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Identifying the general principles by which genotypes are converted into phe-
notypes remains a challenge in the post-genomic era. We still lack a predictive
understanding of how genes shape interactions among cells and tissues in
response to signalling and environmental cues, and hence how regulatory net-
works generate the phenotypic variation required for adaptive evolution.
Here, we discuss how techniques borrowed from synthetic biology may facili-
tate a systematic exploration of evolvability across biological scales. Synthetic
approaches permit controlled manipulation of both endogenous and fully
engineered systems, providing a flexible platform for investigating causal
mechanisms in vivo. Combining synthetic approaches with multi-level pheno-
typing (phenomics) will supply a detailed, quantitative characterization of
how internal and external stimuli shape the morphology and behaviour of
living organisms. We advocate integrating high-throughput experimental
data with mathematical and computational techniques from a variety of
disciplines in order to pursue a comprehensive theory of evolution.

This article is part of the theme issue ‘Genetic basis of adaptation and
speciation: from loci to causative mutations’.
Life is infinitely stranger than anything which the mind of man could invent.
– Sherlock Holmes, ‘A Case of Identity’ in The Adventures of Sherlock Holmes (1891)
1. Introduction
Over a century of advances in molecular techniques have gifted evolutionary
biologists greater access to the source of heritable variation than Mendel or
Darwin could have imagined (table 1). We are only now beginning to under-
stand what processes and principles convert an enormous diversity of
genotypes into an even greater diversity of phenotypic forms. In the search
for general principles of animal evolution, researchers have found that evol-
ution is driven both by mutations to proteins and mutations to regulatory
regions. Although it has been proposed that mutating cis-regulatory regions
may avoid the pleiotropic effects of mutating proteins [7], recent studies indi-
cate that modifying transcriptional enhancers may also introduce extensive
pleiotropy [8]. Indeed, evolutionary innovations in regulatory regions have
been found to affect every level from morphology to physiology to behaviour
[6] even when target proteins are functionally conserved [9–14]. These obser-
vations highlight that a comprehensive evolutionary theory necessitates
functional understanding of how regulatory regions orchestrate the activities
of cells, tissues, and ultimately whole organisms.

We face a number of fundamental challenges to elucidating phenotypic
evolution through regulatory mutations. On a very basic level, it is still difficult
to predict gene expression levels from an arbitrary promoter by an enhancer of
known sequence. Recent progress in mathematical and mechanistic modelling
has introduced general thermodynamic frameworks for the interactions of regu-
latory factors with enhancers [15], and reliable quantitative predictions have
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Table 1. Defined terms.

synthetic biology Creating biological systems in order to establish control over cellular behaviours (modified from Bashor & Collins [1]).

synthetic approach Introducing an artificial or constructed element into a biological context; e.g. introducing mutations/duplications/indels,

genetically engineered constructs (including circuits) (see also Garcia et al. [2]).

genotype-to-phenotype

map

Sum of ways by which genotypic information influences the phenotype of an organism (adapted from Houle [3]).

phenomics Acquisition of high-dimensional phenotypic data on an organism-wide scale. While genomic methods can aspire to survey

genetic information comprehensively, the vast information content of phenotypes prevents their exhaustive

characterization. Phenomics, instead, relies on prioritizing what to measure (adapted from Houle [3]).

enhancer A contiguous DNA segment capable of boosting transcription from the promoter of a target gene, which could be located

thousands of base pairs away. Enhancers can be found upstream or downstream to their target promoter and can even

be located within transcriptional units.

regulatory region DNA sequence that alters the expression of target genes. In this review, we will use the term primarily to refer to

enhancers, promoters, silencers and insulators, which function through the binding of transcription factors or other

regulatory molecules to DNA.

gene regulatory

network

Set of transcription factors and signalling molecules that interact with each other and with DNA to regulate the expression

of a set of genes (some of which may encode the transcription factors themselves).

complexity Has many precise mathematical definitions in different contexts and fields, related in some way to the ease or difficulty of

describing a given structure. For our purposes, the ‘complexity’ of a system scales with the number of potential

behaviours that the system could demonstrate; e.g. for networks, ‘complexity’ roughly scales with size (number of

elements and interactions between them).

modularity The degree to which a network can be divided into independent subnetworks responsible for executing particular functions.

robustness The degree to which a system is sensitive to perturbation or variation in architecture, environment, noise, parameters, etc.

[4]. It can be precisely defined depending upon the performance measure of interest [5], though its usage in biological

literature is not standardized, partly because it is rarely quantified.

evolvability The capacity of a population to produce the heritable phenotypic variation of a kind that is not unconditionally deleterious

(adapted from Masel & Trotter [6]).
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been produced for specific cases in developing organisms (e.g.
[16,17]). However, we have yet to generatemodels approaching
the accuracy and generalizability of comparable theories for
prokaryotic gene expression, which is itself still an active area
of research beyond certain controlled contexts [18].

