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This study is aimed at determining the ability of computed tomography- (CT-) based radiomic analysis to distinguish between
grade 0/1 and grade 2/3 macrovesicular steatosis (MaS) in cadaveric donor liver transplantation cases. Preoperative
noncontrast-enhanced CT images of 150 patients with biopsy-confirmed MaS were analyzed retrospectively; these patients
were classified into the low-grade MaS (n = 100, grade 0 or 1) and high-grade MaS (n = 50, grade 2 or 3) groups. Three-
dimensional spherical regions of interest of 40 pixel (2.5 cm) in diameter were placed in the right anterior and left lateral
segments of the liver. Thereafter, 300 regions of interest (ROIs) were segmented and randomly assigned to the training and
testing groups at a ratio of 7 : 3. A total of 402 radiomic features were extracted from each ROI. For MaS classification, a
radiomic model was established using multivariate logistic regression analysis. Clinical data, including age, sex, and liver
function, were collected to establish the clinical model at the patient level. The performances of the radiomic and clinical
models, i.e., the diagnostic discrimination, calibration, and clinical utilities, were evaluated. The radiomic model, with seven
selected features, depicted a good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.907
(95% confidence interval (CI): 0.869–0.940) in the training cohort and 0.906 (95% CI: 0.843–0.959) in the testing cohort. The
calibration curve revealed good agreement between the predicted and observed probabilities in the training and testing cohorts
(both P > 0:05 in the H-L test). Decision curve analysis revealed that the radiomic model was more beneficial than the treat-all
or treat-none schemes for predicting the MaS grade. Alanine transaminase and gamma-glutamyl transferase were used for
building the clinical model, and the AUC was 0.784 in the total cohort. The CT-based radiomic model outperforming the
conventional clinical model could provide an important reference for MaS grading in cadaveric liver donors.

1. Introduction

The insufficient number of grafts available for liver trans-
plantation (LT) has increased mortality among patients on
waiting lists and triggered the use of organs from marginal
donors. One of the most common marginal donors for LT
are those with hepatic steatosis. Hepatic steatosis is consid-

ered one of the most common disorders; this is mostly due
to the growing incidence of nonalcoholic fatty liver disease
[1–3]. The presence of significant steatosis is correlated with
the progression of initial poor graft function or primary graft
nonfunction [4]. Available evidence reveals an increased risk
of poor graft outcomes in patients with moderate-to-severe
steatotic livers [2, 5]. From a pathological perspective,
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steatosis can be categorized into microvesicular, macrovesic-
ular, and mixed forms. We have focused on macrovesicular
steatosis (MaS) in this study because it is a major cause of
graft failure in donor livers [6]. The use of grafts with mild
steatosis (MaS content < 30%) is safe; however, grafts with
moderate-to-severe steatosis (MaS content > 30%) are not
recommended for use. Therefore, accurate grading of MaS
is important in the evaluation of donors before LT.

Although liver biopsy is the gold standard for the assess-
ment of MaS, it is limited by sampling variability, costs,
invasiveness, and severe complications (such as mortality,
bleeding, and pain) [7]. Among noninvasive imaging
methods, emergency computed tomography (CT) is most
commonly performed before LT because cadaveric liver
donors are mostly critically ill patients with a history of
ischemic or hemorrhagic stroke and trauma; a thorough
assessment in these donors is not possible. Therefore, time
constraints and possible hemodynamic instability make it
impossible to use techniques, such as magnetic resonance
imaging (MRI). However, accurate assessment of the MaS
severity using traditional CT, such as liver densities in
Hounsfield units (HU) and the CT liver-to-spleen ratio, is
difficult because liver abnormalities, such as edema, inflam-
mation, iron overload, ischemia, and ingestion of certain
drugs (e.g., amiodarone) [8–10], are more common in
cadaveric liver donors.

Radiomic analysis can be used to extract a large amount
of feature information from acquired images by mining and
analyzing the feature data to establish an accurate diagnosis
of the disease. Previous studies have suggested that CT or
MRI texture analysis can effectively predict nonalcoholic ste-
atohepatitis [11] and assess hepatic fibrosis [12–15]. In addi-
tion, other studies have detected MaS in living liver donors
by noninvasive imaging modalities, such as MRI and the
controlled attenuation parameter [10, 16–18]. However,
few studies have focused on the efficiency of radiomic fea-
tures on noncontrast-enhanced CT (NECT) images for
MaS grading in cadaveric liver donors. Thus, this study is
aimed at determining the ability of CT-based radiomic anal-
ysis to predict grade 0/1 and 2/3 MaS in cadaveric liver
donors having undergone liver biopsy as the gold standard.

