com/

tcmsp.php) which is a unique systems pharmacology platform of Chinese herbal medicines

(Ru et al., 2014).

b. Filter the pool of 1455 natural compounds for better druggability by requiring each candidate

passing the criteria of oral bioavailability (OB)R 30.0%, drug-likeness (DL)R 0.18 and blood-

brain barrier (BBB) R -0.30. Finally, 1062 selected natural compounds with InChI information

are kept for the downstream DTI analysis.

c. Extract the compound ID and InChI, and save them as separate files in the structure of ‘‘com-

pound ID + InChI’’ (Supplemental File S1).

Note: The above drug cohort information used in this protocol can be found in Table S1.

Prepare DeepCPI input file

Timing: �2 h (variable)

DeepCPI requires two layers of information for DTI prediction: ‘‘the InChl information of drugs’’ and

‘‘the amino acid sequence of target gene-encoding proteins’’.

6. Prepare a txt file (e.g., ‘‘Drugbank_Approved.txt’’ or ‘‘TCM_selected.txt’’) containing the InChl

information for each drug (Figure 1B, Supplemental File S1).

7. Prepare a txt file (e.g., ‘‘Coronaviridae_HDGs.txt’’) containing the amino acid sequence for each

target protein (Figure 1B, Supplemental File S1). The amino acid sequences are extracted from

UniProt database (https://www.uniprot.org/).

8. Save the two files (‘‘Coronaviridae_HDGs.txt’’ and ‘‘Drugbank_Approved.txt’’) under the same

directory.

9. Open Terminal.

10. Change directory to where the files (‘‘Coronaviridae_HDGs.txt’’ and ‘‘Drugbank_Approved.txt’’)

are located by typing ‘‘cd /your/working/path’’.

11. Run python script ‘‘DrugTargtPairGenerator.py’’ by typing ‘‘python DrugTargtPairGenerator.py

–f1 Coronaviridae_HDGs.txt –f2 Drugbank_Approved.txt’’ to generate a merged txt file (e.g.,

‘‘Drug_Target_Pair.txt’’) with each possible drug-target pair (Figure 1C).
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DTI prediction by DeepCPI

Timing: �2h

12. Run the DeepCPI pipeline and calculate the DeepCPI score for drug-target pair.

a. Paste the merged input file (e.g., ‘‘Drug_Target_Pair.txt’’) into the DeepCPI folder and re-

name it as ‘‘example.tsv’’. (#DeepCPI uses ‘‘example.tsv’’ as default input file)

b. Open Terminal.

c. Activate conda environment by typing ‘‘source activate DeepCPI’’.

d. Change directory to the home directory of the DeepCPI folder named ‘‘DeepCPI-master’’ by

typing ‘‘cd [The path of DeepCPI]’’. (e.g., ‘‘cd /./DeepCPI-master‘‘)

e. Run the DeepCPI pipeline under the DeepCPI folder by typing the command ‘‘python Deep-

CPI.py’’.

f. A file named ‘‘Prediction_results.tsv’’ is generated at the end of the run. Each drug-target

pair is assigned a DeepCPI score (range 0–1) representing their interaction potential. The

higher score indicates higher interaction potential.

g. Change directory to where the files (‘‘Prediction_results.tsv’’, ‘‘Coronaviridae_HDGs.txt’’,

and ‘‘Drugbank_Approved.txt’’ stored under the same directory) are located by typing

‘‘cd /your/working/path’’.

h. Run python script ‘‘MatricesGenerator.py’’ by typing ‘‘python MatricesGenerator.py –f1

Prediction_results.tsv –f2 Coronaviridae_HDGs.txt –f3 Drugbank_Approved.txt’’ to create

a score matrices TCPI named ‘‘Prediction_results.matrix.txt’’ with DeepCPI score for each

drug-target pair (xCPI), where l refers to the length of drug list and k refers to the length of

target list:

TCPI ˛Rl3 k ; xCPI˛TCPI

i. Run python script ‘‘FilterOutNonSignificant.py’’ by typing ‘‘python FilterOutNonSignifi-

cant.py -f Prediction_results.matrix.txt -c 0.892’’ to filter out the non-significant DTI scores

and only keep the confident scores. The output file is ‘‘Prediction_results.matrix.filtered.txt’’.

The optimal standardized DeepCPI score threshold (0.892, sensitivity: 37.2%, specificity:

86.8%) is determined by receiver operating characteristics (ROC) analysis with benchmark

datasets (Li et al., 2021). This pre-defined threshold may change when different benchmark

datasets are used to evaluate DeepCPI performance. Once defined, such threshold is appli-

cable to any DTI analysis using DeepCPI for different target gene sets and drug sets.