Additionally, we have only a limited empirical under-
standing of the possible paths for regulatory evolution. Most
evidence derives from either observational measures of stand-
ing variation or biased perturbations of genomic regions
that are already known to bind transcription factors strongly.
This methodological skew reflects a general trend of relying
more on genome-scale experimental data than would be
typical for focused experimental studies [19]. Even when key
regulatory regions are positively identified, their genetic var-
iants may contribute very little to measurable phenotypic
differences [20,21] or trigger cascading effects that result in
pleiotropy [22–24]. Both of these phenomena emerge in part
through complex interactions across organizational scales
from cells to tissues to organs, each of which is subject to selec-
tion pressures [25]. Thus, cultivating a causal understanding of
evolution will entail transferring insights from one level of bio-
logical organization to another with predictive power and,
ideally, interpretability.

Here, we discuss gene regulation as a motivating example
of how synthetic approaches can uncover evolutionary prin-
ciples across biological scales. Many of these approaches are
borrowed from synthetic biology, an interdisciplinary field
that emphasizes rationally designing organisms to execute pre-
defined functions, predicated on a practical understanding of
the genetic and biophysical causes behind phenotypic features.
Recent advances in synthetic technologies and theories have
targeted throughput and control across multiple levels of bio-
physical and functional organization [1,26]. We outline how
these developments are furnishing experimental evolution
with the very toolkit it needs to chart a quantitative course
from genotype to phenotype (figure 1).
2. Synthetic approaches to manipulating
regulatory regions

Studies of transcriptional regulation often focus on develop-
mental enhancers, which specify the precise time, level and
location of gene expression during embryonic growth [27]
and therefore act as major contributors to phenotypic evol-
ution [27,28]. We now have the ability to map millions of
putative enhancer regions across genomes [29], but defining
which of these sites are functional remains a challenge.
Inversely, we cannot yet reconstitute even the most well-
characterized developmental enhancers from synthetic bind-
ing sites [30,31]. Deriving a causal relationship between
regulatory sequences and phenotypes will require a better
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Figure 1. Synthetic approaches coupled with multi-level phenotypic measurements ( phenomics) can characterize interactions across biological scales, which shape
the possible and actual behaviours of living systems. Lower levels of organization tend to limit phenotypic variation at higher levels, while functional needs at higher
levels may impose selection pressures on lower levels. Both processes shape evolvability.
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understanding of the molecular mechanisms driving precise
patterns of gene expression, as well as the consequent roles
of cryptic variation and ‘robustness’ [32,33] on enhancer
evolution. We propose that synthetic approaches, which
involve introducing artificial elements into a biological
context, enable experimental exploration of possibilities
unsampled by natural evolutionary processes, while simul-
taneously granting the high levels of precision and control
that are necessary to resolve causal factors across scales.

We start by exploring how synthetic approaches may
clarify regulatory logic.Mutational scanning provides a power-
ful means to assay the activities of regulatory elements and to
explore evolutionary potential [34–38]. These studies involve
screening an unbiased assay of genetic variants and can there-
fore identify evolutionarily relevant sequences that are not
surfaced by genomic or designed-sequence approaches based
on previously identified binding sites [39]. In particular, muta-
tional scanning experiments have uncovered non-canonical
and low-affinity binding sites [39–41] that appear in appreci-
able frequencies in natural populations [42], as well as rare or
deleterious mutations that are difficult to observe in vivo [43].
A recent study in Drosophila melanogaster used an automated
robotics pipeline to survey an unbiased mutation library for a
developmental enhancer, finding that almost all mutations
altered gene expression and that the location and levels were
highly interdependent [44]. The results are consistent with
mammalian studies including both developmental enhancers
[45] and promoters [46], indicating that widespread pleiotropic
effects may constrain the evolvability of developmental enhan-
cers [47,48]. In the future, mutational scanning could be used
to define the essential features of enhancers and inform
predictive models of enhancer function.

Most studies such as the one just described rely on reporter
constructs to evidence phenotypic responses to genotypic
changes. While reporter gene-based assays can provide infor-
mation on the activity of individual regulatory regions, there
are several potential caveats to generalizing the conclusions.
First, removing an enhancer from its native location and placing
it in a novel chromatin environment may facilitate the binding
of transcription factors to sites that are not used in their native
context [49]. Second,many reporter constructs are based on het-
erologous promoters, which may augment gene expression
relative to the endogenous promoter [50] or behave differently
from the native locus if the distance (in bp) from promoter to
enhancer is not retained. Third, what is identified as the enhan-
cer (and therefore included in the reporter construct) may miss
essential components regulating the target promoter, including
binding sites adjacent to the native enhancer [51–53] or
additional enhancers located elsewhere in the genome [54–
58], which can buffer the phenotypic effects observed from
mutations to the construct. Finally, in some cases, it is not
even possible to isolate individual regulatory regions that
drive reporter gene expression [59,60], emphasizing the need
to explore beyond minimal, ‘modular’ enhancers.