2. Materials and Methods

2.1. Ethical Considerations. This study was approved by the
Ethics Committee of The First Hospital of Jilin University
(2020-324). The requirement of informed consent was
waived due to the retrospective nature of the study.

2.2. Patients. Brain-dead potential donors with biopsy-
proven MaS encountered from August 2015 to October
2019 were retrospectively included in this study. As fibrosis
influences the CT texture features [12–15], patients were
excluded if they had a history of hepatitis B or C, cirrhosis,
or stage 3 or 4 liver fibrosis. The inclusion and exclusion cri-
teria are presented in Figure 1. Based on these criteria, 150
patients were ultimately included in this study. Donors with
grade 2 and 3 MaS were grouped into the “high-grade MaS”
(HGM) group (n = 50), whereas those with grade 0 and 1

MaS were grouped into the “low-grade MaS” (LGM) group
(n = 100).

2.3. Liver Biopsy and Pathology. Biopsy specimens were
obtained by wedge resection. The histological grading of
MaS was performed by two experienced pathologists blinded
to the clinical data and study design. The extent of MaS was
evaluated and reported semiquantitatively as a precise per-
centage of the hepatocytes involved; it was graded as S0:
absent (0%–5%), S1: mild (>5%–30%), S2: moderate
(>30%–60%), or S3: severe (>60%) [19].

2.4. CT Image Acquisition. CT examinations were performed
using either a 256-detector row scanner (Philips Brilliancei,
14 patients in Israel; GE Medical Systems, four patients in
the USA) or a 64-detector row scanner (Philips Brilliancei,
128 patients in Israel; GE Medical Systems, four patients in
the USA). All scanners used identical settings: 120 kV,
150–250mA (depending on the body weight), 0.5 s per rota-
tion, pitch: 0.8–1.0 : 1, matrix: 512, and reconstruction thick-
ness: 1mm.

2.5. Radiomic Model Building. The flowchart in Figure 2 pre-
sents the development of the radiomic model and clinical
model used for MaS grade prediction and model evaluation.
The image biomarker standardization initiative was
regarded as the reference and taken into consideration in
most of the image preprocessing, feature extraction, and
selection procedures [20]. The steps involved in the radio-
mic and clinical model building are described in the follow-
ing paragraphs.

2.5.1. Preprocessing and ROI Segmentation. Images were first
preprocessed using the Artificial Intelligence Kit Software
(A.K. Software; version 3.2.5, GE Healthcare, China) and
then exported to the open-source ITK-SNAP software (ver-
sion 3.8.0; http://www.itksnap.org) for segmentation. For
preprocessing, a linear interpolation algorithm (which could
construct new data points according to the range of a dis-
crete set of known data points) was used to resample the
voxels from 0:625 × 0:625 × 1:000mm3 to isotropous with
an x-spacing, y-spacing, and z-spacing of 0.625mm,
0.625mm, and 0.625mm, respectively, i.e., 0:625 × 0:625 ×
0:625mm3. Data preprocessing was performed to ensure
that the voxels were isotropic; this would prevent variability
in the histogram and texture features among different voxel
sizes. Subsequently, a three-dimensional spherical region of
interest (ROI), having a 40-pixel (2.5 cm) diameter, was
placed in the right anterior and left lateral segments of the
liver at the level of the porta hepatis (as depicted in
Figure 2). All segmentations were conducted by a radiologist
(DSN) with a 5-year experience in abdominal CT. To assess
the reproducibility of the features obtained from the ROIs
segmented by different readers, 30 patients (10 from the
HGM group) were randomly selected for resegmentation
by another abdominal radiologist with a 10-year experience.
Both radiologists were blinded to the pathological findings.

From the 150 enrolled patients, 300 ROIs (HGM group:
100 ROIs, LGM group: 200 ROIs) were included in this
study. In total, 210 ROIs (70%) were randomly included in
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the training cohort for the development of the model and
the remaining 90 (30%) were assigned to the testing cohort
to verify the performance of the radiomic model.

