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Abstract

Proteins play essential roles in almost all life processes. The prediction of protein function is of significance for the
understanding of molecular function and evolution. Network alignment provides a fast and effective framework to
automatically identify functionally conserved proteins in a systematic way. However, due to the fast growing genomic
data, interactions and annotation data, there is an increasing demand for more accurate and efficient tools to deal
with multiple PPI networks. Here, we present a novel global alignment algorithm NetCoffee2 based on graph feature
vectors to discover functionally conserved proteins and predict function for unknown proteins. To test the algorithm
performance, NetCoffee2 and three other notable algorithms were applied on eight real biological datasets.
Functional analyses were performed to evaluate the biological quality of these alignments. Results show that
NetCoffee2 is superior to existing algorithms IsoRankN, NetCoffee and multiMAGNA++ in terms of both coverage and
consistency. The binary and source code are freely available under the GNU GPL v3 license at
https://github.com/screamer/NetCoffee2.
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Introduction
Protein function is a fundamental problem that attracts
many researchers in the fields of both molecular function
and evolution. Proteins were involved in almost all life
processes and pathways. Although many researchers have
put a great of efforts to develop public protein annota-
tion databases, such as Uniprot [1], NCBI protein, RCSB
PDB [2] and HPRD [3], the task of protein characteriza-
tion is far to be completed. Thanks to the development of
next-generation sequencing [4], computational methods
become a major strength for discovering the molecular
function and phylogenetic [5–17].

Global network alignment provides an effective compu-
tational framework to systematically identify functionally
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conserved proteins from a global node map between
two or more protein-protein interaction (PPI) networks
[18–20]. These alignments of two networks are called
pairwise network alignment [21, 22]. These of more than
two are termed as multiple network alignment [23–25].
The node map of a network alignment is actually a set
of matchsets, which consists of a group of nodes (pro-
teins) from PPI networks [24]. There are two types of node
maps: one-to-one and multiple-to-multiple. In a one-to-
one node map, one node can match to at most one node
in another network [26]. In a multiple-to-multiple map,
each matchset can have more than one node of a network.
With a global network alignment, one can easily pre-
dict function of unknown proteins by using “transferring
annotation”.

IsoRank was the first algorithm proposed to solve
global network alignment, which takes advantage of a
method analogous to Google’s PageRank method [27].
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An updated version IsoRankN was proposed to perform
multiple network alignment based on spectral clustering
on the induced graph of pairwise alignment score [28].
Intuitively guided by T-Coffee [29], a fast and accurate
program NetCoffee [30] was developed to search for a
global alignment by using a triplet approach. However, it
cannot work on pairwise network alignment. There are
four major steps in the program: 1) the construction of
PPI networks and bipartite graphs; 2) the weight assign-
ment based on a triplet approach; 3) the selection of
candidate match edges; 4) optimization with simulated
annealing. To improve the edge conservation, a genetic
algorithm MAGNA was proposed, which mimics the evo-
lutionary process [26]. It starts with an initial population
of members. Each member is an alignment. Two members
can produce a new member with a crossover function.
A fitness function was designed to evaluate the quality
of alignments in each generation. MAGNA++ speeds up
the MAGNA algorithm by parallelizing it to automati-
cally use all available resources [31]. A more advanced
version multiMAGNA++ was applied to find alignment
for multiple PPI networks [32]. However, there still exists
a gap between network alignment and the prediction of
unknown protein function in a systematical level, due
to the large amount of molecular interactions and the
limitation of computational resources.

Here, we present a novel network alignment algo-
rithm NetCoffee2 based on graph feature vectors to
identify functionally conserved proteins. A target scor-
ing function was used to evaluate the quality of net-
work alignment, which integrates both topology and
sequence information. Unlike NetCoffee, NetCoffee2 can
perform tasks of both pairwise and multiple network
alignments. Furthermore, it outperforms existing align-
ment tools in both coverage and consistency. It includes
three major steps: 1) calculation of sequence similarities
for pairs of nodes; 2) calculation of topological similar-
ities; 3) maximizing a target function using simulated
annealing.

