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ABSTRACT Candida species are a major cause of life-threatening bloodstream infec-
tions worldwide. Although Candida albicans is responsible for the vast majority of in-
fections, the clinical relevance of other Candida species has also emerged over the
last twenty years. This shift might be due in part to changes in clinical guidelines, as
echinocandins became the first line of therapeutics for the treatment. Candida
parapsilosis is an emerging non-albicans Candida species that exhibits lower suscep-
tibility levels to these drugs. Candida species frequently display resistance to echino-
candins, and the mechanism for this is well-known in C. albicans and Candida
glabrata, where it is mediated by amino acid substitutions at defined locations of
the �-1,3-glucan synthase, Fks1p. In C. parapsilosis isolates, Fks1p harbors an intrinsic
amino acid change at position 660 of the hot spot 1 (HS1) region, which is thought
to be responsible for the high MIC values. Less is known about acquired substitu-
tions in this species. In this study, we used directed evolution experiments to gener-
ate C. parapsilosis strains with acquired resistance to caspofungin, anidulafungin, and
micafungin. We showed that cross-resistance was dependent on the type of echino-
candin used to generate the evolved strains. During their characterization, all mu-
tant strains showed attenuated virulence in vivo and also displayed alterations in the
exposure of inner cell wall components. The evolved strains harbored 251 amino
acid changes, including three in the HS1, HS2, and HS3 regions of Fks1p. Altogether,
our results demonstrate a direct connection between acquired antifungal resistance
and virulence of C. parapsilosis.

IMPORTANCE Candida parapsilosis is an opportunistic fungal pathogen with the
ability to cause infections in immunocompromised patients. Echinocandins are the
currently recommended first line of treatment for all Candida species. Resistance of
Candida albicans to this drug type is well characterized. C. parapsilosis strains have
the lowest in vitro susceptibility to echinocandins; however, patients with such infec-
tions typically respond well to echinocandin therapy. There is little knowledge of ac-
quired resistance in C. parapsilosis and its consequences on other characteristics
such as virulence properties. In this study, we aimed to dissect how acquired echi-
nocandin resistance influences the pathogenicity of C. parapsilosis and to develop
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explanations for why echinocandins are clinically effective in the setting of acquired
resistance.

KEYWORDS Candida parapsilosis, echinocandins, microevolution, virulence

Candida species are among the most common fungal pathogens isolated from
hospitalized patients. The risk of candidemia is higher in intensive care units (ICUs)

than in other hospital units, as the incidence of overall bloodstream Candida infections
in ICUs is above 50%, and it is increasing relative to non-ICU units (1, 2). Candida
albicans is the most common species responsible for bloodstream Candida infections
worldwide, although the prevalence of other non-albicans Candida (NAC) species such
as C. parapsilosis, C. glabrata, C. tropicalis, and C. krusei has markedly increased in the
past two decades (1, 3–8). This phenomenon is most likely due to the widespread and
increasingly common utilization of echinocandins, especially as they are currently
recommended as the first-line antifungal for treatment of invasive candidiasis (9–12).
After C. albicans, C. parapsilosis is the second or third most common cause of invasive
candidiasis depending on the geographical location (5, 13, 14). In fact, previous
exposure to echinocandins is a risk factor for C. parapsilosis infections, as this species
manifests naturally higher MIC values to the three clinically available echinocandins
(caspofungin [CAS], anidulafungin [AND], and micafungin [MICA]) compared to other
Candida species (15, 16). However, patients with C. parapsilosis systemic infections
respond well to echinocandin treatments, and the efficacy of echinocandin treatments
is similar to that obtained with azole treatments (17, 18).

C. albicans and C. glabrata clinical isolates are usually susceptible to echinocandins,
and as mentioned above, significantly lower MIC values are reported for these drugs
than for C. parapsilosis. Nevertheless, an increasing number of resistant strains from
each species have been reported (19, 20). In both C. albicans and C. glabrata, resistance
is mainly attributable to amino acid changes in the hot spot regions (hot spot 1 [HS1]
and HS2) of the �-glucan synthase Fks1 as an acquired resistance mechanism. In
addition, similar changes have been reported in the hot spot regions of Fks2 in C.
glabrata, which has also been associated with echinocandin resistance (21–23). Amino
acid substitutions at positions Phe641, Ser645 (in HS1), and Arg1361 (in HS2) in Fks1p
of C. albicans and most of the pathogenic NAC species result in echinocandin resis-
tance. The same substitutions are also present in the Fks2p in C. glabrata (21, 22, 24).
Additional alterations in the HS1 and HS2 regions of C. albicans and C. glabrata Fks1p
include the occurrence of substitutions at Pro649 and Trp1358. Although these mod-
ifications result in caspofungin resistance in laboratory strains in vitro, they are not
relevant in terms of resistance development in vivo, as these substitutions have not
been found in clinical isolates (21, 22, 24–26). Previous studies have identified a third
hot spot region (HS3) in Saccharomyces cerevisiae, where the presence of Trp695
substitution resulted in phenotypic resistance to echinocandins. However, its C. albi-
cans equivalent, Trp697, has no clinical significance, as this alteration does not con-
tribute to treatment failure (24, 25, 27). Such acquired mutations are the result of
previous exposure to echinocandins for most of the pathogenic Candida species. In
contrast, C. parapsilosis isolates have a naturally occurring polymorphism in Fks1, which
results in reduced susceptibility to echinocandins. Specifically, Pro649 in C. albicans or
the equivalent in other NAC species is substituted to Ala660 in C. parapsilosis at the
region mentioned, which has been shown to contribute to higher echinocandin MIC
values compared to other Candida species. This intrinsic substitution in this species has
an unclear clinical importance, as C. parapsilosis infections generally respond well to
commonly applied therapeutic echinocandin concentrations (24, 25, 28).

Previous studies revealed that C. albicans isolates with acquired Fks1 amino acid
exchanges, which are also frequently associated with antifungal resistance, showed
reduced fitness during in vivo and in vitro experiments. This phenomenon was ex-
plained by the reduced �-glucan synthetic activity of Fks1, which contributed to an
altered cell wall structure and composition and also resulted in attenuated virulence in
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mice compared to an isogenic C. albicans strain (21, 22, 29). The reduced virulence due
to Fks1 deficiency might be the reason for the rare horizontal transmission of
echinocandin-resistant C. albicans strains between patients; however, C. parapsilosis
horizontal transmission is a significant problem in ICUs, as this species is frequently
isolated from the hands of health care workers (3, 30).