2.5.2. Feature Extraction. Feature extraction was performed
using the A.K. Software. From each ROI in the NECT
images, 402 radiomic features were extracted. These

Patients with pathologically confirmed MaS
from August 2015 to October 2019

(N = 244)

Exclusion criteria (N = 94)
(i) History of hepatitis B or C, cirrhosis and pathologically

confirmed liver fibrosis of stages 3 and 4 (N = 2)
(ii) Without NECT examination before LT or NECT images

were not available (N = 79)
(iii) Poor quality of NECT images (N = 13)

Inclusion criteria
(i) Brain-dead potential donors with biopsy-proven MaS
(ii) NECT was performed within 2 weeks before LT

150 patients included in this study

HGM group (Npatient = 50) LGM group (Npatient = 100)

LGM group
ROI in the right anterior and left lateral

segments of the liver
(NROI = 200)

HGM group
ROI in the right anterior and left lateral

segments of the liver
(NROI = 100)

Patient level

ROI level

Clinical model

Radiomic model

Figure 1: Flow diagram of the patient enrollment. MaS: macrovesicular steatosis; NECT: noncontrast-enhanced computed tomography;
HGM: high-grade MaS; LGM: low-grade MaS; ROI: region of interest.

ROI segmentation Feature extraction Feature selection Radiomic model Model evaluation

Pre-processing

First-order histogram

Second-order texture

ROI placed in the right anterior segment
and left lateral segment of the liver0.625 × 0.625 × 0.625 mm3

Clinical factors

Age
sex

ALT
AST

GGT
Bilirubin

Albumin ALT (P = 0.009) GGT (P = 0.035)

Univariate logistic regression Clinical model

Clinical score =
–1.356 + 1.029 × 10–2 × ALT + 1.745 × 10–3 × GGT. 

ICC index

Spearman correlation

LASSO regression

ROC curve

Calibration curve

Decision curve

Radiomics score = –

Small area

Set4 + 0.469 × high intensity

Nonuniformity_angle90_off

1.053 + 0.296 × run length

Emphasis +0.998 × difference

Entropy –0.128 ×

Inertia_angle0_offset1-

2.662 × quantile 0.975–

0.995 × percentile 10–

0.448 × short run

Emphasis_angle0_offset4.

NECT imaging

Figure 2: The flowchart of this study. (1) Radiomic model (blue): after preprocessing, a three-dimensional segmentation of an ROI with a
40-pixel (2.5 cm) diameter on CT images is performed. Features are extracted from the ROI, including the first-order histogram and second-
order texture features. The ICC index, Spearman correlation, and LASSO are used for the radiomic feature selection. The radiomics
signature is built based on the remaining features using logistic regression analysis. (2) Clinical model (orange): after univariate logistic
regression analysis, ALT and GGT (variables with P < 0:05) are used for building the clinical model, weighted by their respective
coefficients. (3) Model evaluation (red): the performances of the radiomic model and clinical model are evaluated with ROC, calibration,
and decision curves. NECT: noncontrast-enhanced computed tomography; ICC: intraclass correlation coefficient; LASSO: least absolute
shrinkage and selection operator; ALT: alanine aminotransferase; AST: aspartate aminotransferase; GGT: gamma-glutamyl transferase;
ROC: receiver operating characteristic; ROI: region of interest.
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included the following: (1) first-order histogram features
describing the HU distribution of the ROIs (n = 42), (2)
gray-level cooccurrence matrix- (GLCM-) based features
describing the probability of given voxel pairs occurring next
to each other (n = 144), (3) gray-level size zone matrix-
(GLSZM-) based features describing the size and number
of the connected regions of all gray scales in the image
(n = 11), (4) gray-level run length matrix- (GLRLM-) based
features enumerating the probability of identical voxel values
being continuously next to each other (n = 180), (5) Haralick
texture features (n = 10), and (6) formfactor features (n = 15
). Details of the extracted radiomic features are presented in
Supplementary Figure 1.

2.5.3. Feature Selection. To ensure the repeatability of the
model, we calculated the intraclass correlation coefficient
(ICC) of the radiomic features extracted by the two readers
from the randomly selected 30 patients. Features with ICC
> 0:75 were considered to have a good reproducibility [21]
and were retained for subsequently analysis. All features
were then standardized and normalized in the training data-
set, and the same procedure was applied in the testing data-
set. All feature selection techniques were applied in the
training dataset as follows. First, a Spearman correlation
analysis was performed to eliminate redundant features that
were highly correlated with other features (∣r ∣ >0:9). Then, a
least absolute shrinkage and selection operator (LASSO)
regression analysis was performed to select the features; the
coefficients of useless features were shrunk to zero with the
regulation parameter λ, using 10-fold crossvalidation.

