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Autophagy is a process of intracellular self-recycling and degradation that plays an
important role in maintaining cell homeostasis. However, the molecular mechanism
of autophagy remains to be further studied. Mitochondria-associated endoplasmic
reticulum membranes (MAMs) are the region of the ER that mediate communication
between the ER and mitochondria. MAMs have been demonstrated to be involved in
autophagy, Ca2+ transport and lipid metabolism. Here, we discuss the composition
and function of MAMs, more specifically, to emphasize the role of MAMs in regulating
autophagy. Finally, some key information that may be useful for future research
is summarized.

Keywords: autophagy, mitophagy, mitochondria-associated endoplasmic reticulum membranes (MAMs),
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INTRODUCTION

Autophagy is an evolutionarily conserved cellular process by which damaged organelles and excess
proteins are degraded, and then, the decomposition products are recycled back to the cytoplasm
(Mizushima and Komatsu, 2011; Kim and Lee, 2014; Onorati et al., 2018; Yang and Klionsky, 2020).
Autophagy is classified into many types, such as mitophagy, lipophagy, and ribophagy, according
to the cellular components or organelles that are degraded (Condello et al., 2019). Basal autophagy
occurs in cells under normal conditions, and the level of autophagy changes during stress such as
starvation (Fernandez et al., 2020). The development of a variety of diseases, such as inflammation
(Racanelli et al., 2018) and cancer (Zeng and Ju, 2018), is accompanied by abnormal autophagy.
Autophagy may be a potential target for disease treatment in the future. However, the molecular
mechanism of autophagy, especially of the initiation and expansion of autophagosomes, has not
been fully elucidated. Increasing evidence has shown that mitochondria-associated endoplasmic
reticulum membranes (MAMs) are indispensable in the autophagy process, and many proteins
that are directly involved in autophagy are located in MAMs (Betz et al., 2013). However, the
relationship between MAMs and autophagy is not well understood. Here, we discuss the current
evidence supporting the important role of MAMs in autophagy.

OVERVIEW OF MAMs

Previous studies have indicated that cellular organelles, such as mitochondria and the endoplasmic
reticulum (ER), play independent biological roles. However, increasing evidence has shown that
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organelles are not independent structures, and it has been
found that there is a physical connection between the ER and
mitochondria, which has been named the MAMs (van Vliet
and Agostinis, 2018). The relationship between mitochondria
and the ER was observed in rat liver cells by Bernhard et al.
(1952) and Bernhard and Rouiller (1956) and further observed
by Copeland and Dalton in their studies of the pseudobranch
gland of a teleost (Copeland and Dalton, 1959). It was not until
1990 when, due to the development of biological technology,
Vance isolated “fraction X” from rat livers and named it the
“MAMs” (Vance, 1990). Electron microscopy has shown that the
ER and mitochondria can interact at a distance of approximately
10–20 nm (Csordas et al., 2006).

As a bridge between the ER and mitochondria, the MAMs
are the dynamic connection that is composed of the subdomain
of the ER, the outer mitochondrial membrane (OMM) and
a series of proteins. Recently, more than 1,000 proteins have
been found in MAMs fragments by mass spectrometric analysis
(Sala-Vila et al., 2016). In addition, Del et al. (2017) used
immunoprecipitation combined with a proteomic approach and
revealed that the proteins that interact with AβPP on MAMs
have the following main functions: mitochondrial function
and lipid metabolism. Using peroxidase-mediated proximity
biotinylation, Hung et al. identified 634 and 137 proteins
on the ER and mitochondria, respectively. Upon Intersecting
these proteins, 68 proteins were found to be localized to the
MAMs (Hung et al., 2017). In addition to the above, mass
spectrometric analysis of MAMs proteins has been performed
by several laboratories (Zahedi et al., 2006; Poston et al., 2013;
Ma et al., 2017; Wang et al., 2018). Since the MAMs are the
signal communication platform, it mainly relies on proteins
to perform its various functions, and the proteins located in
MAMs are grouped according to their primary functions, for
instance, Ca2+ transport: inositol 1,4,5-triphosphate receptor
(IP3R) and voltage-dependent anion channel (VDAC1) (Tubbs
et al., 2014; D’Eletto et al., 2018); lipid metabolism: acyl coenzyme
A-cholesterol acyltransferase (ACAT) (Rusinol et al., 1994),
acyl CoA:diacylgycerol acyltransferase 2 (DGAT2) (Stone et al.,
2009); autophagy: autophagy related 14 (ATG14), autophagy
related 5 (ATG5) (Hamasaki et al., 2013); and insulin signaling:
protein kinase B (PKB), mammalian target of rapamycin
complex (mTORC) (Betz et al., 2013; Rieusset, 2017). These
multifunctional protein groups also suggest that the MAM play
an important role in maintaining intracellular homeostasis and
biological functions.