The mechanism and fitness cost of acquired resistance in C. albicans have been well
investigated. However, our knowledge about acquired resistance mechanisms in C. parap-
silosis is limited. Therefore, we set out to examine such processes in this species through the
generation of in vitro echinocandin-evolved strains, each grown in the presence of a
particular echinocandin: CAS, AND, or MICA. These directed evolution experiments were
followed by virulence assays and sequence analysis of these evolved strains in order to
reveal resistance mechanisms and potential alterations in their virulence.

RESULTS
Generation and altered susceptibility of microevolved strains. Prior to the

directed evolution experiment, MIC values for caspofungin (CAS), anidulafungin (AND),
and micafungin (MICA) were determined for Candida parapsilosis CLIB 214 strain, which
had MIC values of 2 �g/ml, 1 �g/ml, and 1 �g/ml, respectively (Table 1). First, we
generated the adapted strains by direct selection, and then evolved strains were
derived from the adapted strains by repeatedly culturing them in YPD broth to exclude
resistant phenotypes due to transcriptional changes caused by the direct interaction
with the different drugs. After the generation of adapted and evolved strains for each
of the echinocandins, their susceptibility to azoles was also tested: including flucona-
zole (FLU), voriconazole (VOR), posaconazole (POS), and itraconazole (ITR). The respon-
siveness of each strain was further elucidated in the presence of CAS, AND, and MICA.
The CAS-adapted and -evolved strains (CASADP and CASEVO, respectively) were resistant
to CAS and MICA after 24 h. At 48 h, the respective strains became resistant to all three
echinocandins, represented by the elevated MIC values that rose above 8 �g/ml.
CASADP and CASEVO strains further showed slightly increased MIC values to fluconazole
and itraconazole. ANDADP and ANDEVO strains were resistant to all applied echinocan-
dins after both 24 h and 48 h. In contrast, MICAADP and MICAEVO strains were resistant
only to MICA and showed slightly decreased sensitivity to AND (MIC value � 4 �g/ml)
compared to the parental C. parapsilosis CLIB 214 strain. The resistant phenotype was
stable for all echinocandin-evolved strains (CASEVO, ANDEVO, and MICAEVO) at both time
points, as there were no notable differences in MIC values between adapted and
evolved strains.

Microevolution alters stress response in evolved strains. During infection, patho-
genic microbes have to maintain their homeostasis in order to survive in a new niche.
Inside the host, a wide range of stress-inducing factors influences the viability of
invading fungi. These factors include oxidative, membrane, wall, and osmotic stressors.
Thus, we performed spot plate assays using YPD solid medium complemented with
different stress-inducing agents.

Generally, on YPD plates, there were no differences in the growth capabilities
between the parental and evolved strains at 30°C and 37°C (Fig. 1B and C). We did not

TABLE 1 Distribution of MICs determined for the parental, adapted, and evolved C. parapsilosis strains

Strain

MIC (�g/ml) of antifungal:

FLU VOR POS ITR CAS AND MICA

24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h

CLIB 214 1 1 0.031 0.031 0.031 0.031 0.062 0.25 2 2 1 1 1 1
CASADP 2 2 0.031 0.031 0.031 0.031 0.125 0.25 �8 �8 �8 �8 �8 �8
CASEVO 1 2 0.031 0.031 0.031 0.031 0.125 0.25 �8 �8 4 8 �8 �8
ANDADP 1 1 0.031 0.031 0.031 0.031 0.062 0.125 �8 �8 �8 �8 �8 �8
ANDEVO 1 1 0.031 0.031 0.031 0.031 0.062 0.125 �8 �8 �8 �8 �8 �8
MICAADP 1 1 0.031 0.031 0.031 0.031 0.062 0.125 2 2 4 4 �8 �8
MICAEVO 1 1 0.031 0.031 0.031 0.031 0.062 0.125 2 2 4 4 �8 �8
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FIG 1 Growth of echinocandin-evolved strains in the presence of abiotic stressors. (A) Growth kinetics of parental C.
parapsilosis CLIB 214 and echinocandin-evolved strains (CASEVO, ANDEVO, and MICAEVO). (B) Heat map of stress sensitivity and
resistance to oxidative stress and cell wall and membrane perturbants. The asterisks indicate that C. parapsilosis CLIB 214 failed
to grow in the presence of Congo red at 37°C, which precluded comparisons with evolved strains under this condition at this
temperature. w/V, weight/volume. (C) Representative images of growth capabilities on YPD solid medium complemented with
SDS, H2O2, and calcofluor white.
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detect any restriction in growth kinetics between the parental and all echinocandin-
evolved strains in YPD broth during the 24-hour incubation time in the absence of the
examined stressors (Fig. 1A).

We found that the MICAEVO strain was sensitive to the presence of oxidative
stressors, as it was unable to grow on CdSO4-supplemented media and also showed a
strong growth defect when H2O2 was present at 37°C (Fig. 1B and C). All evolved strains
showed decreased growth capabilities on YPD plates containing cell wall-perturbing
agents. At 37°C, evolved strains were able to grow, although a mild growth defect was
identified in the presence of caffeine (12.5 mM, 15 mM, and 17.5 mM), indicating
temperature-dependent alterations in the TOR signaling pathway (31). No such defect
was observed at 30°C (Fig. 1A). In the presence of calcofluor white, the strains were
unable to grow or showed a severe growth defect at both 30°C and 37°C (Fig. 1B and
C). Similar defects were detected in all evolved strains on plates supplemented with
�25 �g/ml Congo red at 30°C. Notably, at these concentrations, the parental C.
parapsilosis CLIB 214 strain was also unable to grow at 37°C (Fig. 1B, indicated by
asterisks). In contrast with the oxidative agents and cell wall perturbants, CASEVO

and MICAEVO strains showed increased fitness in the presence of the membrane-
damaging compound sodium dodecyl sulfate (SDS) compared to the CLIB 214 strain
(Fig. 1B and C).

Acquired resistance to echinocandins resulted in attenuated virulence in vivo.
To investigate potential changes in the virulence properties of the CASEVO, ANDEVO, and
MICAEVO strains, we utilized Galleria mellonella (as a nonmammalian, alternative model)
to study disseminated candidiasis. The susceptibility of wax moth larvae to C. parap-
silosis CLIB 214, CASEVO, ANDEVO, or MICAEVO strains was examined by determining
larval survival rates. As a result, we found that the survival rates of CASEVO-, ANDEVO-,
or MICAEVO-infected larvae were higher than those inoculated with CLIB 214 cells
(Fig. 2A). No deaths occurred in the uninfected or PBS-injected larvae during the study
period.