2.5.4. Clinical Model Building. Data on the clinical factors,
including age, sex, and liver function, were collected at the
patient level. Variables with P < 0:05 in the univariate anal-
ysis were included in the multivariate logistic regression
analysis to identify the independent clinical risk factors asso-
ciated with MaS grading. The clinical model was established
based on the chosen independent risk factors by applying
multivariate logistic regression.

2.5.5. Radiomic Model Building. A multivariate logistic
regression method was used to establish a classification
model for MaS grading based on the selected features. Then,
a radiomic signature was produced with the selected features
using a linear function and the signature served as an inde-
pendent variable in the sigmoid function.

2.6. Performance Evaluation. The performance of the radio-
mic model was evaluated with discrimination, calibration,
and clinical application in both the training and testing
cohorts. The performance of the clinical model was evalu-
ated using the same parameters in the total cohort.

2.6.1. Discrimination. The receiver operating characteristic
(ROC) curve was plotted to evaluate the diagnostic perfor-
mances of the radiomic model and clinical model, and the
area under the ROC curve (AUC) was calculated with its
95% confidence interval (CI). The optimal cutoff value of
the radiomic model was obtained based on the maximum
Youden index in the training cohort; it was then applied in

the testing cohort. The specificity, sensitivity, positive pre-
dictive value, negative predictive value, and diagnostic accu-
racy were calculated based on the optimal cutoff values in
both the training and testing cohorts. The Delong test was
used to compare the differences in the AUCs between the
training and testing datasets and between the clinical and
radiomic models.

2.6.2. Calibration. Calibration curves were plotted to evalu-
ate the agreement between the observed outcome frequen-
cies and predicted probabilities of the model. The
Hosmer–Lemeshow test was performed to determine the
goodness of fit; a P value > 0.05 was considered to indicate
a well-calibrated fit.

2.6.3. Clinical Usefulness. A decision curve analysis (DCA)
was performed to assess the clinical usefulness of the model
by quantifying the net benefits at different threshold
probabilities.

2.7. Statistical Analyses. All statistical analyses were con-
ducted with the R Studio software (version 1.2.1335). A
two-sided P value < 0.05 was considered statistically signifi-
cant. Categorical variables (sex) were compared using the χ2

test, and continuous variables were compared using the t
-test for variables with a normal distribution or the Mann–
Whitney U test for variables with an abnormal distribution.
The ICC was calculated using the “lme4” package. The
“glmnet” package was used for LASSO regression. The
“rms” package was used for multivariate logistic regression.
The “pROC” package was used to plot the ROC curves and
to measure the AUCs. The “ModelGood” package was used
for plotting the calibration curves and for the Hosmer–
Lemeshow test. The “dca.R” package was used to perform
the DCA.

3. Results

3.1. Patient Characteristics. The HGM group (n = 50) com-
prised 19 patients with grade 2 MaS and 31 with grade 3
MaS. The LGM group (n = 100) comprised four patients
with grade 0 MaS and 96 with grade 1 MaS. Mortality in
53.3%, 39.3%, and 7.4% of all cases resulted from ischemic
or hemorrhagic stroke, trauma, and other causes, respec-
tively. Comparisons of clinical characteristics are presented
in Table 1. The aspartate aminotransferase (AST), alanine
aminotransferase (ALT), and gamma-glutamyl transferase
(GGT) levels were significantly higher in the HGM group
than in the LGM group, with P values of 0.005, <0.001,
and <0.001, respectively.

3.2. Clinical Model. The AST, ALT, and GGT levels were sig-
nificantly different between the LGM and HGM groups
(Table 1). Thus, they were considered for the univariate
and multivariate regression analyses. Univariate analysis
revealed that ALT and GGT levels were significant risk fac-
tors (P < 0:05 for both); therefore, these were included in
the multivariate logistic regression analysis. Multivariate
analysis further indicated that the ALT level (odds ratio ð
ORÞ = 1:010; 95% CI: 1.002–1.019; P < 0:05) was an
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independent clinical risk factor for the prediction of the MaS
grade, as shown in Table 2. The ALT and GGT levels were
used for building the clinical model. Thereafter, the clinical
score was calculated via the following formula:

Clinical Score = −1:356 + 1:029 × 10−2 × ALT
+ 1:745 × 10−3 × GGT

ð1Þ

The diagnostic performance of the clinical model is pre-
sented in Table 3, and the corresponding ROC curve is illus-
trated in Figure 3. The Delong test revealed significant
differences in the performances of the clinical model and
radiomic model (P value for both < 0.05). The calibration
and decision curves are illustrated in Figures 4 and 5,
respectively.