TCPI sig =

�
x; if xR0:892
0; if x<0:892

x˛TCPI

Optional: When more DTI prediction algorithms are applied to alleviate the bias of each al-

gorithm and improve the prediction precision, each method generates a prediction score for

the same drug-target pair. However, the score distribution pattern is usually different be-

tween different methods. To make these DTI scores comparable, a z-score based normaliza-

tion is recommended as exemplified in the following steps to standardize DeepCPI score.

DTI scores derived from other prediction algorithms can be normalized in the similar manner.

j. Open and run R script ‘‘ZscoreNormalization.Rmd’’ to generate z-score matrices ZCPI named

‘‘z_Prediction_results.txt’’, where, m is mean value of the original scores and s is standard de-

viation of the original scores:

zCPI =
xCPI � mCPI

sCPI
; xCPI˛TCPI

k. Open Terminal.
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l. Change directory to where the files (‘‘z_Prediction_results.txt’’, ‘‘Coronaviridae_HDGs.txt’’,

and ‘‘Drugbank_Approved.txt’’ stored under the same directory) are located by typing ‘‘cd

/your/working/path’’.

m. Run python script ‘‘MatricesGenerator.py’’ by typing ‘‘python MatricesGenerator.py –f1

z_Prediction_results.txt –f2 Coronaviridae_HDGs.txt –f3 Drugbank_Approved.txt’’. This

command will create a z-score matrices ZCPI named ‘‘z_Prediction_results.matrix.txt’’ with

standardized DeepCPI score for each drug-target pair (zCPI), where l refers to the length of

drug list and k refers to the length of target list:

ZCPI ˛Rl3 k ; zCPI˛ZCPI

n. Run python script ‘‘FilterOutNonSignificant.py’’ by typing ‘‘python FilterOutNonSignifi-

cant.py -f z_Prediction_results.matrix.txt -c 0.641’’. This command will filter out the

non-significant DTI scores and only keep the confident scores. The output file is

‘‘z_Prediction_results.matrix.filtered.txt’’. The optimal standardized DeepCPI score

threshold (0.641, sensitivity: 73%, specificity: 51.9%) is determined by receiver operating

characteristics (ROC) analysis with benchmark datasets (Li et al., 2021). This pre-defined

threshold may change when different benchmark datasets are used. Once defined, such

threshold for standardized DeepCPI score is applicable for different target gene sets

and drug sets.

ZCPI sig =

�
z; if zR0:641
0; if z<0:641

z˛ZCPI

Prioritize repurposed drug candidates

Timing: �10 min

Repurposed drug candidates are ranked primarily according to their targeting range (the number of

target) and targeting strength (the interaction potential of target).

13. Prioritize the drug candidates using P_score that only considers the HDG target-associated

DTIs. P_score is calculated for each drug candidate by the following formula, where xCPI sig

represents filtered DeepCPI score for each drug-target pair and k refers to the length of target

list.

P scoreCPI =
Xk

i = 1

xCPI sig
i

,
k; xCPI sig˛TCPI sig

a. Open the file ‘‘Prediction_results.matrix.filtered.txt’’ using Excel sheet. Drugs are listed in

rows and targets are listed in columns.

b. For each drug, calculate P_score using the above formula (AVERAGE function). The higher of

P_score, the better the corresponding drug is prioritized.

c. The drug candidates can be ranked according to their P_score.

Optional: If using normalized z-score, calculate P_score for each drug candidate correspond-

ing to each DTI prediction method by the following formula exemplified by DeepCPI, where

zCPI sig represents filtered DeepCPI score for each drug-target pair and k refers to the length of

target list. Drug candidates can be ranked by integrative consideration of multiple P_score

derived from each DTI prediction methods.

ll
OPEN ACCESS

STAR Protocols 2, 100653, September 17, 2021 7

Protocol



P scoreCPI =

Pk
i = 1z

CPIsig
i

k
; zCPI sig˛ZCPI sig

Molecular docking analysis of top ranked drugs

Timing: �4 h

To further examine the potential binding interface and free energy between top ranked drugs and

their predicted target proteins, molecular docking analysis can be performed. Using Baricitinib (one

of the top ranked repurposed drugs against Coronaviridae viruses) and its predicted target DYRK1A

as an example, molecular docking analysis is performed as in the following steps. The docking pa-

rameters may vary depending on the interrogated drug/target pair.