To confirm our findings on the attenuated virulence of echinocandin-evolved
strains, we also determined fungal burdens in the kidneys, livers, spleens, and brains of
BALB/c mice 3 days after infection with the evolved strains and the reference C.
parapsilosis CLIB 214 strain. The fungal burdens in the kidneys and livers of mice
infected with echinocandin-evolved strains were lower than those of CLIB 214-infected
mice. Fungal CFU recovered from the spleen were significantly lower in the case of the
ANDEVO- and MICAEVO-infected mice than for CASEVO-infected mice. CFU retrieved from
CASEVO-challenged mice were similar to those obtained with the reference strain.
ANDEVO-infected mice had the lowest fungal burden in the brain compared to all other
C. parapsilosis strains (Fig. 2B).

All of these results suggest that the CASEVO, ANDEVO, and MICAEVO strains are less
virulent in vivo in both applied animal models.

Echinocandin microevolution affects the exposure, but not the ratio, of inner
cell wall components. To determine the cell wall composition of the C. parapsilosis

parental and evolved strains, their cell walls were purified and acid hydrolyzed, fol-
lowed by an analysis using high-performance anion-exchange chromatography with
pulsed amperometric detection (HPAEC-PAD). Our results showed that there were no
changes in the ratio of cell wall components in the echinocandin-evolved strains
compared to the parental strain (Fig. 3A).

To evaluate the exposure of chitin and �-1,3-glucan, cells of the parental and
evolved strains were stained with fluorescently labeled Fc-Dectin-1 (binds �-1,3-glucan)
and WGA (binds chitin), and the mean fluorescence intensity was determined by
microscopy. We found that the exposure of chitin and �-1,3-glucan—present in the
inner cell wall layer—was markedly altered in the echinocandin-evolved strains com-
pared to the reference strain. In the CASEVO and MICAEVO strains, chitin and �-1,3-
glucans were significantly more exposed than in the parental strain. Interestingly, in the
ANDEVO strain, chitin was also exposed similarly to the other echinocandin-evolved
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strains; however, �-1,3-glucan exposure was similar to that of the reference strain
(Fig. 3B).

We also defined the ratio of cells exposing chitin; �-1,3-glucan or both using
WGA-FITC and Fc-Dectin-1/Alexa Fluor 647-labeled anti-human IgG1Fc staining. The
proportions of �-1,3-glucan-exposing cells were 22.71%, 30.24%, 27.44%, and 42.32%,
while the rates of chitin-exposing cells were 1.64%, 3.3%, 2.6%, and 3.34% in CLIB 214,
CASEVO, ANDEVO, and MICAEVO strains, respectively. These data suggest that the number
of cells exposing inner cell wall layers was significantly higher in the CASEVO and
MICAEVO strains than in the parental strain. Although chitin exposure of ANDEVO cells

FIG 2 In vivo virulence properties of C. parapsilosis CLIB 214, CASEVO, ANDEVO, and MICAEVO strains. (A)
Survival proportion of Galleria mellonella infected with the parental strain and echinocandin-evolved
strains. Experiments were repeated two times, and 20 larvae/group/experiment were used. Significant
differences were determined with log rank tests. Two controls were run: PBS-treated (uninfected) and
witness control (no injection, uninfected). (B) Fungal burden in the organs of BALB/c mice infected with
CLIB 214, CASEVO, ANDEVO, or MICAEVO strain, represented in CFU/gram of tissue 3 days postinfection. Data
points are means � SEM pooled from three independent experiments (four BALB/c mice/group/
experiment). Significant differences were determined by Mann-Whitney U-tests. *, P � 0.05; **, P � 0.005;
****, P � 0.0001.
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FIG 3 Altered cell wall structure of C. parapsilosis echinocandin-evolved strains. (A) Relative amount of chitin (N-
acetylglucosamine), glucan, and mannose to the total cell wall weight (dry weight). Statistical analysis was performed using
two-way ANOVA. (B) Semiquantitative analysis of exposed �-glucans and chitin levels. Exposure is expressed in mean
fluorescence intensity/fungal cell. Microscopic images represent examples of �-1,3-glucan and chitin exposure (bars, 5 �m).
Significance is determined by unpaired t test. (C) Flow cytometric analysis of proportions of inner cell wall component-

(Continued on next page)

Attenuated Virulence in Resistant C. parapsilosis

November/December 2018 Volume 3 Issue 6 e00547-18 msphere.asm.org 7

msphere.asm.org


was higher than in CLIB 214 cells, �-1,3-glucan exposure of these cells was similar to
that observed in the parental strain (Fig. 3C).

Echinocandin microevolution does not affect phagocytosis or phagolysosome
colocalization. To determine the ratio of actively phagocytosing human peripheral
blood mononuclear cell-derived macrophages (PBMC-DMs) s and the extent of
phagolysosome colocalization after 2 h of incubation, C. parapsilosis CLIB 214 and
echinocandin-evolved strains were stained with Alexa Fluor 647 (phagocytosis) and
pHrodo red (phagolysosome fusion). Stained strains were then coincubated with
PBMC-DMs. Our results revealed no significant differences in terms of phagocytosis or
in phagosome maturation between the parental CLIB 214 strain and echinocandin-
evolved strains (Fig. 4A and B).

FIG 3 Legend (Continued)
exposing cells of CLIB 214, CASEVO, ANDEVO, and MICAEVO strains. A total of 2 � 104 cells were analyzed for each strain. WGA�
cells exposing chitin and Fc-Dectin-1� cells exposing �-glucan were studied. Gates for data analysis were defined by excluding
the unstained control cells of each strain. **, P � 0.005; ***, P � 0.0005; ****, P � 0.0001.