MOLECULAR COMPOSITION OF THE
MAMs

MAMs Tethers in Yeast
MAMs are the region of the ER that mediate communication
between the ER and mitochondria (Annunziata et al., 2018; Lee
and Min, 2018). The integrity of the MAMs is the basis of its
biological function. Some proteins found in MAMs are involved
in different biochemical reactions in the cell, while others are
involved in maintaining the structural stability of the MAMs,

and their absence destroys the integrity of the MAMs. The
ER-mitochondria encounter structure (ERMES) is the protein
complex that connects the ER and mitochondria in yeast cells
(Kundu and Pasrija, 2020). The ERMES contains four core
proteins: maintenance of mitochondrial morphology 1 (Mmm1),
which is an anchoring ER protein; mitochondrial distribution
and morphology protein 12 (Mdm12), which is a cytoplasmic
junction protein; and Mdm34 and Mdm10, which are two
OMM proteins (Lang et al., 2015). The physical Mmm1-Mdm12-
Mdm34/Mdm10 interaction mediates efficient lipid transport,
especially the transport of phospholipids between the ER and
mitochondria (Kawano et al., 2018); an abnormal ERMES leads
to dysregulated lipid exchange between the ER and mitochondria,
resulting in abnormal cell growth (Kornmann et al., 2009).

MAMs TETHERS IN MAMMALIAN CELLS

Protein Complex-Mediated Tethers
The ER-mitochondria connections in mammalians are
more complicated than those in yeast. The most important
group of proteins involved in ER-mitochondria coupling is
IP3R/Grp75/VDAC. IP3R is one of the most important calcium
channels that is located in the ER and controls the release of
Ca2+, thus affecting cellular metabolism and autophagy (Kania
et al., 2017; Valladares et al., 2018). VDAC is a Ca2+-related
protein located in the OMM that mediates the uptake of Ca2+

by mitochondria (Lipper et al., 2019). Grp75, a member of
the heat shock protein 70 family, binds to IP3R and VDAC,
improving the stability of the interaction and thus increasing
the efficiency of Ca2+ transfer (Xu et al., 2018). Moreover, the
sigma-1 receptor (Sig-1R) is a chaperone that is also located
on MAMs and affects the transport of calcium ions between
the ER and mitochondria by IP3R to increase the production
of ATP (Hayashi and Su, 2007; Tagashira et al., 2014). In fact,
the IP3R-VDAC1 complex is the core structure for calcium
ion transport in MAMs, and this protein complex is also a
marker of MAMs. We can use an in situ proximity ligation assay
(PLA) to detect the integrity of the IP3R-VDAC1 complex to
quantify MAMs (Tubbs and Rieusset, 2016; Zhu et al., 2017;
Yang et al., 2019). In addition, the split-GFP-based contact site
sensor (SPLICS) probe from the Cali laboratory can be used
to measure the coupling between the ER and mitochondria
(Cieri et al., 2018). The PTPIP51-VAPB interaction is also
among the recently discovered set of interactions involved
in ER-mitochondria coupling. Vesicle-associated membrane
protein-associated protein B (VAPB) is a protein that is anchored
to the ER membrane by a C-terminal transmembrane domain,
and it plays an important role in the unfolded protein response
and vesicle trafficking (Lee and Min, 2018). Protein tyrosine
phosphatase-interacting protein 51 (PTPIP51) is a protein that
is located in the OMM. PTPIP51 is a microtubule-associated
protein, and it performs different biological functions by forming
multiple protein structure complexes (Brobeil et al., 2017).
Surprisingly, recent studies have shown that PTPIP51 forms
protein complexes with VAPB in the MAMs that mediate
calcium ion transport and autophagy (De Vos et al., 2012;
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Gomez-Suaga et al., 2017). The PTPIP51-VAPB complex can
be regulated by other proteins. α-Synuclein is the central
protein in the progression of Parkinson’s disease, and mutant
α-synuclein disrupts the VAPB-PTPIP51 complex, resulting
in the uncoupling of ER-mitochondria contacts and leading
to dysregulated Ca2+ transfer and decreased mitochondrial
ATP production in the development of Parkinson’s disease
(Paillusson et al., 2017). TAR DNA-binding domain protein 43
(TDP-43) is a highly conserved and widely expressed nuclear
protein (Chang et al., 2016). The accumulation of TDP-43 is
associated with the development of various neurodegenerative
diseases. Stoica et al. (2014) verified that overexpression of
TDP-43 activated glycogen synthase kinase-3β (GSK-3β) by
inhibiting its phosphorylation at serine-9, and that activated
GSK-3β reduced binding of VAPB to PTPIP51, which resulted
in disordered Ca2+ homeostasis. Another combination of
proteins involved in ER-mitochondria conjugation is BAP31
and TOM40. B cell receptor-associated protein 31 (BAP31) is
a transmembrane protein that is located in the ER and plays
an important role in apoptosis and the endoplasmic reticulum-
associated degradation (ERAD) pathway (Niu et al., 2017). The
outer mitochondrial membrane 40 (TOM40) is the translocation
enzyme complex on the OMM that promotes the translocation
of external proteins into mitochondria (Gonzalez et al., 2018).
Recently, Namba (2019) demonstrated that the connections
formed by BAP31 and TOM40 facilitate pre-NDUFS4 transfer
from the cytoplasm to the mitochondria, thereby increasing the
activity of mitochondrial complex 1 and oxygen consumption.
The protein combinations between the ER and mitochondria
mentioned above play central roles in maintaining the structural
integrity of MAMs.