Classical reporter-gene assays can be complemented by a
number of methods and techniques from synthetic biology
for interrogating native loci. Unlike screens performed in trans-
genes, assays that modify endogenous sequences can be used
to directly test the physiological effects of different genetic var-
iants. This capability is crucial given that changes in gene
expression levels alone are not necessarily correlated with
changes in evolutionary fitness [61]. New technological
advances will facilitate building mutagenesis libraries in
endogenous loci similar to the ones that rely on reporter-gene
assays. Genome-editing tools, including the CRISPR-associ-
ated protein 9 (CRISPR-Cas9) system, have been used for
high-throughput loss-of-function screens of regulatory
elements [62–68]. CRISPR-Cas nucleases introduce insertion
and deletion (indel) mutations of variable length, increasing
the scope of genetic variations that can be tested relative to con-
ventional mutagenesis techniques. CRISPR-Cas9 and other
DNA-binding proteins such as TALE-effectors can also be
fused to activator and repressor domains and then targeted
to specific enhancers in order to modulate gene expression in
vivo [69–73]. Activator and repressor domains may remodel
chromatin structure across hundreds of nucleotides [71],
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introducing larger perturbations than CRISPR-Cas nucleases
and thereby improving enhancer detection.

Coupling synthetically perturbed enhancers with live
imaging holds enormous potential to shed light on how
enhancers establish precise expression patterns and confer
phenotypic robustness. Recent technological advances have
enabled real-time imaging of transcription by tagging
mRNA with multiple repeats of a stem-loop sequence that
is recognized by a binding protein fused with a fluorescent
protein. The resulting ‘transcription spots’ are then visualized
using standard live microscopy techniques [74], revealing the
precise timing and spatial location of gene expression. For
example, the even-skipped stripe two (eveS2) enhancer, one of
the most well-characterized developmental enhancers [75],
is active across a short window of time in the early embryo
[76] and drives highly dynamic spatial patterns of expression
[77]. Simultaneous imaging of transcription factors and regu-
latory targets [78] will be particularly instructive for probing
the regulatory logic of individual loci as well as interactions
among transcription factors.

We have presented here just a few of the available tech-
niques for modifying regulatory regions and measuring their
effects. Future efforts in technological development should
focus on comprehensive approaches to interrogating regulat-
ory elements in their native context. Analysis of the resulting
data will be facilitated by our enhanced capacity to detect gen-
etic variants with small effect sizes, as well as continued
improvements to the sensitivity and throughput of live-ima-
ging methods. With a combination of these approaches, we
may begin to tease out the precise relationships between regu-
latory sequences, transcription factors and the expression
patterns of target genes—the first step toward understanding
the potential of genetic variants, realized or unrealized, to
influence downstream phenotypes.
3. Form and function in gene regulatory
networks

Synthetic approaches suitable for individual regulatory
regions naturally extend to the study of gene regulatory net-
works (GRNs), or functional groupings of genes that produce
phenotypes from genotypes by modulating expression levels
in response to internal and external signals. Even small GRNs
can execute involved processes such as disturbance rejection
[79] and fold-change detection [80] over timescales much
longer than the few seconds required for transcription
initiation [16]. Although complex functions require complex
networks, simple functions do not require simple networks.
Rather, the same network structure may perform multiple
functions depending on context or parameters, and the
same function may be performed by multiple networks.
These observations underlie nearly every aspect of network
evolution, from the emergence of complexity through non-
adaptive mechanisms [81,82] to the prevalence of ‘network
drift’ within and between related species [83–86]. Classic
challenges to the evolutionary study of GRNs involve their
identification, level of conservation and ease of emergence
or ‘rewiring’ based on mechanisms of binding site or enhan-
cer turnover [12,13]. The synthetic biological emphasis on
mathematical ‘design principles’ provides a fresh perspective
from which to consider these challenges.
At the level of networks, understanding causal relation-
ships between genotypes and phenotypes is complicated in
a number of ways. If a regulated gene is itself a transcription
factor, then downstream genes may constrain the minimum
or maximum expression of the gene [87]. Compounded con-
straints for genes involved in multiple pathways may result
in the emergence of non-adaptive features [88]. Even genes
that are not directly interacting can become coupled through
biophysical processes. For example, crosstalk, in which regu-
latory factors bind nonspecific or multiple targets, introduces
a tradeoff between site specificity and the number of regulat-
ory targets [89] as well as pressure to reduce active regulation
[90], among other theoretical implications [91–93]. Given the
high potential for coupling among GRNs, it is perhaps little
surprise that researchers have proposed an ‘omnigenic
model’ in which essentially all genes with regulatory variants
contribute to complex traits [24].