14. Prepare the ligand.

a. Download the chemical structure file for Baricitinib (PubChem CID: 44205240) from Pub-

Chem website (https://pubchem.ncbi.nlm.nih.gov/) in SDF format (named as ‘‘Bariciti-

nib.SDF’’).

b. Open a PyMOL software browser and input the ligand file ‘‘Baricitinib.SDF’’.

c. Export and save as ‘‘ligand.PDB’’ formatted file.

d. Open the AutoDock software and input the ‘‘ligand.PDB’’ file (Figure 2A).

e. Click ‘‘Ligand->Torsion Tree’’ and select ‘‘Choose Torsions’’ module (Figure 2B). The red

chemical bond means un-rotatable, the green chemical bond means rotatable.

f. Output and save as ‘‘ligand.pdbqt’’ formatted file (Figure 2C).

15. Prepare the protein receptor.

a. The protein structure of DYRK1A (PDB: 6EIS) is downloaded from RCSB PDB website (http://

www1.rcsb.org) in PDB format.

b. Open a PyMOL software browser to input the file ‘‘6SIE.pdb’’.

c. Remove waters (Figure 2D) and add polar hydrogens (Figure 2E).

d. Choose the primary ligand of DYRK1A at the 321st amino acid position of A chain, and re-

move the pre-embedded ligand (Figure 2F).

e. Delete the other chains (B, C, and D chains of DYRK1A in 6SIE.pdb) and solvents of the pro-

tein (Figure 2G).

f. Save as ‘‘protein.pdb’’ formatted file.

g. Open the AutoDock software and input the ‘‘protein.pdb’’ file.

h. Set the atoms using ‘‘Assign AD4 type’’ module (Figure 3A).

i. Compute the Gasteiger charges for protein molecules (Figure 3B).

j. Export and save as ‘‘protein.pdbqt’’ formatted file (Figure 3C).

16. Set the grid box.

a. Open the ‘‘Grid’’ module and input the ‘‘protein.pdbqt’’ file.

b. Set map types and input the ‘‘ligand.pdbqt’’ file.

c. Open ‘‘Grid Box’’ module to set the position of grid box.

d. Set the center of grid box size: X center: -0.424, Y center: -16.948, Z center: -8.144. Then, set

the number of points in X (60), Y (60) and Z (60) dimension of grid box to cover the active

pocket (Figure 3D).

e. Save as ‘‘dock.gpf’’ formatted file.

17. Analyze the grid docking.

a. Choose the ‘‘Docking’’ module, and input the protein and ligand files (‘‘protein.pdbqt’’ and

‘‘ligand.pdbqt’’).

b. Click ‘‘Docking->Search Parameters’’ and choose ‘‘Genetic Algorithm’’ module.

c. Click ‘‘Docking->Docking Parameters’’ and use the default settings.

d. Output the Lamarckian GA result and save as ‘‘dock.dpf’’ formatted file (Figure 3E).
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e. Run the ‘‘AutoGrid’’ and ‘‘AutoDock’’ module with ‘‘dock.gpf’’ and ‘‘dock.dpf’’ file, respec-

tively. A ‘‘dock.dlg’’ file is then generated.

f. Open the ‘‘dock.dlg’’ file and protein file (‘‘protein.pdbqt’’).

g. Show the interactions between ligand and protein (Figure 3F).

h. Analyze the conformations of ligand and click this button ( ) (Figure 3G). The DashBoard

shows the binding energy under different ligand conformations with the lowest binding en-

ergy of -8.07 kcal/mol for potential interaction between Baricitinib and DYRK1A A chain.

i. Output the complex interactions, and save as ‘‘result.pdbqt’’ formatted file.

Figure 2. Pre-processing procedures of molecular docking analysis

(A) Illustration of ‘‘Input the ligand’’ step by AutoDock software.

(B) Illustration of ‘‘Choose the torsions of the ligand’’ step in AutoDock.

(C) Illustration of ‘‘Output ligand.pdbqt file’’ step in AutoDock.

(D) Illustration of ‘‘Remove waters of protein’’ step in AutoDock.

(E) Illustration of ‘‘Add polar hydrogens of protein’’ step in AutoDock.

(F) Illustration of ‘‘Delete pre-embedded ligand’’ step in AutoDock.

(G) Example of ‘‘Delete the other chains and solvents of the protein’’ step (D chain of DYRK1A in 6SIE.pdb) in

AutoDock.
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18. Visualize the results of docking.

a. Open the PyMOL browser and input the ‘‘result.pdbqt’’ file.

b. Set the shape and color of the protein or the ligand.

c. Display the background as ‘‘white’’.

d. Output and save the picture of docking result as ‘‘docking.png’’ file (Figure 3H).

Note: Other molecular docking software can also be utilized. The binding interface and free

energy may differ when using different molecular docking platforms.