Individual Protein-Mediated Tethers
In addition to the protein-protein interactions described above,
some independent proteins in MAMs are also essential for
maintaining ER-mitochondria conjugation. PDZD8 is an ER
protein in metazoans that is functionally orthologous to Mmm1,
and this protein is essential for maintaining the stability of the
MAMs structure and contributes to calcium ion homeostasis
in neurons (Hirabayashi et al., 2017). MFN2 is a GTPase
that mediates mitochondrial fusion. In addition, MFN2 is also
involved in respiration, autophagy and mitochondrial movement
regulation, and in particular, MFN2 mediates the coupling
of the mitochondria and the ER (Filadi et al., 2018). MFN2
in mitochondria is assembled into homo- or heterodimeric
complexes with MFN2 in the ER when the mitochondrial fusion
process is initiated (de Brito and Scorrano, 2008). When the
expression of MFN2 is suppressed, the structure and function
of the mitochondria are destroyed (Filadi et al., 2018). However,
when MFN2 is overexpressed, the interaction of the ER and
mitochondria is enhanced (Filadi et al., 2018), implying that
MFN2 plays a significant role in the connection of the ER
and mitochondria. Phosphofurin acidic cluster sorting 2 protein
(PACS-2) is another protein that is involved in MAMs integrity,
and it is also involved in apoptosis and autophagy (Herrera-Cruz
and Simmen, 2017; Moulis et al., 2019). It has demonstrated
that when PACS-2 is absent from cells, p20 is generated from

BAP31 through a caspase-dependent pathway; p20 then induces
mitochondrial fission by regulating Drp1, thus causing the
destruction of MAMs integrity (Simmen et al., 2005). In contrast,
overexpression of PACS-2 increases ER-mitochondria coupling
(Herrera-Cruz and Simmen, 2017; Moulis et al., 2019). In fact,
reducing the expression of PACS-2 will decrease the integrity of
MAMs and inhibit the lipidation of LC3-II, thereby inhibiting
autophagy (Hamasaki et al., 2013). Fetal and adult testis expressed
1 (FATE-1) is a testicular cancer antigen that is involved
in uncoupling ER-mitochondria interactions and disrupting
Ca2+ transfer from the ER to mitochondria, suggesting that
it plays a role in regulating apoptosis (Doghman-Bouguerra
et al., 2016). Because of the specific expression of FATE-1 in
the testis and its low expression in other cells, the use of
plasmids overexpressing FATE-1 is now a beneficial method
for studying the effects of structural and functional changes of
the MAMs on cell growth and metabolism. Parkin is also a
protein that is involved in maintaining the integrity of MAMs;
it is an E3 ubiquitin ligase and is associated with mitophagy
(Wang et al., 2019). Ziviani (2018) demonstrated that Parkin
alters MAMs integrity by affecting the ubiquitination of MFN2
(Basso et al., 2018). Recently, our group also verified that
disulfide-bond A oxidoreductase-like protein (DsbA-L), which
is a 25-kDa antioxidant enzyme that is also located in MAMs,
inhibits the apoptosis of tubular cells in diabetic nephropathy
by maintaining MAMs integrity (Yang et al., 2019; Figure 1).
Under pathological conditions, the increase or decrease in ER-
mitochondria connections caused by various factors leads to
dysregulated intracellular communication signaling. However,
the precise mechanism of MAMs regulation remains to be
further studied.