Definition and notation
Network alignment is a problem to search for a global
node mapping between two or more networks. Suppose
there is a set of PPI networks{G1, G2, ..., Gk}, k ≥ 2, each
network can be modeled as a graph Gi = {Vi, Ei}, where
Vi and Ei represents proteins and interactions appearing
in networks. A matchset consists of a subset of proteins
from

⋃k
i=k Vi. A global network alignment is to find a

set of mutually disjoint matchsets from a set of PPI net-
works. Note that, each protein can only appear in one
matchset in a global alignment solution. Each matchset
represents a functionally conserved group of proteins.
Pairwise network alignment aims to find an alignment for
two PPI networks, whereas multiple network alignment

aims to find an alignment for more than two PPI net-
works. Unlike the previous algorithm NetCoffee, our
updated version NetCoffee2 can be applied to search for
both pairwise network alignment and multiple network
alignments.

Method
An integrated model
Sequence information is one of important factors in
charactering biological function of genes, RNA and pro-
teins[33]. For example, proteins of a typical family not
only share common sequence regions, but also play sim-
ilar roles in biological processes, molecular function and
cellular component. As only a small fraction of a protein
sequence is in the functional region, a sequence-based
similarity measure is insufficient for the annotation of
protein function [34]. PPI network topology can provide
complementary information for the prediction of pro-
tein function. As used in many other network aligners
such as IsoRank, Fuse [35] and Magna, both topology
and sequence information are integrated in one simi-
larity measure to search for functionally conserved pro-
teins across species. There are two basic assumptions
underlying this methodology: 1) a sequence similarity
implies functional conservation; 2) functions are encoded
in topology structure of PPI networks.

Sequence-based similarity
Intuitively guided by an assumption that structures deter-
mine functions, most of existing network aligners use both
amino acid seqeuences and network topology to predict
protein functions. Here, we performed an all-against-all
sequence comparison using BLASTP [36] on all protein
sequences. These protein pairs with significant conserved
regions are taken into consideration for further filtrations.
Note that e-value is an input parameter to control the cov-
erage of network alignment. Let � denote the candidates
of homology proteins. Given a protein pair u and v, the
sequence similarity s (u,v) can be calculated in the fol-
lowing formula, sh(u, v)= ε(u,v)−εmin(u,v)

�ε
. Here, ε(u,v) can

be log(evalue) or bitscore of the protein pair u and v,
and �ε is the largest difference between any two pairs of
homolog in �, �ε=εmax(u, v) − εmin(u, v), which servers
as a normalization factor. The most similar one is 1, the
least 0.

Topology-based similarity
As protein functions are also encoded in the topology of
PPI networks, topological structure can guide us to find
functionally conserved proteins. To find the topologically
similar protein pairs, a similarity measure is necessary
for evaluating the topological similarity for each pair of
nodes. The mathematical question is how to calculate a
similarity of a pair of nodes, which are from two different
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networks [37]. In the aligner of IsoRank, it was calculated
based on the principle that if two nodes are aligned, then
their neighbors should be aligned as well. Our method
works on a principle that if two nodes are aligned, then the
local induced-subgraphs should be similar.

Given a network G = (V , E), V = {v1, v2, ..., vn}, we
design a 5-tuple-feature vector (γ , σ , τ , η, θ ) for each node
in V to represent local connections of its corresponding
node. Without loss of generality, we denote the adjacent
matrix of G as Mn×n. Since M is real and symmetric, there
must exist a major normalized eigenvector K=(k1,k2...kn).
In another words, K is the normalized eigenvector of the
largest eigenvalue. Then, ki, 1 ≤ i ≤ n represents the rep-
utation of the node vi. The greater the reputation is, the
more important the node is. Therefore, we use ki as the
first element of the 5-tuple-feature vector (i.e. γ ) to char-
acter the node vi. Let us denote the neighbor of v as Nv.
Then, we use |Nv| as the second element of the 5-tuple-
feature vector (i.e. σ ), the sum of the reputation of these
nodes

∑
x∈Nv kx as the third element (i.e. τ ). Let us denote

these nodes that are 2-step away from v as N2
v . It notes

that all nodes in N2
v are not directly connected to v. Then,

we use |N2
v | as the fourth element (i.e. η). The last element

η is calculated by the formula 1
2

∑
x∈N2

v
kxpxv. Here, we

denote the number of the shortest paths from x to v as pxv.
As shown in Fig. 1a, there are two networks G1 and G2.
Based on the definition stated above, the 5-tuple-feature
vector of a1, a2, a3, a4, a5 in G1 are (1, 3, 2.63, 1, 0.16),
(0.88, 3, 2.33, 1, 0.75), (0.33, 1, 0.88, 2, 1), (0.75, 2, 2, 1, 0.88),
(1, 3, 2.63, 1, 0.16), respectively. They are the same for
b1, b2, b3, b4, b5 in G2. The vector of each element of
all nodes should be normalized in the following step
as shown in Fig. 1b. With the normalized 5-tuple-
feature vector, the node similarity of any two nodes
st(u, v) can be calculated with the Gaussian function
st(u, v) = exp(− 1

2 x2), where x represents the Euclidean
distance between the 5-tuple-feature vector of node u and
v. For instance, as shown in Fig. 1a, the vector of ai and
bi are the same. Therefore, the diagonal of the similarity
matrix is (1, 1, 1, 1, 1).