Figure 3. Continued procedures of molecular docking analysis

(A) Illustration of setting the atoms using ‘‘Assign AD4 type’’ module in AutoDock software.

(B) Illustration of computing the Gasteiger charges for protein molecules in AutoDock.

(C) Illustration of exporting and saving as ‘‘protein.pdbqt’’ formatted file in AutoDock.

(D) Example of setting the center of grid box size to cover the active pocket in AutoDock.

(E) Illustration of outputting the Lamarckian GA result.

(F) Illustration of showing the interactions between ligand and protein.

(G) Illustration of analyzing different conformations of the ligand.

(H) Example of docking result showing the interaction between Baricitinib and DYRK1A.
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Note: If there is no structure of interrogated target protein available in PDB website, protein

structure prediction by homology modeling may be performed. If there is only apo-structure

available where the target protein is not in complex with drugs or small molecules, binding

pocket prediction or blind docking can be performed with molecular docking software.

Optional: If a deeper computational investigation on the binding-function relationship is

needed, molecular dynamics (MD) simulation can be performed as elaborated in other litera-

tures (Maximova et al., 2016; Mei et al., 2021; Yang et al., 2020).

EXPECTED OUTCOMES

In this protocol, we describe an in silico drug repositioning workflow to identify potential antiviral

drugs against Coronaviridae viruses using HDGs as drug targets. A complete table listing the pre-

dicted DTI for each drug-target pair is generated, and a ranked list of the repurposed drug candi-

dates is provided (Table S2). If there are positive control drugs with definite DTIs in other scenarios,

they are expected to be present among the top positions of the ranked list. The binding details be-

tween top predicted drugs and targets are illustrated by molecular docking analysis. These results

may expedite the drug development for infectious diseases caused byCoronaviridae viruses such as

COVID-19. This strategy should be helpful to repurpose ‘‘old drug’’ for novel antiviral uses by facil-

itating the selection of lead compound for in-depth experimental and clinical evaluation.

LIMITATIONS

There are several limitations for this protocol. Firstly, the target gene set of Coronaviridae-specific

HDGs may not be complete and the strength variation of perturbation impact between different

HDGs is ignored. Secondly, only one DTI prediction algorithm (DeepCPI) is illustrated here and it

is highly recommended to incorporate more independent algorithms to increase the precision

and reduce the bias for DTI prediction. Thirdly, this protocol does not include the validation steps.

The top ranked repurposed drug candidate should be readily selected and experimentally validated

by performing in vitro assays for their cytotoxicity, antiviral activity and physical drug-target interac-

tion before proceeding to more advanced evaluations.

TROUBLESHOOTING

Problem 1

The software and algorithms used in this protocol do not run through properly (Before you begin-

Software setup and installation).

Potential solution

Double check the computer settings, make sure the downloaded versions of the software or algo-

rithms are correct, and install them according to their manuals. Use the test data or files provided

in this study to evaluate whether the software and algorithms are working properly.

Problem 2

Only a limited number of HDGs can be collected for specific type of virus (steps 1–3).

Potential solution

Insufficient number of target genes may decrease the probability and precision of drug reposition-

ing due to low coverage of true HDGs. We recommend to expand the HDGs by additionally consid-

ering the HDG data from closely related viruses, for example, within the same viral family rather than

only restricted to certain species of viruses.

Problem 3

DeepCPI is successfully installed and go through using the test data embedded in DeepCPI folder,

however, it fails to generate results using user-provided data (steps 6–12).

ll
OPEN ACCESS

STAR Protocols 2, 100653, September 17, 2021 11

Protocol



Potential solution

Make sure to execute the program under the home directory of DeepCPI folder, double check the

format of the input file, and remove any delimiter in the InChI value that may change the data

structure.

Problem 4

It is difficult to determine the position of the grid box for the protein during molecular docking (step

16).

Potential solution

We recommend to try the following steps: firstly, refer to the literatures to identify potential active

pocket of the protein; secondly, use ‘‘blind docking’’ or ‘‘binding pocket prediction’’ approach by

AutoDock software.

Problem 5

The positive control drugs (if there are) are not in the top positions among the prioritized rank list of

repurposed drugs (Expected Outcomes).

Potential solution

Carefully select the target gene set, make sure the positive control drugs are within the interrogated

drug cohort, and/or apply multiple DTI prediction algorithms for drug repositioning.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Teng Fei (feiteng@mail.neu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This published article includes all datasets generated or analyzed during this study. The Python and

R scripts can be found at the GitHub repository for this protocol (https://github.com/zexuneu/

computational-framework-of-host-based-drug-repositioning).

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2021.100653.
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