THE FUNCTION OF MAMs

Intracellular calcium homeostasis is the basis of cell metabolism.
Concentrations of calcium ions in mitochondria that are too
low can cause cellular energy metabolism disorders, while a high
concentration of Ca2+ can cause cell death (Vakifahmetoglu-
Norberg et al., 2017; Rossi et al., 2019). Normally, the ER
releases Ca2+, which is then transported to the mitochondrial
matrix, where it activates the tricarboxylic acid (TCA) cycle to
stimulate ATP synthesis (Hurst et al., 2017). However, the transfer
of excessive Ca2+ to the mitochondria leads to mitochondrial
calcium overload, and to the opening of the mitochondrial
permeability transition pore, leading to apoptosis (Pinton et al.,
2008). Therefore, the MAMs act as the bridge between the ER
and mitochondria, providing a buffer area for the transfer of
calcium ions between the ER and mitochondria. It was Rizzuto
et al. (1998) first uncovered the Ca2+ transfer function of the
MAMs when they observed the spatial relation between the
ER and mitochondria. When Ca2+ is released from the ER,
the Ca2+ concentrations in some parts of the mitochondrial
surface are much higher than those in most of the cytoplasm
(Rizzuto et al., 1998); therefore, there is a structure between
the ER and mitochondria that specifically transports calcium
ions from the ER to mitochondria. To date, the importance

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 July 2020 | Volume 8 | Article 595

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00595 July 14, 2020 Time: 17:37 # 4

Yang et al. MAMs and Autophagy

FIGURE 1 | Protein connections involved in maintaining MAM stability. The MAM consists of parts of the OMM, ER subdomain, and some proteins. The structural
stability of the MAM is maintained by these proteins.

of MAMs as calcium ion exchange platforms has been well
established. After a cell is stimulated, the ER releases calcium
ions through IP3R or ryanodine receptors (RyRs), which are the
main Ca2+ channels of the ER (Wang et al., 2017; Laver, 2018).
Because of the presence of MAMs, the ER and mitochondria
have a spatial relationship with each other, thus allowing calcium
ions to enter the mitochondria through VDAC1 on the OMM.
Unlike the passive movement of Ca2+ through the OMM via
the high-conductance protein VDAC1, Ca2+ movement through
the inner mitochondrial membrane (IMM) is driven by an
electrical gradient, and Ca2+ enters through the mitochondrial
calcium uniporter (MCU). High Ca2+ concentrations on the
mitochondrial membrane activate MCU to mediate the entry
of Ca2+ into the mitochondrial matrix, which subsequently
participates in a series of metabolic reactions (Nemani et al.,
2018). As a regulatory protein, Grp75 maintains the stability of
the interaction between IP3R and VDAC1, thus promoting the
absorption of calcium ions by mitochondria (Xu et al., 2018).

In addition to the proteins mentioned above, there are
many other proteins in the MAMs that are involved in Ca2+

transport. Sigma-1 receptor (Sig-1R) is a non-G-protein coupled
chaperone of the ER that maintains the stability of IP3R to ensure
appropriate Ca2+ signaling between the ER and mitochondria
(Su et al., 2010). RNA-dependent protein kinase(PKR)-like ER
kinase (PERK) is a key protein that is associated with ER
stress, and is also abundant in MAMs. When this protein is

knocked out, cells exhibit abnormal ER morphology, MAMs
destruction, and calcium dysregulation (Verfaillie et al., 2012).
Moreover, calnexin (CNX) is another MAMs protein that not
only is involved in protein folding but also interacts with ER
calcium pumps (Lynes et al., 2012). In summary, MAMs play
an irreplaceable role in maintaining calcium homeostasis, and
abnormal MAMs lead to dysregulation of intracellular signals and
cause metabolic disorders.

In addition to Ca2+ transport, participation in lipid
metabolism is also an important biological function of MAMs.
Many of the enzymes involved in lipid metabolism, such
as phosphatidylserine synthase (PSS) (Vance, 1990), ACAT
(Rusinol et al., 1994), and DGAT2 (Stone et al., 2009), are located
on MAMs. MAMs participate in lipid synthesis and transport
by connecting the ER and mitochondria. However, this role of
MAMs is not our focus here; please refer to Vance (2014).