Synthetic biologists have developed a toolkit sufficient for
constructing entirely synthetic GRNs from engineered enhan-
cers, promoters and transcription factors in bacteria and
eukaryotes [94]. Considerable conceptual and experimental
effort has aimed at understanding the reliability and robust-
ness of these circuits, with a recent focus on predicting
[95–99] and mitigating [100,101] the impact of crosstalk and
resource sharing [1,102,103]. The tools and theories developed
to design GRNs are grounded in approaches from engineering
and physics, and hold enormous potential for helping evol-
utionary biologists to make sense of network-level changes
over time.

For example, networks are subject to hard limits on their
functionality that shape, directly or indirectly, the optima of
the fitness landscape. Mathematical theory has elucidated fun-
damental limits to such functions as noise suppression [104],
fold-change detection [105] and chemical sensing [106]; uncov-
ered insurmountable tradeoffs among aspects of GRN
performance [107–109] that may depend on system size [110];
and identified schemes that optimally achieve desired beha-
viours [111,112] under relevant constraints [113]. How closely
networks operate to their theoretical optima—and how closely
they can be brought to approach these optima through exper-
imental evolution or synthetic recapitulation—may inform
our understanding of selection pressures, adaptive responses
and the balance between necessity and sufficiency.

Similarly, both evolutionary and synthetic biologists
have investigated the degree to which GRNs are modular
[114]—the former to determine whether decentralized control
confers adaptive advantage [82,115–119], the latter to sim-
plify the analysis and design of sophisticated circuitry
[1,120], and both with the hope of improving human inter-
pretability of complex structures. In principle, modules can
be any size, which has historically biased research toward
small, prevalent architectures or ‘motifs’ that are relatively
simple to model, build and interpret [121–123]. Regardless
of how a particular module is identified, its evolvability is
strongly constrained by the pattern of regulatory interactions
(topology) [124], especially when an original function must
be preserved even as novel phenotypes arise [125–128].
Experiments with synthetic rewiring in bacteria have shown
that topological differences can cause modules with the
same average behaviour to diverge in their responses to
stochastic fluctuations in chemical concentrations [129].
Moreover, the strength of regulatory interactions typically
determines module behaviour, such that modules may vary
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in their robustness to enhancer mutations or noisy gene
expression depending upon their quantitative biophysical
properties [5,128,130–132].

The degree to which modules are (i) separable from
the context of the full GRN or whole cell and (ii) sensitive to
variation in topology or biophysical parameters begs a host
of evolutionary questions. Do less parameter-sensitive mod-
ules exhibit greater standing variation? Are parameter-
sensitive modules more likely to be evolutionarily co-opted?
How do the relative sensitivities of overlapping modules
determine evolvability [133–136]? Towhat extent does the par-
ameter sensitivity of a module constrain the remainder of the
network to maintain its own narrow operating range? Addres-
sing these questions would help clarify when fitness benefits
derive from ‘internal’ improvements in the function of a
module or ‘external’ improvements in the behaviour with
respect to other modules [137].

A straightforward way to proceed involves using the tech-
niques discussed in the previous section to simultaneously
disturb multiple regulatory regions belonging to the same
GRN. It may be difficult, however, to infer causation from
experiments conducted on complex and incompletely charac-
terized endogenous systems. A complementary approach is
to explore evolutionary principles in simple synthetic networks
whose constituent parts can be individually measured and
manipulated, and whose functions are understood a priori.
For example, it has been shown that the set of regulatory inter-
actions among three genes in a synthetic circuit biases the
phenotypic variation observed after random mutation to the
regulatory regions, even if the initial phenotypes are identical
[138]. Similar techniques could be used to quantify dynamical
behaviours and probe interconnections of modules, yielding
invaluable predictive insights into the network-level effects
of enhancer variation. The degree to which synthetic networks
can be made orthogonal to endogenous pathways will present
challenges to ‘parallel evolution’ experiments, but could also
be deliberately employed to investigate the evolutionary impli-
cations of resource sharing, dosage change or crosstalk, which
have been proposed to act as selective pressures against
complexity [92].