3.3. Radiomic Model. Four hundred and two features were
extracted from the NECT images; after ICC analysis, Spear-
man correlation analysis, and LASSO regression, seven fea-
tures were selected. These included two histogram-based,
two GLCM-based, two run length matrix- (RLM-) based,
and one GLSZM-based features. Detailed information on
feature selection is available in (available here) Supplemen-
tary Material A. Multivariate logistic regression analysis
was performed to build a radiomic signature based on the
selected seven features. The radiomics score was calculated
using the following formula:

Radiomics score = −1:053 + 0:296 × RunLengthNonuniformity angle90 offset 4
+ 0:469 × HighIntensitySmallAreaEmphasis
+ 0:998 × differenceEntropy − 0:128
× Inertia angle0 offset1 − 2:662
× Quantile0:975 − 0:995 × Percentile10 − 0:448
× ShortRunEmphasis angle0 offset4

ð2Þ

The diagnostic performance of the radiomic signature in
the training and testing cohorts is depicted in Table 3. The
ROC curves for the training (a) and testing (b) datasets are
illustrated in Figure 3. There were no significant differences

between the AUCs of the radiomic models in the training
and test cohorts (DeLong test; P value = 0.978).

The calibration curve for the radiomic model is demon-
strated in Figure 4, which reveals a good agreement between
the predicted probability and observed probability in both
the training and testing cohorts. Moreover, the P value was
> 0.05 according to the Hosmer–Lemeshow test.

The decision curve for the radiomic model is illustrated
in Figure 5. Using the radiomic model to predict the MaS
grade added greater benefits as compared with using the
treat-all scheme or treat-none scheme at any given threshold
probability in the training cohort. For threshold
probabilities > 10%, using the radiomic model to predict
the MaS grade added greater benefits as compared with
using the treat-all scheme or treat-none scheme in the test-
ing cohort.

4. Discussion

In this study, we developed a radiomic signature based on
NECT and the capability of this radiomic signature for esti-
mating the MaS grade was found to be satisfactory. The
radiomic model was superior to the clinical model. This
noninvasive method of assessing the MaS grade only relied
on NECT; therefore, this method could provide an impor-
tant reference for donors before LT.

Currently, organ shortage is a prominent problem in
clinical settings. In China, donation after cardiac death has
become the main method for organ donation because of its
special social environment. The prevalence of obesity in
the population has significantly increased the incidence of
liver steatosis. Available evidence has revealed that more
than 30% of the cases with hepatic steatosis are associated
with poor post transplantation graft outcomes [5]. Although
MaS grading is important in donors, liver biopsy or other
noninvasive imaging methods are not always safe, satisfac-
tory, or practical in these individuals. In our study, we devel-
oped and validated a radiomics approach based on NECT
for the prediction of the MaS grade in cadaveric liver donors;
the approach demonstrated good discrimination, calibra-
tion, and clinical utilities.

Table 1: Clinical characteristics of the patients with MaS.

Characteristics LGM (n = 100) HGM (n = 50) P value

Age (years) 46:94 ± 10:98 48:28 ± 10:50 0.501

Sex 0.882

Male 81 (81.00) 41 (82.00)

Female 19 (19.00) 9 (18.00)