MAMs AND AUTOPHAGY

Autophagy is a process of intracellular degradation in which
redundant proteins or damaged components within the
cell are isolated by a double-membrane vesicle called an
autophagosome. Then, autophagosomes fuse with lysosomes
to form autolysosomes, which are eventually degraded by
lysosomal enzymes (Scrivo et al., 2018). The formation and
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development of autophagosomes involve a series of conserved
genes called autophagy-related genes (ATGs), which encode
proteins that regulate autophagy (Yu et al., 2018). The initiation
of the isolation membrane is activated by the unc-51-like
autophagy-activating kinase (ULK) complex, and then, the ULK
complex activates the Vps34 complex by phosphorylating serine
14 of BECN1 (Ravikumar et al., 2010). This process occurs in
the phosphatidylinositol 3-phosphate (PI3P)-rich subdomains
of the ER. Subsequently, PI3P promotes the aggregation of
various proteins (ATG18, ATG20, ATG21, and ATG24) in the
assembly area, resulting in the growth of the phagophore. As
the phagophore grows, some substances in the cell that need
to be degraded are gradually enveloped by the phagophore
(Sciarretta et al., 2018). Furthermore, the phagophore eventually
matures and closes to form autophagosomes, and this process
requires the participation of the ATG conjugation system. First,
the ubiquitin-like protein ATG12 interacts with ATG5, and this
interaction is mediated by ATG7, ATG10, and ATG3 (Sciarretta
et al., 2018). The subsequent extension of the autophagosome is
the result of the interaction of the ATG12-ATG5 complex with
ATG16. This interaction promotes the lipidation of LC3 through
its conjugation to phosphatidylethanolamine (Sciarretta et al.,
2018), and LC3 promotes the maturation of the autophagosome.
The mature autophagosome fuses with a lysosomes, and this
fusion is mediated by soluble N-ethylmaleimide-sensitive
fusion protein attachment protein receptor (SNARE) proteins,
such as STX17, SNAP29, and VAMP8; this fusion forms the
autolysosome (Nair et al., 2011; Diao et al., 2015).

MAMs AND THE INITIATION OF
AUTOPHAGY

The origin of autophagosomal membranes is still controversial,
and the major source of membranes for autophagosome
formation is unknown. Ge et al. (2017) demonstrated that the
ER-Golgi intermediate compartment (ERGIC) is one of the
membrane sources of autophagosomes. In addition, there is
ample evidence that autophagy begins at the ER-mitochondria
coupling site. As we described earlier, ERMES is the ER-
mitochondria coupling complex in yeast that assembles via
the Mmm1-Mdm12-Mdm34/Mdm10 interaction (Kawano et al.,
2018). Surprisingly, ubiquitination of Mdm34 and Mdm12 is
necessary for autophagy (Belgareh-Touze et al., 2017). This
observation suggests that ER-mitochondria coupling is involved
in the initiation of phagophore expansion. ATG14 is a component
of the PI3K complex that is involved in autophagosome
formation and is also a preautophagosome marker (Diao et al.,
2015). Under starvation conditions, the content of ATG14
transferred to the MAMs increases, while ATG5, another marker
of autophagosome formation, translocates to the MAMs until the
autophagosome is formed, as observed by time lapse images in
HeLa cells (Hamasaki et al., 2013). Further observation showed
that when ER-mitochondria coupling is disrupted, ATG14 cannot
be correctly localized in the MAMs, and the formation of
autophagosomes is also inhibited (Hamasaki et al., 2013). This
evidence fully demonstrated that MAMs play an irreplaceable

role in the formation of autophagosomes, and the molecular
mechanism underlying this phenomenon can also be explained
by the functional roles of MAMs. Although existing studies have
mainly focused on the effects of proteins on autophagosome
formation, it is undeniable that lipids, especially phospholipids
and sterols, also play an important role in the formation of
autophagosomes. ATG8 (LC3), a ubiquitin-like protein, binds to
the membrane and is a marker of isolation membrane expansion.
Phosphatidylethanolamine (PE, the second most abundant
phospholipid in mammalian cells) plays a very important role
in this process. During isolation membrane expansion, ATG8
(LC3) is connected to PE by its C-terminal glycine residue.
In vivo, PE is the main target of ATG8 (LC3), and a high
level of PE can promote the connection between PE and ATG8,
thereby facilitating the ATG8-mediated fusion and closure of
the phagophore (Nair et al., 2012). Therefore, PE may be
indispensable for the formation of autophagosomes. Moreover,
another phospholipid, phosphatidylserine (PS, an important
constituent of membrane structure in cells), can also act as a
receptor of ATG8, and a small portion of ATG8 binds to PS (Sou
et al., 2006). In addition, lipid droplets (LDs), which are the lipid
storage organelles in cells, have been shown to be a critical source
of lipids for the synthesis of autophagosomes (Li et al., 2015;
Shpilka et al., 2015). In turn, the fatty acids (FAs) released in the
process of autophagy are transferred into new LDs via DGAT1 to
prevent FA-induced damage to the cell (Nguyen et al., 2017).