Simulated annealing
To find an optimal network alignment, we applied a
linear model to integrate both sequence and topology
information. The alignment score can be formulated as
f (A) = ∑

m∈A sm, where A and m is refer to a global
alignment and a matchset, respectively. Suppose m =
{m1, m2, ..., mv}, the alignment score of the matchset is
sm = ∑mv−1

i=m1

∑mv
j=i αsh(i, j) + (1 − α)st(i, j). By default,

α = 0.5. User can increase α when he consider the
sequence similarity is more important and decrease α

when he consider the topological similarity is more impor-
tant. Therefore, the problem of global network alignment
can be modeled as an optimization problem, which is to

Algorithm 1 The Pseudocode of Simulated Annealing:

Input: C, Tmax, Tmin, N , s

Output: A which attempts to maximize f(A)

1: LetA = ∅, i = 0, T0 = Tmax, Ti = Tmax −
i∗(Tmax−Tmin)

N ;

2: while Ti >= Tmin do

3: Draw arbitary sample θ from C;

4: A′ = update(A, θ));

5: �f = f (A′) − f (A);

6: if �f >= 0 then

7: A = A′

8: else

9: A = A′ with probability e
�f

Ti∗s

10: end if

11: i = i + 1

12: end while

13: return A

search for an optimal alignment A∗, such that A∗ =
arg max

A
f (A) = ∑

m∈A sm.
To solve this problem, we used a simulated anneal-

ing algorithm [38] to search for an approximately opti-
mal solution. Simulated annealing is a commonly used
approach in the discovering of network alignment solu-
tions, as it can rapidly converge in a favorable time
complexity [39]. As shown in the pseudocode of simu-
lated annealing, the alignment A was firstly initialized
to an empty set ∅. Then we repeatedly perturb the cur-
rent alignment A with a Metropolis scheme P(
f )=e


f
(Ti∗s)

as the equilibrium distribution till the alignment score
converges.

Result and discussion
Test datasets and experimental setup
To test our method on real biological data, PPI net-
work of five species were downloaded from the pub-
lic database IntAct [40] (https://www.ebi.ac.uk/intact/).
The five species include mus musculus (MM), saccha-
romyces cerevisiae (SC) , drosophila melanogaster (DM),
arabidopsis thaliana (AT) and homo sapiens (HS). Inter-
actions could be detected by different methods, such as
ubiquitinase assay, anti tag/bait coimmunoprecipitation.
However, some experimental methods such as Tandem
Affinity Purification do generate molecular interactions

https://www.ebi.ac.uk/intact/
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Fig. 1 The calculation of similarity matrix between two networks G1 and G2. a A 5-tuple-feature vector (γ , σ , τ , η, θ ) was calculated on each node.
Here, the vector of γ , (1,0.88,0.33,0.75,1)T , is the normalized major eigenvector of the adjacent matrix of the graph. Vectors of σ and η are the
number of 1-step neighbors and 2-step neighbors for each node. Vectors of τ and θ describe the influence of each node to their 1-step neighbors
and 2-step neighbors. b Vectors of σ , τ , η, θ were normalized by its maximal element. c The similarity matrix was calculated by a Gaussian-based
similarity measure st(u, v) = exp

(− 1
2 x2

)
. Here, u and v is a pair of nodes, and x is the Euclidean distance between the two feature vectors of u and v

that can involve more than two molecules. An expansion
algorithm was applied to transform these n-ary interac-
tions into a set of binary interactions. To improve the
data quality, these interactions of the spoke expanded co-
complexes are filtered out. As shown in Table 1, 41,043
proteins and 193,576 interactions were collected as test
datasets. In order to measure the biological quality for
alignment results, we analyzed the functional similarity
based on Gene Ontology terms [41], which include molec-
ular function (MF), biological process (BP) and cellular
component (CC). The functional annotation data were
downloaded from the gene ontology annotation database