FIG 4 Flow cytometric analysis of phagocytosis and phagosome maturation in PBMC-DMs after infection
with C. parapsilosis CLIB 214, CASEVO, ANDEVO, or MICAEVO strain. (A) Phagocytosing PBMC-DMs normal-
ized to the phagocytic activity were measured and compared to the parental CLIB 214 strain. (B) Ratio
of cells with phagolysosome colocalization, normalized to the proportion of phagosome maturation after
the uptake of CLIB 214 cells. For each experiment, PBMC-DMs were utilized from five healthy human
donors. A total of 2 � 104 PBMC-DMs were analyzed per donor for each strain. Significant differences
were determined using Wilcoxon signed rank tests.
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Microevolution in the presence of echinocandins is possibly due to acquired
amino acid substitutions in C. parapsilosis Fks1. Whole-genome comparison was
performed on the genomic DNA of the parental and echinocandin-evolved strains.
SNPs identified in the whole-genome sequence analysis are listed in Table S1 in the
supplemental material. During whole-genome analyses, we identified point mutations
in the CPAR2_106400 gene of echinocandin-evolved strains at the contig positions
1374083, 1376082, and 1376225, where the following amino acid substitutions oc-
curred: W1370R (tryptophan to arginine), L703F (leucine to phenylalanine), and S656P
(serine to proline), respectively (Fig. 5A). The analyzed genomes presented other
nonsynonymous mutations (134, 96, and 153, total number of nonsynonymous muta-
tions in CAS_S3, AND_S2, and MIC_S1, respectively), CPAR2_106400 was one of 38
genes that accumulated nonsynonymous mutations in parallel in the three evolved
strains and harbored an average of 1.2% of the nonsynonymous mutations observed in
the three experiments. Only seven other genes had a higher relative number of
nonsynonymous mutations, these genes coded for two proteins of unknown function
(CPAR2_101640, CPAR2_402490, 1.4%, 1.7%), one putative transporter (CPAR2_301640,
1.4%), and three putative cell membrane or cell wall proteins (CPAR2_600430,

FIG 5 Predicted topology of C. parapsilosis Fks1p and summary of all amino acid alterations found in the three
echinocandin-evolved strains. (A) Schematic topology of the Fks1 protein in the plasma membrane. The N terminus
(N) and C terminus (C) of Fks1p are indicated. Transmembrane segments of Fks1 protein (green rectangles) and hot
spot regions of Fks1 protein (red squares) are shown. The black lines indicate the positions of all amino acid
substitutions in all three examined echinocandin-evolved strains. (B) Aligned protein sequences of HS1, HS2, and
HS3 regions in C. albicans, C. parapsilosis CLIB 214, CASEVO, ANDEVO, and MICAEVO strains. Acquired amino acid
substitutions in the echinocandin-evolved strains are shown on red squares. Intrinsic amino acid changes naturally
present in all C. parapsilosis clinical isolates are shown on blue squares.
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CPAR2_300110, and CPAR2_806400, CPAR2_303790, with 1.8%, 1.6%, 1.2%, and 1.3%,
respectively). Although mutations in those other genes may also be related to adap-
tation to the exerted selective pressure, given the known involvement of CPAR2_
106400 in echinocandin resistance, we focused further on this gene. CPAR2_
106400 is an orthologous gene of C. albicans FKS1 gene (alias GSC1) encoding the main
component of the �-1,3-glucan synthase complex. There was no nucleic acid sequence
variation in any of the echinocandin-evolved strains in the CPAR2_109680 and
CPAR2_804030 genes, which are orthologues of C. albicans GSL1 and GSL2 and bearing
�-1,3-glucan synthase activity. The identified substitutions occurred at different posi-
tions of Fks1 in the echinocandin-evolved strains. The W1370R amino acid substitution
occurred at the HS2 region in the CASEVO and ANDEVO strains in a homozygous form.
Further, the ANDEVO strain was also found to harbor a S656P substitution in a heterozy-
gous form at the HS1 region. In the MICAEVO strain, only L703F was identified at HS3 as
a homozygous substitution (Fig. 5B).

The topology of Fks1p in the plasma membrane of C. parapsilosis is shown in Fig. 5A.
To assess the relative locations of conserved hot spot (HS) regions and defined amino
acid substitutions, we used TMHMM and PRO-TMHMM as online bioinformatic tools.
Using the given algorithms, we predicted 16 transmembrane helices with extracellular
N and C termini (Fig. 5A). According to the prediction, HS2 and HS3 are localized at the
extracellular region of the 7th and 6th transmembrane helices, respectively. The HS1
region is located at the intracellular half of the 5th transmembrane helix. The S656P
substitution present in the ANDEVO strain appeared inside the HS1 region of Fks1.
Notably, this exchange occurred close to the intrinsic P660A substitution that is a
characteristic of C. parapsilosis (Fig. 5A, blue star). In the Fks1p of the MICAEVO strain, the
L703F amino acid exchange occurred at the N-terminal region of HS3. Further, the
W1370R substitution, identified in both ANDEVO and CASEVO strains, was found to be
located in the extracellular part of HS2, outside the 7th TM helix (Fig. 5A).

DISCUSSION

In this study, we aimed to generate three independent echinocandin-evolved C.
parapsilosis strains, each adapted to the presence of one of the three most clinically
used echinocandins. Using a series of growth steps in complex media supplemented
with CAS, AND, and MICA in stepwise elevated concentrations, we successfully gener-
ated C. parapsilosis CASEVO, C. parapsilosis ANDEVO, and C. parapsilosis MICAEVO strains
with acquired and stable resistance to the corresponding echinocandins. Previous
studies have shown that C. parapsilosis is able to acquire resistance to echinocandins
and exposure to these antifungals also influences azole susceptibility (32). Interestingly,
in this study, we were not able to show cross-resistance between echinocandins and
azoles upon examination of the generated echinocandin-microevolved strains. This
could be explained by the restricted number of amino acid substitutions in the evolved
strains. Only the CASEVO strain showed slightly elevated MIC values to fluconazole and
itraconazole; however, it was still considered susceptible to the azole antifungals, as the
obtained values did not reach the cutoff values for resistance set by the Clinical and
Laboratory Standards Institute (CLSI). However, similar to other studies (33), we were
able to detect cross-resistance between echinocandins, specifically in the case of
CASEVO and ANDEVO strains. These strains were resistant to all three echinocandins.
However, the CASEVO strain showed an increased MIC value to AND, but according to
Rosenberg et al., this elevated MIC value of CASEVO strain is most probably tolerant to
AND rather than resistant (34). The MICAEVO strain showed resistance to MICA only.

During the characterization of the microevolved strain, MICAEVO showed the most
divergent phenotype in response to abiotic stress, being the most sensitive to oxidative
stress and cell wall-perturbing agents and resistant to SDS-driven membrane damage.
Notably, the CASEVO and ANDEVO strains were also shown to be sensitive to the
presence of cell wall stressors.

Previously, Ben-Ami et al. (29) demonstrated that acquired resistance to echinocan-
dins results in fitness costs that ultimately lead to attenuated virulence in C. albicans
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clinical isolates. Similarly, in this study, we showed that echinocandin-evolved strains
also displayed decreased virulence in vivo, as represented by higher survival rates of G.
mellonella larvae and the low number of CFU recovered from mice after challenge with
the generated strains compared to the parental strain.