In addition to lipid synthesis, the dysregulation of Ca2+

in MAMs can also lead to abnormal autophagy (Ahumada-
Castro et al., 2019). Elimination of etoposide-induced protein
2.4 (EI24), which is a protein located in the ER that is involved
in regulating autophagy, destroys the integrity of the MAMs
and inhibits autophagy in primary pancreatic β cells (Yuan
et al., 2019). Further study has shown that when autophagy
occurs, EI24 translocates to MAMs and interacts with the IP3R-
Grp75-VDAC complex to maintain structural stability (Yuan
et al., 2019). The disruption of Ca2+ signaling between the ER
and mitochondria can interfere with the biological energy of
cells and induce prosurvival autophagy (Cardenas et al., 2010).
When ER-mitochondria Ca2+ transport is disrupted, AMPK
translocates to MAMs and activates autophagy through BECN
(Ahumada-Castro et al., 2019), which further confirms that the
MAMs are the platform for the formation of autophagosomes.
However, another group reached the opposite conclusion about
the degree of MAMs integrity and autophagy. Disruption of
the VAPB-PTPIP51 interaction through siRNA decreases the
integrity of the MAMs, activates autophagy and overexpression
of a synthetic protein that artificially increases ER-mitochondria
coupling, which reduces the formation of autophagosomes
(Gomez-Suaga et al., 2017). In terms of mechanism, VAPB-
PTPIP51 coupling was found to affect autophagy by disrupting
the transport of Ca2+ between the ER and mitochondria (Gomez-
Suaga et al., 2017). Despite the seemingly opposite conclusion,
we cannot deny the relationship between MAMs-mediated Ca2+

transport and autophagy.
ATG2 is also a key protein that regulates the expansion of

phagophores; this protein has two subtypes, namely, ATG2A
and ATG2B (Tang et al., 2017). During expansion, ATG2A

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 July 2020 | Volume 8 | Article 595

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00595 July 14, 2020 Time: 17:37 # 6

Yang et al. MAMs and Autophagy

translocates from the MAMs to the phagophore. ATG2A is
anchored to the MAMs by a C-terminal, 45-amino-acid domain,
which we called the MAMs localization domain (MLD), and
TOM40 and TOM70 are responsible for the localization of
ATG2A on the MAMs (Tang et al., 2019). Thus, a model was
proposed in which the TOM40-TOM70 complex recruits ATG2
to the MAMs to transfer vesicular and/or non-vesicular lipids
to the phagophore to enlarge the autophagosome and enhance
autophagic flux (Tang et al., 2019). Similarly, promyelocytic
leukemia protein (PML), which is a tumor suppressor, is located
at the MAMs and controls the formation of autophagosomes
by regulating the activity of the AMPK/mTOR/ULK1 pathway
via affecting the transport of calcium ions from the ER to
mitochondria (Missiroli et al., 2016).