Truly leveraging insights from simple synthetic modules
will require theoretical and experimental work to predict the
behaviour of full networks from constituent components
under interconnection [139]. Such a programme necessitates
‘parts characterization’ of single loci or entire modules, in
line with historical engineering practices and repeated calls
for standardization across synthetic biology [1,26]. Most exist-
ing research has been carried out in microbes (e.g. [18]), but
future efforts should also focus on multi-cellular sexually
reproducing eukaryotes in particular, as to the best of our
knowledge very little research has dealt with the implications
of enhancer heterozygosity for network function [140], the
interaction of population size with network evolution
[115,141], or the role of ‘multiple inheritances’ in generating
variation in network architecture and thus phenotype
[137,142]. Whether disrupting endogenous networks or con-
structing synthetic ones, experiments linking cis-regulatory
variation to the output of GRNs will require new techniques
and tools capable of manipulating and monitoring multiple
genes simultaneously. Such detailed study of regulatory
regions in context will be essential for understanding biophysi-
cal and evolutionary constraints, and therefore for predicting
phenotypic consequences on larger organizational scales.
4. Leveraging phenomics to explore animal
evolution and development

Historically, most efforts to study adaptation have involved
providing lists of genetic variants that influence the pheno-
type of interest. Large-scale approaches such as genome-
wide association studies identify regions correlated with the
observed phenotypic variation, but often fall short of func-
tional validation [21,143]. This issue, commonly referred to
as the missing heritability problem [143], is often assumed to
reflect the wide distribution of genes and regulatory regions
along the genome [24] that limits the explanatory potential
of genomic approaches. The problem could also arise, how-
ever, from the failure of genomic approaches to consider
contextual factors, such as environmental stimuli or feedback
loops between phenotypic levels, that also influence organis-
mal behaviour. Therefore, a complete genotype-to-phenotype
map will require not only a comprehensive account of genetic
diversity, but also (i) a high-dimensional, multi-scale
depiction of the phenotypic space (phenomics), (ii) a standar-
dized set of techniques borrowed from synthetic biology for
targeted manipulation of the system of study and (iii) a sys-
tematic exploration of environmental conditions, closer to
native ecological settings where food shortages or extreme
temperatures are plausible scenarios.

Phenomic characterization is becoming more feasible as
high-throughput phenotyping technologies becomemore avail-
able, ranging from transcriptomics and epigenomics to
proteomics and metabolomics. Techniques that can link
single-cell data to tissue architecture will be particularly
useful, as bulk datasets tend to hide effects that are restricted
to specific cell types or regions but that could deeply affect
organism-level, fitness-relatedphenotypes suchasmatingbeha-
viours or survivability. Recently, single-cell RNA-seq has been
performed on relatively large samples from various species
[144–146] including humans [147,148], revealing significant
levels of cell-to-cell gene expression variability. New advances
in robotics and automated microscopy techniques have also
increased the feasibility of high-throughput screenings based
on in situ hybridization or immunostaining methods [149].
Moving a step further from the analysis of gene expression pat-
terns, technological developments now allow large-scale
monitoring of more complex phenotypic features; for example,
MALDI-imaging mass spectrometry can produce metabolo-
mics data with high spatial resolution [150–153]. Even the
behaviour of whole organisms can be analysed using auto-
mated video tracking of confined [154] or free-living [155]
animals. Together, these high-throughput approaches permit
assessing phenotypes in a standardized and replicable manner.

Though it is often assumed that causality runs from gen-
otype to phenotype, phenomics characterization could reveal
causal links between phenotypic layers (e.g. increased risk of
lung cancer or type II diabetes due to tobacco addiction or
obesity, respectively), thereby overriding the need for genetics
to act as the preferential level of causal explanation [3]. New
synthetic approaches are starting to allow the direct manipu-
lation of specific phenotypic levels while exerting a minimal
perturbation on the global biological system, turning the
search for causality beyond genetics into a more practicable
endeavour. Optogenetics, the experimental control of protein
function mediated by light, enables modulating cellular path-
ways with high spatio-temporal resolution in a quantitative
manner [156]. Thus, it is now possible to trigger cell
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polarization [157], alter neuronal physiology in real time
[158] or induce tissue morphogenesis [159] with precisely tar-
geted techniques in intact organisms. These features include
the possibility to persist in an out-of-equilibrium state, the
engagement in cycles of growth and division, and, with par-
ticular relevance to the present discussion, the potential
to evolve. Thus, these synthetic cellular systems could be
used to explore cell-level mechanisms that might be acting
as evolutionary constraints.

A comprehensive understanding of genotype-to-pheno-
type mapping will also necessitate a mechanistic description
of how regulatory networks integrate the enormous range of
environmental stimuli that shape phenotypic outputs. The
fact that environmental inputs can modify developmental
programmes and lead to altered phenotypes, a process
called phenotypic plasticity, has been deeply studied by
ecologists and geneticists [160,161]. Developmental biology,
however, has historically paid less attention to this concept
[162], focusing instead on the reverse phenomenon of canali-
zation: how developmental programmes buffer
environmental (and genetic) variation to reproducibly gener-
ate phenotypes. Hence, several mechanisms have been
identified that allow developmental programmes to reject
environmental perturbations [163], while explanations for
how these programmes might instead leverage environmental
cues are still scarce [164].