In clinically relevant Candida species, increased chitin content in the cell wall is a
short-term adaptation strategy of fungal cells upon exposure to echinocandins prior to
FKS1-2-mediated resistance mechanisms (25). Alterations in the chitin content of certain
strains of different Candida species also contribute to increased MIC values to echino-
candins (35). Interestingly, in the echinocandin-evolved strains, we did not observe any
significant changes in the amounts of major cell wall components compared to those
of the reference strains. However, the inner cell wall layers were significantly more
exposed on the cell surfaces of microevolved strains, and the ratio of chitin and
�-1,3-glucan-exposing cells was also higher than in the parental strain. Notably, �-1,3-
glucan exposure was not distinguishable between the ANDEVO and the reference strain,
although the strain’s attenuated virulence remained similar to, if not more prominent,
than those of the other evolved strains in vivo.

A previous study showed that the lack of mannose in the outermost layer of the
fungal cell wall increases the velocity of phagocytosis of C. albicans cells (36). According
to a recent study, exposure of �-1,3-glucan on the surfaces of C. parapsilosis cells does
not affect the phagocytic activity of human PBMC-DMs in vitro; however, it does in vivo.
In their study, Perez-Garcia et al. showed that och1� cells, exposing larger amounts of
�-1,3-glucan on their surfaces, are eliminated more efficiently than wild-type cells in a
mouse model of invasive candidiasis (37). Our results are in accordance with both the
in vitro and in vivo findings of Perez-Garcia et al., as altered chitin/�-1,3-glucan exposure
of the microevolved strains does not affect the strains’ virulence in vitro, which is
confirmed by the phagocytosis and phagolysosome maturation results, although at-
tenuated virulence occurs in vivo, proven by decreased mortality rates in G. mellonella
larvae, as well as the lower CFU recovered from mice after injection.

In other Candida species and S. cerevisiae, hot spot regions of Fks1 are highly
conserved; however, in C. parapsilosis, a species-specific intrinsic substitution is present
at amino acid position 660, which is occupied by alanine in C. parapsilosis (25). In certain
C. parapsilosis clinical isolates, additional substitutions have recently been reported in
Fks1 (V595I and F1386S), but these changes are localized outside the well-known hot
spot regions (38). The echinocandin-evolved strains, generated in this study, revealed
additional, yet unidentified amino acid substitutions in the HS1, HS2, and HS3 regions
of the corresponding protein in this species. A W1370R (tryptophan-to-arginine) amino
acid exchange was detected in the CASEVO and ANDEVO strains that might be equivalent
to substitutions at Trp1358 in C. albicans and C. glabrata, although in these species, the
amino acid exchanges cause only weak resistance. In this study, in 2 out of the 3 C.
parapsilosis strains, the corresponding substitution may be responsible for a strong
cross-resistance to echinocandins (21, 22). Although similar mutations in other Candida
species suggest that this is the cause of resistance, confirmation with directed mutation
experiments is still required to confirm this in C. parapsilosis. In the ANDEVO strain, the
S656P substitution was present only in a heterozygous form; however, it appeared
relevant in AND resistance, as the MIC value of this strain increased markedly compared
to the MIC of the CASEVO strain, despite the fact that both of these strains harbor a
W1370R substitution. In C. albicans, the same amino acid exchange results in a strong
echinocandin-resistant phenotype in vitro, which has also been reported to result in
attenuated virulence of the corresponding clinical isolates (29). The MICAEVO strain
harbored a L703F substitution within the HS3 consensus region, which is another
region in the Fks1 protein (27). This substitution is a relatively novel finding, as in C.
albicans, only Trp697 has been identified as an exchange event in the HS3 region (27).

We further predicted the topology of C. parapsilosis Fks1p in the plasma membrane
using in silico tools and found that the loop connecting the 5th and 6th TM segments
is probably intracellular and the loop connecting the 6th and 7th TM segments is
possibly extracellular in this protein. Interestingly, in S. cerevisiae Fks1p, these loops are
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localized in the opposite direction (27). Our findings indicate that the resistance pattern
of the echinocandin-evolved strains supports the predicted topology of C. parapsilosis
Fks1p: W1370R caused the most abundant echinocandin cross-resistant phenotype,
and it is located in the extracellular part of the 6th and 7th TM segment connecting
loop. Additionally, the L703F substitution resulted in resistance only to MICA but not to
AND and CAS. Even so, further investigations are required to generate the exact
topology and structure of C. parapsilosis Fks1p.

Taken together, in this study, we have revealed a direct connection between
acquired resistance and attenuated virulence in C. parapsilosis. These data provide
exciting information that supports the pursuit of further studies aiming to explore and
further exploit the relevance of amino acid substitutions in �-1,3-glucan synthase
proteins during echinocandin resistance development and their effect on virulence
regulation in other clinically relevant Candida species.

MATERIALS AND METHODS
Generation of C. parapsilosis echinocandin-evolved strains. We generated echinocandin-evolved

strains as described previously (39), with minor modifications. First, we determined the MIC values of
caspofungin (CAS), anidulafungin (AND), and micafungin (MICA) for the C. parapsilosis CLIB 214 strain
(40). We used CLIB 214 as the parental strain for both microevolution and later characterization studies.
Three individual cultures of the CLIB 214 strain were adjusted to a final absorbance of 0.1 (� � 640 nm)
in 10-ml Sabouraud glucose broth (SGB) (4% glucose, 1% peptone). For microevolution, we aimed to
apply echinocandin concentrations according to the determined MIC values. In each case, half of the MIC
determining concentrations were applied at the first step of adaptation.