PINK/PARKIN-MEDIATED MITOPHAGY

Currently, one of the best understood and most well-studied
pathways of mitophagy is the PTEN-induced putative kinase
1 (PINK1) and Parkin(PARK2) pathway, which is associated
with the development of Parkinson’s disease (Barodia et al.,
2017; Truban et al., 2017). Under physiological conditions
and through a mitochondrial targeting sequence, PINK is
continuously transported to the mitochondria and degraded by
matrix processing peptidases (MPPs). The degradation product
is then cleaved by a protease located in the mitochondrial inner
membrane, namely, presenilin-associated rhomboid-like (PARL),
and cleaved PINK is transported back to the cytoplasm, where
it is finally degraded in lysosomes (Ashrafi and Schwarz, 2013;
Wang et al., 2020). In the pathological state, the cleavage of
PINK is reduced because of mitochondrial damage. The non-
cleaved PINK, via a process mediated by the OMM protein
translocase of the outer membrane (TOM), accumulates on the
outer membrane of the mitochondria. In addition, the level of
mitochondrial pyruvate can also influence the aggregation of
PINK on the OMM by promoting the direct interaction between
PINK1 and TOM (Park et al., 2015). The accumulated PINK
on the OMM phosphorylates serine 65 (Ser65) of ubiquitin,
thereby recruiting Parkin. Subsequently, PINK phosphorylates
and activates Parkin on the OMM, and then, activated Parkin
polyubiquitinates proteins such as VDAC1 and p62/SQSTM1
(Wang et al., 2020). The ubiquitinated substrates bind to
LC3 through LIR to recruit the autophagosomal membrane
around the mitochondria, and then, further extension of the
autophagosomal membrane leads to fusion with lysosomes to
form mature mitochondrial autophagosomes and initiate the
process of mitochondrial degradation (Tanida et al., 2008; Schaaf
et al., 2016). Normal PINK/Parkin pathway-mediated mitophagy
is the basis for intracellular homeostasis, and defects in this
process are associated with many diseases, such as Parkinson’s
disease (Nardin et al., 2016) and acute kidney injury (Lin et al.,
2019). As the bridge between the ER and mitochondria, the
most active organelle in the cell, what is the role of the MAMs
in this process?

Yang and Yang (2013) demonstrated that ubiquitinated
sites gradually undergo Parkin-mediated mitophagy, and the

region between the ER and damaged mitochondria is where
LC3 is recruited. Consistent with this observation, BECN1,
the core component of the class III phosphatidylinositol 3-
kinase (PtdIns3K) complex, is also found in MAMs, where it
strengthens the connection between the ER and mitochondria
and promotes the formation of autophagosome precursors
(Gelmetti et al., 2017); therefore, MAMs are the site of the
initiation of PINK/Parkin-dependent mitophagy. However, even
though PINK, Parkin and BECN1 are found in MAMs, loss
of PINK prevents BECN1 from accumulating in MAMs, and
this process is independent of PARK (Gelmetti et al., 2017),
which suggests a new role for PINK in regulating mitophagy.
In addition, the overexpression of Parkin enhances the structure
and function of the ER-mitochondria connection, promotes the
transfer of Ca2+ from the ER to mitochondria and increases
the production of ATP in mitochondria (Cali et al., 2013).
Similarly, in Parkin mutant human fibroblasts, the integrity of
the MAMs was destroyed, and further research has shown that
PINK-mediated destruction of MAMs integrity was achieved by
affecting the ubiquitination of MFN2 (Gautier et al., 2016; Basso
et al., 2018). Glycoprotein 78 (gp78), a ubiquitin ligase (E3)
anchored in the ER membrane that is associated with mitophagy
(Guardia-Laguarta et al., 2019), has been confirmed to be located
in MAMs (Wang et al., 2000). The available evidence suggests that
the core protein involved in PINK/Parkin-mediated mitophagy
is located in MAMs and is involved in the regulation of MAMs
integrity and function.

FUNDC1-MEDIATED MITOPHAGY

In mammalian cells, FUN14 domain containing 1 (FUNDC1)
is involved in the receptor-mediated mitophagy pathway and is
a highly conserved protein containing 155 amino acids (Zhang
et al., 2017). FUNDC1 is located in the mitochondrial outer
membrane protein-containing LC3-binding regions (LIR), and
FUNDC1 recruits LC3 through LIR to initiate mitophagy during
hypoxia (Liu et al., 2012). FUNDC1-dependent mitophagy is
regulated by a variety of stress factors and cellular proteins.
Under normoxic conditions, Tyr18 and Ser13 of FUNDC1 are
phosphorylated by Src and casein kinase 2 (CK2), respectively,
preventing it from binding to LC3 to induce autophagy (Liu
et al., 2012; Chen et al., 2014). Under hypoxic conditions,
the mitochondrial protein phosphatase PGAM5 mediates the
dephosphorylation of Ser13, thus enabling FUNDC1 to bind
to LC3 to form autophagosomes (Ma et al., 2020). In addition
to Src and CK2, ULK1, which is a Ser/Thr kinase that
participates in the formation of early autophagosomes, is also
closely related to the mitophagy of FUNDC1. Under hypoxic
conditions or treatment with FCCP, the expression of ULK1
increases, and ULK1 is recruited to the fragmented mitochondria;
Moreover, transposable ULK1 interacts with FUNDC1 and
promotes the phosphorylation of FUNDC1 at Ser17 to initiate
autophagy (Wu et al., 2014). MARCH5 is a mitochondrial E3
ligase that can regulate mitophagy; Chen et al. demonstrated
that MARCH5 directly interacts with FUNDC1, and degrades
FUNDC1 by promoting its ubiquitination at lysine 119 and that
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FIGURE 2 | Molecular mechanisms of FUNDC1-mediated mitophagy. FUNDC1 is a MAM-associated protein that interacts with IP3R2 to regulate the expression of
Fis1 through CREB. Under hypoxic conditions, FUNDC1 is transported to the MAM by CNX and unknown proteins (X). PGAM5-mediated dephosphorylation of
Ser13 and ULK1-mediated phosphorylation of Ser17 promote the binding of FUNDC1 to LC3, leading to the initiation of mitophagy.