An underlying assumption of experimental biology is
that the laboratory environment allows researchers to control
external conditions and thus standardize the effect of the
environment on the system under study. This approach,
however, does not minimize the environmental dependency
of the analysed phenomenon; it just provides a set of
standard conditions that are used to compare different
experiments from which more general rules and principles
are then derived. Thus, many conclusions obtained from lab-
oratory experiments do not hold when they are tested in
natural environments (reviewed in [165]). If the biological
processes under scrutiny are the mechanisms through
which genotypes lead to phenotypes, which, as mentioned
above, are known to be strongly dependent on environmental
factors [160,161], restricting the external conditions to the lab-
oratory environment seriously impairs our understanding of
the phenomenon.

For these reasons, we advocate a deeper exploration of
external conditions when studying genotype-to-phenotype
mapping, beyond the optimal laboratory environment and
closer to the actual stimuli that the studied organisms can
find in their natural environments. Focusing on systems in
their natural context with functional biology is gaining trac-
tion in the evolutionary community [166]. We propose
that pairing such approaches with systematic manipulations
imported from synthetic biology would provide new insights
into evolutionary developmental biology. For example,
unbiased characterization of genomic response to external
signals would involve testing libraries of synthetic circuits
under an extensive variety of tightly controlled environ-
mental conditions that emulate realistic settings for the
host organism. Far from being limited to controlled labora-
tory experiments, these studies could be carried out on
multi-scale platforms such as Ecotrons [167,168].

Environmental effects on phenotype could also be syste-
matically and selectively interrogated through synthetic
interventions that trigger, disable ormodify signalling pathways
naturally linked to selective stimuli, such as nutrient-sensitive
pathways [169], oxygen-sensing mechanisms [170] or light-
controlled circadian signalling [171]. This approach is not
often coupled with extensive phenotypic quantification, as the
target pathway is typically identified for its ability to modulate
a particular behaviour of interest, rather than for ‘pleiotropic’,
knock-on, or incremental effects across the whole organism.
By combining such methods with phenomics, a deeper under-
standing of how specific external factors propagate across
phenotypic levels could be obtained.

Phenomics approaches will produce huge datasets that
vary significantly in content as well as the method and frame-
work of acquisition. How to integrate information and extract
meaningful conclusions from diverse, high-dimensional data-
sets may become one of the most urgent biological challenges
in the near future (reviewed in [172,173]). Addressing this
challenge will require (i) developing standard methods for
acquiring and processing different types of data, which will
enable future automation; (ii) stimulating data sharing and
data reuse in order to avoid duplication of efforts; and (iii)
developing next-generation and community-oriented data
platforms to facilitate data accessibility and standardization
of processing methods [174]. Only by overcoming these limit-
ations will it be possible to draw biological conclusions from
phenomic measurements.

Collectively, the technologies and methods discussed here
would allow researchers to empirically test the principles of
genotype-to-phenotype mapping through a wide variety of
synthetic approaches coupledwith phenomic characterizations
and controlled exposure to a range of realistic selective stimuli.
The proposed experimental pipeline could identify and
modulate contributing factors across biological scales and
phenotypic levels up through environmental interactions,
thereby providing a framework for the causal understanding
of adaptive responses. Furthermore, the ability to measure
multiple phenotypic levels in individual organisms will
permit correlating stochasticity or variability across organiz-
ational scales, illuminating an otherwise elusive means by
which phenotypic variation may be generated [175–177]. Sys-
tematic applications of the suggested techniques could
ultimately help us distinguish between contingent limitations
of known regulatory mechanisms and real biophysical con-
straints, which will be essential to provide evolutionary
biology with predictive power.
5. Uniting synthetic and evolutionary biology:
metabolism as a case study

In the previous sections, we have outlined synthetic
approaches to perturb individual regulatory regions and
GRNs, as well as emerging technologies for manipulating
and characterizing phenotypes at the level of cells, tissues
or organisms. Here, we demonstrate the joint potential of
these approaches using metabolism as a case study. Meta-
bolic networks—which have been the subject of intense
study by both evolutionary and synthetic biologists—are
more complex than GRNs, as they are not only regulated
by transcription factors, but also respond to changes in the
concentrations of metabolites that are themselves part of the
network. This additional regulatory layer is essential for
quick responses to a constantly changing extracellular
environment [178,179]. Thus, metabolic processes are
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particularly suitable for examining genotype-to-phenotype
mapping, as they couple regulatory networks that are hard-
wired in the genome (i.e. the levels and spatial distribution
of enzymes or metabolic regulators) with external factors
that are essential for the survival of the organism, such as
nutrient availability. Though complex, the topology and
dynamics of metabolic pathways are well characterized at
the molecular and mathematical levels [180], permitting com-
putational modelling and experimental manipulation to a
higher degree than most biological systems.