After incubation at 30°C for 10 h without any supplements, cells were incubated for an additional 14
h in the presence of CAS, AND, or MICA (1-�g/ml, 0.5-�g/ml, or 0.5-�g/ml concentrations, respectively).
Henceforth, cells were cultured three times in fresh SGB medium containing the appropriate drugs at
1-�g/ml, 0.5-�g/ml, and 0.5-�g/ml concentrations for 24 h in the above-mentioned concentrations. After
the last 24 h of incubation, absorbance of the cultures was adjusted to 0.1 in 10 ml SGB containing the
appropriate echinocandin in the same concentrations mentioned above and incubated for 10 h at 30°C
with the appropriate drugs (with the same concentrations). Then, CAS, AND, or MICA was added to the
appropriate culture with elevated concentrations (2-fold increase for each), and cultures were grown for
an additional 14 h. After that, cultures were collected and inoculated three times into fresh SGB medium
containing the mentioned increased amounts of drugs and incubated for an additional 24 h. The
concentration of each echinocandin was doubled on every fourth day, until reaching the final concen-
tration of 16 �g/ml. Aliquots containing 50 �l of each culture were plated to yeast peptone dextrose
(YPD) (0.5% yeast extract, 1% peptone, 1% glucose) plates complemented with 16 �g/ml caspofungin,
anidulafungin, or micafungin, respectively. As a result, we obtained C. parapsilosis CAS-adapted (CASADP),
AND-adapted (ANDADP) and MICA-adapted (MICAADP) strains. Single colonies of CASADP, ANDADP, and
MICAADP strains were subcultured 10 times in SGB without echinocandins each time for 24 h. Henceforth,
these strains were referred to as echinocandin-evolved strains (CASEVO, ANDEVO, and MICAEVO, respec-
tively). Figure S1 in the supplemental material summarizes the directed evolutionary process.

Strains and culture conditions. All strains used in this study are listed in Table 2. All C. parapsilosis
strains were cultured in YPD broth, and on the next day, 200-�l aliquots were inoculated into fresh YPD
medium before every experiment. C. parapsilosis CLIB 214 was maintained on YPD agar plates (supple-
mented with 1.5% agar), and the CASEVO, ANDEVO, and MICAEVO strains were maintained on YPD solid
medium supplemented with 16 �g/ml CAS, AND, and MICA, respectively.

Antifungal susceptibility testing. MIC values were determined according to the M27-A3 protocol
(41), and interpretation of MIC values was defined by the M27-S4 supplementary document (42). MICs
were measured in RPMI 1640 with MOPS with L-Gln and without NaHCO3 (catalog no. 04-525F; Lonza)
after 24 h and 48 h. MIC values for echinocandins were defined as the lowest concentrations that resulted
in at least 50% growth reduction. Azoles (fluconazole [FLU], voriconazole [VOR], posaconazole [POS], and
itraconazole [ITR]; Sigma-Aldrich) and echinocandins (CAS from Sigma-Aldrich; AND and MICA from
MedChem Express) were used to test the susceptibility of C. parapsilosis strains.

TABLE 2 C. parapsilosis strains used in this study

Strain Origin Reference

CLIB 214 Laboratory type strain 40
CASADP CLIB 214 This work
ANDADP CLIB 214 This work
MICAADP CLIB 214 This work
CASEVO CASADP This work
ANDEVO ANDADP This work
MICAEVO MICAADP This work
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Determination of abiotic stressor tolerance by spot assay and growth capabilities under
no-stress condition. Synchronized suspensions of C. parapsilosis CLIB 214, CASEVO, ANDEVO, and MICEVO

strains were serially diluted, and 104, 103, 102, and 101 cells were transferred to YPD solid plates adjusted
to pH 4, pH 5, pH 6, pH 7, or pH 8 using McIlvine buffer and to YPD plates without any supplements as
a control. For comparing growth capabilities of the four strains in the presence of osmotic and oxidative
stressors as well as cell membrane- and cell wall-perturbing agents, we prepared YPD agar plates
complemented with 8% (wt/vol), 10% (wt/vol), 12% (wt/vol) glycerol; 1 M and 1.5 M NaCl; 1 M and 1.5 M
sorbitol (as osmotic stressors); 0.05 mM CdSO4; 5 mM and 10 mM H2O2 (as oxidative stressors); 12.5 mM,
15 mM, and 17.5 mM caffeine; 50 �g/ml, 75 �g/ml, and 100 �g/ml calcofluor white, 10 �g/ml, 25 �g/ml,
50 �g/ml, and 75 �g/ml Congo red (as cell wall-perturbing agents); 0.02% (wt/vol), 0.04% (wt/vol), and
0.06% (wt/vol) sodium dodecyl sulfate (SDS) (as a membrane-perturbing agent). The plates were
incubated at 30°C and 37°C for 48 h. The growth scores of the evolved (EVO) strains were determined
compared to the parental C. parapsilosis CLIB 214 strain. All experiments were repeated two times. We
defined the defect scores as follows: a score of 1 for a strong defect such as reduced growth (smaller
colonies or lower colony numbers) in the given evolved strain spot, which was three times more
concentrated than the most diluted CLIB 214 spot where growth appeared; a score of 2 for a medium
defect (when similar CFU appeared in the given evolved strain spot, which was two times more
concentrated then the most diluted CLIB 214 spot where growth appeared); a score of 3 for a slight
defect (reduced growth in the given evolved strain spot at one time the concentration of the most
diluted CLIB 214 spot where growth appeared, or the presence of smaller colonies compared to the
parental strain’s colonies).

We inoculated 200 �l YPD in 96-well plates with 2 � 103 cells of each strain and monitored the
optical density (OD) of wells for 24 h to determine the growth kinetic without stressors.

Isolation of peripheral blood mononuclear cells (PBMCs) and differentiation of PBMC-derived
macrophages (PBMC-DMs). Human PBMCs were isolated from buffy coat (Hungarian National Blood
Transfusion Service) from healthy donors by Ficoll Paque Plus (GE Healthcare) gradient centrifugation as
described previously (43). PBMCs were washed with ice-cold phosphate-buffered saline (PBS) (137 mM
NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 [pH 7.4]). Isolated PBMCs were suspended in RPMI 1640
supplemented with 1% 100� penicillin-streptomycin solution (Pen-Strep; Sigma-Aldrich) and the con-
centration of cells had been adjusted to 2 � 107/ml; 2 � 107, 107, or 5 � 105 PBMCs were transferred to
12-, 24-, or 96-well plates, respectively. After 1.5 h of incubation (5% CO2, 37°C, 100% relative humidity),
floating cells were removed by changing the culture medium to AIM-V cell culturing medium (Gibco)
supplemented with 10 ng/ml granulocyte-macrophage colony-stimulating factor (GM-CSF) (Sigma-
Aldrich) every other day for 7 days.