the presence of MARCH5 induces the insensitivity of FUNDC1
to hypoxia-induced autophagy (Chen et al., 2017). FUNDC1
plays an essential role in receptor-mediated mitophagy, but what
role does the MAMs play in this physiological process?

The direct relationship of the MAMs and FUNDC1-mediated
mitophagy was demonstrated by Zhou et al., who showed
that FUNDC1 is a MAM-localized protein that interacts with
another MAMs protein, IP3R2, to mediate IP3R-dependent Ca2+

signaling from the ER to the mitochondria and cytosol (Wu
et al., 2017). When the expression of FUNDC1 is decreased,
the decreased intracellular Ca2+ levels inhibit the expression
of Fis1 through Ca2+-sensitive cAMP-response element binding
protein (CREB), thus causing mitochondrial dysfunction (Wu
et al., 2017). Moreover, the decreased expression of FUNDC1
disrupts the interaction between the ER and mitochondria
and reduces the protein abundance in MAMs (Wu et al.,
2017). Another study of MAMs and FUNDC1 demonstrated
that under normoxic conditions, there is a small amount of
FUNDC1 in MAMs, and in response to hypoxia, FUNDC1
substantially accumulates in MAMs (Wu et al., 2016). What is
the molecular mechanism by which FUNDC1 translocates to
MAMs? CNX may play an indispensable role in this process.
Immunoprecipitation experiments have shown that there is an
interaction between the N terminus of CNX and the hydrophilic
domain of FUNDC1. However, due to structural reasons, the N
terminus of CNX is located in the lumen of the ER, and it is
unlikely that the hydrophilic domain of FUNDC1 penetrates the

lumen of the ER to interact with CNX; thus, there must be an
unknown protein that mediates the interaction between CNX and
FUNDC1. Depletion of CNX can inhibit FUNDC1 translocation
to the MAMs under hypoxic conditions, which further confirms
the role of CNX in FUNDC1 translocation (Wu et al., 2016;
Figure 2). Although further studies on the role of MAMs in
FUNDC1-mediated mitophagy are needed, the available evidence
suggests that the MAMs provides a platform for FUNDC1 to
perform its biological functions.

In addition to the proteins mentioned above, another protein
involved in ER-mitochondria coupling, PACS2, also plays an
important role in mitophagy. Coyne demonstrated that PACS2
mediates the integrity of the ER-mitochondria connection during
stimulation with atherogenic lipids. The loss of PACS2 leads to
MAMs destruction and dysregulated mitophagosome formation
and mitophagy (Moulis et al., 2019).

CONCLUSION

Autophagy is an important physiological process for the
maintainance of cellular homeostasis, and defects in this process
are associated with many diseases, such as Parkinson’s disease,
cancer and acute kidney injury (AKI). As a bridge between the ER
and mitochondria, the MAM also play an important role in Ca2+

transport, lipid metabolism and autophagy. On the one hand,
the MAMs serve as the platform for autophagy-related proteins
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to perform their biological functions. On the other hand,
the Ca2+ transport and lipid metabolism functions of
MAMs may be involved in autophagosome development.
Disruption of the structure and function of MAMs leads
to abnormal autophagy. Although existing studies have
fully demonstrated the correlation between the MAMs
and autophagy, there are still many questions for us
to explore. What proteins mediate the involvement of
MAMs in the expansion of autophagosomes? What is
the relationship between MAMs and diseases caused by
abnormal autophagy? The available evidence supporting a
relationship between MAMs and autophagy was obtained
in vitro, and experiments are needed to further verify
this phenomenon in vivo. It is believed that with the
development of cellular and molecular biology technology,
the regulatory mechanisms of MAMs and autophagy will
be continuously elucidated, and the MAMs are expected

to be an important target for the treatment of diseases
related to autophagy.
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