ALT (IU/L) 21.25 (15.73, 34.03) 36.40 (26.28, 65.68) <0.001∗

AST (IU/L) 41.15 (30.18, 56.45) 57.05 (36.38, 94.80) 0.005∗

GGT (IU/L) 27.00 (16.50, 60.55) 54.05 (32.15, 166.53) <0.001∗

Bilirubin (μmol/L) 17:86 ± 10:50 18:94 ± 11:21 0.564

Albumin (g/L) 36:72 ± 8:39 36:50 ± 10:53 0.888

Continuous variables are expressed as means ± standard deviations or as medians (25%, 75%), as appropriate. Categorical variables are presented as numbers
(%). The ALT, AST, and GGT levels are significantly different between the two groups. ALT: alanine aminotransferase; AST: aspartate aminotransferase;
HGM: high-grade MaS; GGT: gamma-glutamyl transferase; LGM: low-grade MaS; MaS: macrovesicular steatosis. ∗ indicates significance with P < 0:05.
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Previous studies have reported that MRI can predict the
MaS grade [22, 23]. In recent years, the MRI proton density
fat fraction has been used as a noninvasive and quantitative
measure for accurately classifying the hepatic steatosis grade
[22, 23]. However, compared with CT, MRI is more time-
consuming and expensive. Furthermore, critically ill patients
often need a ventilator, which limits the use of MRI. Abdom-
inal ultrasonography is the most widely available modality
for detecting steatosis, and its main disadvantage is its oper-
ator dependency. It has an acceptable level of sensitivity,
although it is not suitable for providing objective quantita-
tive data on steatosis in donors [4, 9]. In this study, we used
NECT instead of contrast-enhanced CT or other noninva-
sive imaging methods because deceased liver donors are
mostly critically ill patients who are usually examined by
NECT before LT (which is essential for the diagnosis of
MaS). Moreover, the radiomic features in contrast-
enhanced CT images are usually influenced by the injection
rate, patient’s circulation, and the phase of enhancement.

In this study, we also analyzed the clinical features. After
univariate and multivariate regression analyses, the ALT and
GGT levels were used for building the clinical model. The
AUC of the clinical model was less than that of the radiomic
signature model (0.784 vs. 0.907, respectively). Therefore,
the radiomic model could better predict the MaS grade as
compared with the clinical model. This is because the clini-
cal model cannot be used for quantitative research and data
on some clinical factors associated with hepatic steatosis
(such as the blood lipid levels and body mass index) are usu-
ally not available for deceased liver donors.

The radiomic signature for MaS grading comprised
seven imaging features that were extracted from the three-
dimensional NECT images. Percentile10 and quantile0.975
were the histogram parameters. Inertia_angle0_offset1 and

Table 2: Univariate and multivariate logistic regression analyses of the clinical factors.

Univariate logistic regression Multivariate logistic regression
Characteristics OR (95% CI) P value OR (95% CI) P value

ALT (IU/L) 1.012 (1.003–1.021) 0.009∗ 1.010 (1.002–1.019) 0.021∗

AST (IU/L) 1.005 (1.000–1.010) 0.066 — —

GGT (IU/L) 1.002 (1.000–1.004) 0.035∗ 1.002 (1.000–1.004) 0.070

Variables with P < 0:05 in the univariate analysis were included in the multivariate logistic regression analysis. ALT: alanine aminotransferase; AST: aspartate
aminotransferase; GGT: gamma-glutamyl transferase; OR: odds ratio; CI: confidence interval. ∗ indicates significance with P < 0:05.

Table 3: Diagnostic performances of the radiomic model and clinical model.

Performance
Radiomic model (ROI level) Clinical model (patient level)

Training cohort (n = 210) Testing cohort (n = 90) Total cohort (n = 150)
AUC (95% CI) 0.907 (0.869–0.940) 0.906 (0.843–0.959) 0.784 (0.719–0.839)

Sensitivity (%) 75.7 76.7 84.0

Specificity (%) 91.4 88.3 64.0

Accuracy (%) 86.2 84.4 70.7

Precision (%) 81.5 76.7 53.8

Positive predictive value (%) 81.5 76.7 53.8

Negative predictive value (%) 88.3 88.3 88.9

AUC: area under the curve; ROI: region of interest.

0.0
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1.0 0.8 0.6 0.4 0 0.0

Radiomic train: AUC = 0.907,95% CI = 0.865–0.949
Radiomic test: AUC = 0.906,95% CI = 0.835–0.976
Clinical total: AUC = 0.784,95% CI = 0.712–0.856