Phagocytosis and phagolysosome colocalization (flow cytometry). In order to analyze the
phagocytic activity and phagolysosome colocalization of PBMC-DM cells by flow cytometry, fungal cells
were labeled with Alexa Fluor 647 succinimidyl ester and pHrodo red succinimidyl ester (Invitrogen) as
follows. First, 22 �l Na2CO3 (1 M, pH 10), 4 �l Alexa Fluor 647 (1 mg/ml in DMSO), and 4 �l pHrodo red
(100 �g/ml in DMSO) were added to 200-�l fungal cell suspensions in Hanks’ balanced salt solution
(HBSS) (Lonza) and incubated for 1 h in the dark at room temperature. pHrodo red stains the fungal cell
wall and emits fluorescent light only in a highly acidic environment such as the phagolysosome. Fungal
cells were then washed four times with HBSS, and cell concentrations were adjusted to the appropriate
concentration. PBMC-DM cells were infected with the labeled fungal cells at a 1:5 ratio in 12-well cell
culture plates and incubated for 2 h (5% CO2, 37°C, 100% relative humidity). After the incubation,
extracellular fungal cells were removed by washing the wells with PBS. Macrophages were harvested
from the wells with trypsin (5 mg/ml; Sigma-Aldrich). Samples were measured in PBS with a FlowSight
instrument (Amnis), and data were analyzed with the IDEAS 6.2 software.

In vivo infection of mice and fungal burden. For determination of fungal burden, 8- to 12-week-old
female BALB/c (BRC, Szeged, Hungary, XVI./2015) mice were infected via the lateral tail vein with 2 � 107

yeast cells in 100 �l PBS (N � 11 per C. parapsilosis strain). Three days postinfection, animals were
euthanized, and the livers, spleens, kidneys, and brains were collected surgically, weighed, and homog-
enized in an Ultra-Turrax T25 homogenizer (Sigma). Organ homogenates were plated to YPD agar
supplemented with 1% Pen-Strep, and the numbers of colony-forming units (CFU) were determined after
48-h incubation at 30°C.

Ethic statement. Animal experiments were performed according to the Hungarian national (1998.
XXVIII; 40/2013) and European (2010/63/EU) animal ethic guidelines. Procedures were licensed by the
Animal Experimentation and Ethics Committee of the Biological Research Centre of the Hungarian
Academy of Sciences and the Hungarian National Animal Experimentation and Ethics Board (clearance
number XVI./03521/2011) with the University of Szeged granting permission XII./00455/2011 and XVI./
3652/2016 to work with mice.

For isolation of PBMCs, blood samples were taken from healthy donors. This procedure and the
respective consent documents were approved by the Institutional Human Medical Biological Research
Ethics Committee of the University of Szeged. All healthy donors provided written informed consent. All
experiments were performed in accordance with the guidelines and regulations of the Ethics Committee
of the University of Szeged, and experimental protocols were approved by this institutional committee.

Survival of Galleria mellonella larvae. G. mellonella larvae were inoculated with 5 � 107 yeast cells
in 10 �l PBS via the last proleg using a Hamilton syringe with a cone-tipped 26-gauge needle (Sigma-
Aldrich). For each C. parapsilosis strain, 20 wax moth larvae were infected. For PBS-treated (uninfected)
and witness control (no injections, uninfected), 15 animals were utilized. Larvae were maintained at 30°C,
and the survival of larvae was monitored daily.
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Analysis of cell wall composition. Cells were mechanically broken in a fastprep homogenizer, cell
debris were removed by centrifuging at 20,000 � g for 5 min at 4°C, and the walls were collected and
cleared by centrifuging at least six times with deionized water. Then, the walls were cleaned by serial
incubations with hot SDS, �-mercaptoethanol, and NaCl and hydrolyzed with hot 2 M trifluoroacetic acid
as described previously (44). Acid-hydrolyzed samples were analyzed by high-performance anion-
exchange chromatography with pulsed amperometric detection (HPAEC-PAD) in a Dionex system
(Thermo Fisher Scientific) as described earlier (45).

Fluorochrome staining for chitin and �-glucan exposure (microscopy, flow cytometry). Chitin
labeling was performed by incubating cells with 1 mg/ml WGA-FITC (Sigma) for 1 h at room temperature,
as reported earlier (46). For fluorescent detection of �-1,3-glucan, cells were first incubated with 5 �g/ml
IgG Fc-Dectin-1 chimera (47) for 40 min at room temperature and then further incubated with 1 �g/ml
donkey anti-Fc IgG-FITC (Sigma) for 40 min at room temperature (48). Cells were examined by fluores-
cence microscopy using a Zeiss Axioscope-40 microscope and an Axiocam MRc camera. From the
pictures acquired, the fluorescence associated with 300 cells was calculated using the software program
Adobe Photoshop CS6 and the following formula: [(total of green pixels � background green pixels) �
100]/total pixels.

Genome sequencing. Genomic DNA sequencing libraries were prepared using Nextera XT DNA
Library Preparation kit (Illumina) with Nextera XT Index kit adapters following the manufacturer’s
recommendations for sequencing runs � 2 � 250 cycles. Sequencing libraries were validated and
quantified using an Agilent 2100 Bioanalyzer capillary electrophoresis instrument with Agilent DNA 1000
kit. Whole-genome sequencing was performed with an Illumina MiSeq sequencer using MiSeq reagent
kit v3 (600 cycles) according to the manufacturer’s instructions. The read length was 2 � 300 bp, and the
final per base sequencing depth ranged from 46 to 130� (CLIB_S4: 51; AND_S2: 56; MIC_S1: 130;
CAS_S3:46).

Genome analysis of C. parapsilosis strains. Paired-end fastq reads files were first trimmed using
Trimmomatic version 0.36 (49). The parameters employed were as follows. We removed leading and
trailing nucleotides with quality below 10 (“LEADING” and “TRAILING” parameters, respectively). We used
4-nucleotide sliding windows and cut when average quality per nucleotide in a window was below 15
(“SLIDINGWINDOW” parameter), and we dropped any reads that were less than 40 nucleotides after this
trimming (“MINLEN” parameter). Then we mapped the trimmed reads with the bwa-mem tool from BWA
version 0.7.12-r1039 (50). The reference genome against which the reads were mapped was the CDC317
strain fasta file obtained in April of 2018 from the Candida Genome Database (51). We generated BAM
files from this output using the SortSam and MarkDuplicates commands from Picard version 2.15.0
(http://broadinstitute.github.io/picard/). Finally, we called variants from these reads using Freebayes
version 1.1.0-9-g09d4ecf (52) to jointly genotype all the strains involved. We filtered the SNPs using the
vcffilter tool from vcflib (Garrison, https://github.com/vcflib/vcflib). We removed any SNPs for which the
mean mapping quality (MQM) was below 30, the QUAL value was below 20 (indicating a probability of
a false variant call greater than 0.01), and/or the read depth (DP) was below 30.