Explaining the mechanisms that could originate such
intricate networks constitutes a major question for evolution-
ary biologists. Although metabolic engineering has been
mostly driven by industrial motivations (specifically the
high cost of chemical synthesis), the quest to optimize
bacteria or yeast strains to produce commercially viable com-
pounds has also provided insight into the biophysical
constraints, and thus the evolutionary potential, of metabolic
networks. Metabolic engineering ranges from single genetic
alterations that enhance an endogenous metabolic route
[181,182] to the construction of entirely synthetic circuits
that lead to compounds not produced by the wild-type
strain [183]. However, the complex intertwinement of meta-
bolic networks often leads to unexpected or undesired
outcomes, limiting the scope of genetic engineering efforts
to manipulate metabolism [184]. Instead, yield optimization
is achieved by the iterative selection of the desired pheno-
types. The success of selective breeding is subject to
evolutionary constraints affecting the yield of biosynthetic
processes, including the level of genomic plasticity that a
particular prokaryote ‘species’ can tolerate [185,186] and the
robustness of metabolic flux [187–189]. Hence, metabolic
engineering combined with selective breeding (directed
evolution) appears to be a well-suited approach to study
evolutionary mechanisms, as it provides an experimental
framework to explore how altered genotypes affect fitness-
related phenotypes, to identify bottlenecks and possible
ways to overcome them, and to quantitatively address
system-level features such as complexity and optimality.

A comprehensive understanding of metabolism may be
even more relevant to studying evolution in multi-cellular
than unicellular organisms, given that metabolic processes,
in addition to managing the bioenergetic requirements of
cells, can directly alter signalling pathways and developmen-
tal programmes (reviewed in [190,191]). For example, the
intracellular concentration of specific metabolites has been
shown to regulate key ontogenetic processes such as zygotic
genome activation [192] or the development of the presomitic
mesoderm in vertebrates [193,194]. Thus, environmentally
modulated metabolic states could impact a wide range of
fitness-related phenotypes through pathways at all levels
from embryonic development to organismal behaviour.

In sum, as technological advances increase our through-
put to measure metabolism [3,195], we anticipate that
synthetic perturbations to metabolic pathways could be
used to explore functional evolution across animal popu-
lations under realistic environmental conditions. The
combined use of synthetic approaches and phenomics offers
an unprecedented opportunity to investigate how metabolic
networks integrate genetics and external inputs into coherent
phenotypic outputs, shedding light on the basic princi-
ples and mechanisms that underlie adaptive responses to
environmental challenges.
6. Synthesis at scale: prospectus in synthetic
evolutionary biology

Deep comprehension of the mechanisms behind genotype-to-
phenotype mapping is essential for predicting adaptive evol-
ution. Charting the map will require a concerted effort to
blend mathematical theory and computational modelling
with large-scale experiments yielding high-dimensional
quantitative data. Synthetic approaches are a particularly
promising avenue for empirically testing ideas inferred
from genomic and morphological studies of extinct and
extant lineages. The ability to manipulate individual genetic
sequences has already produced insights into the origins
of pleiotropy at the regulatory and network levels. Advance-
ments in high-throughput methods for synthetic perturbation
and phenomic measurement promise to elucidate macroscale
morphological and behavioural changes relevant to natural
selection. The sizable resource investment required by this
‘synthetic synthesis’ will be justified to produce new, qualitat-
ively diverse data sufficient to identify not only causal factors
behind specific phenotypes but also general rules for how
perturbations to genotype are propagated across phenotypes.
In this way, we might finally begin to develop a detailed
understanding of the multi-scale interactions and constraints
that shape the evolvability of biological systems.

Despite recent successes mapping targeted genomic pertur-
bations to phenotypic outcomes, we have yet to harness the full
potential of experimental evolution combined with synthetic
approaches. For practical reasons, most existing efforts have
focused on microbial systems, including a study of almost 600
E. coli strains that found network linkages synthetically intro-
duced into endogenous GRNs tend to enhance adaptability to
selection pressures [196]. Yet many more ongoing studies in
microbial evolution could still benefit from synthetic augmen-
tation. For example, only two of 58 possible cross-feeding
interactions in E. coli have been observed to evolve under exper-
imental conditions, despite the fact that the metabolic rewiring
required to generate these two interactions is theoretically no
less complex than to generate the other outcomes [197]. The
ability to synthetically rewire elements of the metabolic
network for one or both strains offers a controlled way to com-
pare the performance of various cross-feeding pairs and
systematically characterize environmental constraints, as well
as to investigate the extent to which evolutionary innovations
in one lineage trigger speciation in cohabiting lineages.