The ROC curves

Figure 3: ROC curves of the radiomic model in the training (red)
and testing (blue) cohorts and of the clinical model in the total
cohort (black). The radiomic model had a significantly better
performance than the clinical model, with P < 0:05 (DeLong test;
radiomic model in the training set vs. clinical model in the total
set, P = 0:004; radiomic model in the testing set vs. clinical model
in the total set, P = 0:019). Meanwhile, the performance of the
radiomic model did not differ significantly between the training
and test cohorts (DeLong test; P = 0:978). ROC: receiver
operating characteristic; AUC: area under the curve.
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difference entropy were the GLCM parameters. HighIntensi-
tySmallAreaEmphasis was one of the GLSZM-based feature
parameters. RunLengthNonuniformity_angle90_offset4 and
ShortRunEmphasis_angle0_offset4 were the RLM parame-

ters. These features describe the distribution of the voxel
intensities within an image and nonuniformity of the gray-
scale and length, which could potentially reflect the MaS het-
erogeneity. For example, the larger the value of the
difference entropy, the rougher the texture and higher the
heterogeneity of MaS. Therefore, the observed abnormalities
in the liver images may be clinically associated with the MaS
grade. Because fatty liver comprises diffused lesions, unlike a
tumor, sketching its edges is difficult; therefore, we chose a
spherical ROI of a fixed size to reduce the differences caused
by human factors. As a result, no morphological features
that differed statistically between the levels were retained.

Nevertheless, this study has some limitations. First, it is a
retrospective study; thus, data on some clinical factors (such
as the blood lipid levels, blood glucose levels, and body mass
index) were not available. This is because cadaveric liver
donors are mostly critically ill patients in whom thorough
examinations are not performed before LT due to insuffi-
cient time. Further prospective research is needed to assess
nomograms based on the selected radiomic signature and
clinical characteristics for the prediction of the MaS grading
performance. Furthermore, given the retrospective study
design, our ROI profile and pathological findings may not
match exactly. Therefore, ROI segmentation corresponding
to the pathological sampling with further prospective valida-
tion is required to assess the predictive ability of the radio-
mic model in the future. Second, because fatty liver
comprises diffuse lesions and sketching its edge may be
difficult, a spherical ROI of fixed size was chosen to
improve repeatability. However, the vessels and liver
parenchyma have similar densities in a fatty liver. There-
fore, it is difficult to identify vessels in ROIs that may
have contained some portions of a vessel. At the same
time, the morphological features may have been over-
looked. In future studies, we will use other ROI segmen-
tation methods for further verification. The third
limitation is the small and imbalanced sample size. We
chose the right anterior and left lateral segments because
these are typically selected for biopsy in cadaveric liver
donors. Given that the right anterior and left lateral seg-
ments of the liver had similar histologic MaS grades in
our study, 300 ROIs from the 150 patients were included
to expand the sample size. Our sample ratio of 1 : 2 does
not exceed the limit of 1 : 3 prescribed as the upper limit
of the distribution ratio of the sample size by multifactor
logistic regression modeling; the results of the linear
model may be affected if the limit is exceeded [24]. The
model effectiveness can be improved by using the syn-
thetic minority oversampling technique (SMOTE). How-
ever, considering the great retention of the original data,
the SMOTE was not adopted to amplify the data. Finally,
the radiomics quality score of our radiomic procedure was
16 (maximum value = 36), corresponding to a percentage
of 44.4% [25]. The quality of our study may still have
limitations that affect the reproducibility of the results.
A more standardized methodology is required in the
radiomics workflow, especially in terms of the study
design, cost-effective analysis, and open science data, to
translate the results to clinical applications.
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Figure 4: Calibration curves of the radiomic model in the training
(red) and testing (blue) cohorts and of the clinical model in the
total cohort (black). The gray solid lines represent perfect
prediction; the closer the lines to the gray reference line, the
better the model fit.
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Figure 5: Decision curves of the radiomic model in the training
(red) and testing (blue) cohorts and of the clinical model in the
total cohort (black). The y-axis represents the net benefit of the
patients. The net benefit is determined by calculating the
difference between the expected benefit and expected harm
associated with each proposed model (net benefit = true-positive
rate – [false-positive rate × weighting factor], where the weighting
factor = threshold probability/[1 − threshold probability]). The
gray line represents the assumption that all livers had HGM (the
treat-all scheme). The black horizontal line represents the
assumption that all livers had LGM (the treat-none scheme).
Using the radiomic model to predict the MaS grade added more
benefits as compared with using the clinical model at almost any
given threshold probability.
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5. Conclusions

Radiomic analysis of NECT images could provide an impor-
tant reference for predicting grade 0/1 and 2/3 MaS in
patients before LT. It is noninvasive and can achieve a satis-
factory preoperative prediction of the individual MaS grade.
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