Table 1 Statistics of PPI networks of five species: mus musculus
(MM), saccharomyces cerevisiae (SC), drosophila melanogaster
(DM), arabidopsis thaliana (AT) and homo sapiens (HS)

Species NO.nodes NO.edges BP Ann.(%) MF Ann.(%) CC Ann.(%)

MM 3611 4704 87.03 87.59 88.00

SC 5708 42674 94.55 94.48 90.94

DM 8715 26362 65.81 64.46 64.30

AT 5665 19247 84.99 78.78 78.44

HS 17344 100589 70.14 71.86 72.95

Functional annotations of proteins are collected, which include biological process
(BP), molecular function (MF) and cellular component (CC)

(GOA) [42]. All of our test datasets can be freely accessi-
ble at http://www.nwpu-bioinformatics.com/netcoffee2/
dataset.tar.gz.

We have implemented NetCoffee 2 in C++ using the
igraph library (version 0.7.1) [43]. The source code and
binary code are freely available on the GitHub repos-
itory under the GNU GPL v3 license https://github.
com/screamer/NetCoffee2. To compare algorithm per-
formance, we ran our algorithm and three other algo-
rithms NetCoffee, IsoRankN and multiMAGNA++ on a
set of real biological datasets. The suggested parame-
ters were used for running all alignment tools. As seen
in Table 2, eight datasets were generated as benchmark
datasets. The number of PPI networks in eight bench-
mark datasets ranges from two to five. The biggest PPI
network is HS, so we generated datasets based on the
follow rules: the datasets include HS or not. dataset1
and dataset2 include two PPI networks, so one dataset
includes HS, and another do not include HS. dataset3
to dataset6 include three PPI networks, so two dataset
includes HS, and another two do not include HS. To
reduce the running time of the algorithm, we gener-
ate dataset7 without HS. All the four algorithms were
performed on a same machine with CPU Intel Xeon
E5-2630v4.

http://www.nwpu-bioinformatics.com/netcoffee2/dataset.tar.gz
http://www.nwpu-bioinformatics.com/netcoffee2/dataset.tar.gz
https://github.com/screamer/NetCoffee2
https://github.com/screamer/NetCoffee2
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Table 2 Algorithms performance were tested on eight datasets,
which were represented as D1, D2,..., D8

Species D1 D2 D3 D4 D5 D6 D7 D8

MM
√ √ √ √ √

SC
√ √ √ √ √

DM
√ √ √ √ √ √

AT
√ √ √ √ √

HS
√ √ √ √

Performance and comparison
Our goal is to identify a set of matchsets that are biolog-
ically meaningful. To verify the biological quality of alig-
ment results, we take two aspects into consideration: 1)
each matchset is functionally conserved; 2) the alignment
node map cover as many proteins as possible. Therefore,
we use coverage and consistency to evaluate the biolog-
ical quality of alignment results. Coverage serves as a
proxy for sensitivity, indicating the amount of proteins the
alignment can explain. Consistency serves as a proxy for
specificity, measuring the functional similarity of proteins
in each match set. There is a trade-off between coverage
and consistency.

Given an alignment solution, we used the percentage
of aligned proteins as coverage. As the number of nodes
varies in different networks, some proteins might be lost
in a one-to-one node mapping. This can be explained by

gene loss events in evolution. And these homogeneous
proteins from one species can be accounted for gene
duplication in evolution. In our test, multiMAGNA++
is the only algorithm that supports one-to-one node
mapping. All other algorithms allow multiple-to-multiple
node mapping. As NetCoffee is not applicable on pair-
wise network alignment, there is no NetCoffee result for
D1 and D2. From Fig. 2, we can see that NetCoffee2
stably found a coverage of 76.7% on average for all the
eight datasets. It is followed by multiMAGNA++, which
found 70.4% proteins on average. Although the coverage
of MultiMAGNA++ can be more than 80% on D3, D4 and
D7, it rapidly fell to 50% on D1, D2 and D5. NetCoffee
approximately identifies about 35% proteins on average,
which is less than the coverage of NetCoffee2 and mul-
tiMAGNA++. IsoRankN found only an average of 9.6%
proteins on eight datasets, which is obviously smaller than
the coverage of the other competitor. Overall, the results
show that NetCoffee2 is superior to multiMAGNA++,
NetCoffee and IsoRankN in terms of coverage and it is
more stable than all of its competitors.