Synthetic approaches appropriate for microbial studies
provide direct inroads into controlled experiments involving
multi-cellular organisms. Gut microbiota are one avenue of
particular interest, as they are the subject of significant medi-
cal attention as well as a growing body of evolutionary work
[198,199]. One study in D. melanogaster proposed that micro-
biota contribute directly to speciation in host organisms [200],
but subsequent small-scale experiments have failed to con-
sistently replicate the results or indicate a clear mechanistic
connection [201]. The combination of libraries of bacteria
harbouring synthetic metabolisms with simulated ecological
conditions could clarify the real extent and ecological
relevance of this phenomenon.

As technological and theoretical progress continues, it will
be crucial to extend the application of synthetic approaches
to experimental evolution in multi-cellular organisms. A
straightforward first step involves using mutational screens
in transgenes or endogenous loci to generate sexually
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reproducing populations with varying degrees of genetic vari-
ation, in order to systematically quantitate how heterozygosity
and genetic diversity influence evolutionary fitness. Given
several starting populations homozygous at the allele(s) of
interest, it should be possible to quantify the effects of hetero-
zygosity in all possible pairwise couplings before moving to
mixed populations of three or more lineages combined. This
sequential, ‘tiered’ approach could be especially important
for teasing out combinatorial effects, such as the recent obser-
vation that larval phenotypes in annelids result from the
interplay of three genomes: maternal, paternal and zygotic
[142]. Mixed populations of alleles could then be experimen-
tally evolved under various selection pressures to link the
degree of genetic diversity in a population to the dynamics of
evolutionary adaptation.

Simultaneously, synthetic approaches should be leveraged
to deepen our understanding of how GRNs evolve, which will
be crucial for interrogating emergent features of complex
multi-cellular organisms. For example, the flexible relationship
between network structure and function affords greater poten-
tial for phenotypic variation than has been described in natural
systems. While individual modules of fixed topology may be
constrained in their evolvability, it appears that larger or
more complex networks may be less constrained, due to the
presence of redundant or ‘buffering’ mechanisms as well as
the combinatorial increase in possible compensatory mechan-
isms. Future experiments with fully synthetic networks will
permit more detailed research into the evolutionary potential
of GRNs that interact to varying degrees with endogenous
components at different times during the life cycle of an organ-
ism. Key to such studies is the ability to construct topologies
unencumbered by evolutionary lineage and to sample a
larger range of parameter space than could be expected to per-
sist in a naturally evolving population. Eventually, the general
principles derived from such experiments could be used to
build circuits that directly influence fitness, in order to system-
atically investigate the evolvability of biological networks
under controlled selection regimes.

Finally, multi-cellular organisms present unique chal-
lenges and opportunities for evolutionary study that should
be both considered and capitalized upon. Notably, animals
and plants possess a plethora of cell types and tissues that
differ in behaviour almost exclusively due to differences in
gene regulation [202]. Phenomic approaches in experimental
evolution will be particularly useful to quantify changes in
multiple tissues across many individuals in a population
and therefore to trace the degree to which cells that share
genetic material evolve independently. Here, too, synthetic
reconstitution of cell-type-specific pathways might help to
decouple intrinsic constraints on network function from con-
straints that arise internally due to shared usage of protein
and regulatory apparatuses across different cell types within
the same organism. In the future, more sophisticated synthetic
manipulations to developmental programmes could shape the
morphology of species and hence their environmental inter-
actions, in order to explore macroscale selection pressures
includingphysical or (eu)social considerations thatmay be irre-
levant to microscopic species. Improvements to Ecotrons or
other simplified ecosystems will further allow the methods
proposed in this article to extend to community-level studies
of several multi-cellular species evolving in tandem.

Though theirmotivations differ, evolutionaryand synthetic
biologists are both concernedwith themechanisms that decode
genetic variation into phenotypic variation. Inspired by this
convergence, we have illustrated here just a few of the ways
in which synthetic approaches may shed light on outstanding
problems in the evolution of genetic regulation by transcription
factors. The frameworkwe propose applies equallywell to syn-
thetic interventions modulating protein function [203–205],
genome topology [206], cell-to-cell communication [207,208],
post-transcriptional regulation [209,210] and neural behaviour
[211,212], with increasing versatility as researchers continue to
develop techniques for genetic engineering at scale. These
studies will provide insight into basic evolutionary principles
that will in turn enhance our ability to implement rational
designs for living systems. Thus might we close the feedback
loop between selected and synthesized, furnishing the vari-
ation of perspective from which human ingenuity has been,
and is being, evolved.
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