Consistency is used to measure the biological qual-
ity of matchsets in alignment results. We employed two
concepts to evaluate global alignment algorithms based
on Gene Ontology (GO) terms: mean entropy (ME)
and mean normalized entropy (MNE) [28, 30].Given a
matchset m = {v1, v2, ..., vn}, the entropy of m was

Fig. 2 Coverage of NetCoffee, IsoRankN, multiMAGNA++, and NetCoffee2 on eight test datasets. Coverage was measured by the percentage of
aligned proteins in alignments
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Table 3 Consistency was measured by mean entropy (ME) and mean normalized entropy (MNE)

Algorithm Consistency D1 D2 D3 D4 D5 D6 D7 D8 Average

isoRankN ME 1.09 1.07 1.15 1.07 1.18 1.20 1.19 1.20 1.144

MNE 0.58 0.56 0.58 0.59 0.53 0.60 0.60 0.58 0.58

NetCoffee ME * * 0.99 0.85 1.05 1.00 1.07 1.17 1.022

MNE * * 0.54 0.54 0.53 0.55 0.58 0.57 0.55

multiMAGNA++ ME 0.94 0.94 0.91 0.93 0.98 1.00 1.16 1.18 1.005

MNE 0.55 0.54 0.53 0.58 0.52 0.57 0.63 0.59 0.56

NetCoffee2 ME 1.04 0.73 0.94 0.87 1.04 1.05 1.01 1.10 0.973

MNE 0.54 0.46 0.52 0.54 0.52 0.55 0.56 0.55 0.53

Notably, a matchset is more functionally coherent when ME and MNE are smaller. There is no result of NetCoffee on D1 and D2, because it can not be applied to pairwise
network alignment

calculated by the formula E(m) = ∑d
i=1 pi × log(pi).

Here, d represents the number of different GO terms,
pi the proportion of the ith GO term in all annotations
of v. The mean entropy (ME) is the arithmetic mean of
entropy for all matchsets. The normalized entropy of m is
defined as NE(m) = − 1

log(d)

∑d
i=1 pi × log(pi). The mean

normalized entropy (MNE) is the arithmetic mean of nor-
malized entropy for all matchsets in a global alignment.
It should be noted that these alignments with lower ME
and MNE values are more functionally coherent. As can
be seen in Table 3, NetCoffee2 has the best performance
on D2, D7 and D8 in terms of ME, which are 0.73, 1.01
and 1.10, respectively. And mutliMAGNA++ obtains the
best ME on D1 (0.94), D3 (0.91), D5 (0.98) and D6 (1.00).
NetCoffee gets the best ME on D4 (0.85) and D6 (1.00).
Overall, NetCoffee2 found the best ME (0.973) on average,
which is followed by multiMAGNA++ (1.005), NetCoffee
(1.022) and IsoRankN (1.144). Furthermore, NetCoffee2
obtains an average of 0.53 in terms of MNE, which is fol-
lowed by NetCoffee (0.55), multiMAGNA++ (0.56) and
IsoRankN (0.58). It outperforms it competitors on all the
eight datasets in terms of MNE. Therefore, we can draw
a conclusion that NetCoffee2 is superior to the existing
algorithms multiMAGNA++, NetCoffee and IsoRankN in
terms of both ME and MNE.

Conclusion
Network alignment is a very important computational
framework for understanding molecular function and
phylogenetic relationships. However, there are still rooms
for improving existing algorithms in terms of coverage and
consistency. Here, we developed an efficient algorithm
NetCoffee2 based on graph feature vectors to globally
align multiple PPI networks. NetCoffee2 is a fast, accu-
rate and scalable program for both pairwise and multiple
network alignment problems. It can be applied to detect
functionally conserved proteins across different PPI net-
works. To evaluate the algorithm performance, NetCof-
fee2 and three existing algorithms have been performed

on eight real biological datasets. Gene ontology annota-
tion data were used to test the functional coherence for
all alignments. Results show that NetCoffee2 is appar-
ently superior to multiMAGNA++, NetCoffee and Iso-
RankN in term of both coverage and consistency. It can
be concluded that NetCoffee2 is a versatile and efficient
computational tool that can be applied to both pairwise
and multiple network alignments. Hopefully, its appli-
cation in the analyses of PPI networks can benefit the
research community in the fields of molecular function
and evolution.
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