Other computational methods. Transmembrane helix predictions were calculated using the TM-
HMM (http://www.cbs.dtu.dk/services/TMHMM/) and PRO-TMHMM servers (http://topcons.cbr.su.se/)
(53, 54). Sequences were aligned using the NCBI Protein BLAST online bioinformatic tool (https://blast
.ncbi.nlm.nih.gov/Blast.cgi).

Statistical analysis. All statistical analyses were performed with GraphPad Prism v 6.0 software using
parametric t tests or nonparametric Mann-Whitney tests. The values for the groups examined were
considered statistically significantly different at P 	 0.05.

Accession number(s). Raw sequencing data are available under the BioProject ID PRJNA493002.
Accession numbers for strains are as follows: wild-type CLIB 214, BioSample accession no.
SAMN10120406; CASEVO, SAMN10120407; ANDEVO, SAMN10120408; MICAEVO, SAMN10120409.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00547-18.
FIG S1, TIF file, 1.1 MB.
TABLE S1, XLS file, 0.4 MB.

ACKNOWLEDGMENTS
This research was supported by GINOP-2.3.2-15-2016-00035 and NKFIH K123952.

T.G.’s research group acknowledges support from the Spanish Ministry of Economy,
Industry, and Competitiveness (MEIC) for grant BFU2015-67107 cofounded by European
Regional Development Fund (ERDF), from the Catalan Research Agency (AGAUR)
SGR857, and a grant from the European Union’s Horizon 2020 research and innovation
program under grant agreement ERC-2016-724173, the Marie Sklodowska-Curie grant
agreement H2020-MSCA-ITN-2014-642095. H.M.M. and N.E.L.-P. are supported by Con-
sejo Nacional de Ciencia y Tecnología (reference PDCPN2014-247109, and FC 2015-02-
834), and Universidad de Guanajuato (reference 1025/2016; CIIC 95/2018). L.B. is
supported by NKFIH grant K112294.

Papp et al.

November/December 2018 Volume 3 Issue 6 e00547-18 msphere.asm.org 14

http://broadinstitute.github.io/picard/
https://github.com/vcflib/vcflib
http://www.cbs.dtu.dk/services/TMHMM/
http://topcons.cbr.su.se/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA493002
https://www.ncbi.nlm.nih.gov/biosample/SAMN10120406
https://www.ncbi.nlm.nih.gov/biosample/SAMN10120407
https://www.ncbi.nlm.nih.gov/biosample/SAMN10120408
https://www.ncbi.nlm.nih.gov/biosample/SAMN10120409
https://doi.org/10.1128/mSphere.00547-18
https://doi.org/10.1128/mSphere.00547-18
msphere.asm.org


The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

We thank Gordon Brown (University of Aberdeen) for the donation of the IgG
Fc-Dectin-1 chimera. We thank Katalin Csonka, Erik Zajta, and Tibor Németh for their
help with performing the experiments and their advice.

We declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as potential conflicts of interest.

REFERENCES
1. Sasso M, Roger C, Sasso M, Poujol H, Barbar S, Lefrant J-Y, Lachaud L.

2017. Changes in the distribution of colonising and infecting Candida
spp. isolates, antifungal drug consumption and susceptibility in a French
intensive care unit: a 10-year study. Mycoses 60:770 –780. https://doi
.org/10.1111/myc.12661.

2. Goemaere B, Becker P, Van Wijngaerden E, Maertens J, Spriet I, Hendrickx
M, Lagrou K. 2018. Increasing candidaemia incidence from 2004 to 2015
with a shift in epidemiology in patients preexposed to antifungals.
Mycoses 61:127–133. https://doi.org/10.1111/myc.12714.

3. Trofa D, Gacser A, Nosanchuk JD. 2008. Candida parapsilosis, an emerg-
ing fungal pathogen. Clin Microbiol Rev 21:606 – 625. https://doi.org/10
.1128/CMR.00013-08.

4. Malani A, Hmoud J, Chiu L, Carver PL, Bielaczyc A, Kauffman CA. 2005.
Candida glabrata fungemia: experience in a tertiary care center. Clin
Infect Dis 41:975–981. https://doi.org/10.1086/432939.

5. Sadeghi G, Ebrahimi-Rad M, Mousavi SF, Shams-Ghahfarokhi M,
Razzaghi-Abyaneh M. 2018. Emergence of non-Candida albicans species:
epidemiology, phylogeny and fluconazole susceptibility profile. J Mycol
Med 28:51–58. https://doi.org/10.1016/j.mycmed.2017.12.008.

6. Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP, Carlet J,
Reynes J, Rosenheim M, Regnier B, Lortholary O. 2009. Epidemiology,
management, and risk factors for death of invasive Candida infections in
critical care: a multicenter, prospective, observational study in France
(2005–2006). Crit Care Med 37:1612–1618. https://doi.org/10.1097/CCM
.0b013e31819efac0.

7. Lyon GM, Karatela S, Sunay S, Adiri Y. 2010. Antifungal susceptibility
testing of Candida isolates from the Candida surveillance study. J Clin
Microbiol 48:1270 –1275. https://doi.org/10.1128/JCM.02363-09.

8. Almirante B, Rodriguez D, Cuenca-Estrella M, Almela M, Sanchez F, Ayats
J, Alonso-Tarres C, Rodriguez-Tudela JL, Pahissa A. 2006. Epidemiology,
risk factors, and prognosis of Candida parapsilosis bloodstream
infections: case-control population-based surveillance study of patients
in Barcelona, Spain, from 2002 to 2003. J Clin Microbiol 44:1681–1685.
https://doi.org/10.1128/JCM.44.5.1681-1685.2006.

9. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-
Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE,
Sobel JD. 2016. Clinical practice guideline for the management of
candidiasis: 2016 update by the Infectious Diseases Society of America.
Clin Infect Dis 62:e1– e50. https://doi.org/10.1093/cid/civ933.

10. De Rosa FG, Motta I, Corcione S, Cattel F, Di Perri G, D’Avolio A. 2014.
Anidulafungin versus fluconazole: clinical focus on IDSA and ESCMID
guidelines. Infez Med 22:107–111.

11. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O,
Meersseman W, Akova M, Arendrup MC, Arikan-Akdagli S, Bille J, Cast-
agnola E, Cuenca-Estrella M, Donnelly JP, Groll AH, Herbrecht R, Hope
WW, Jensen HE, Lass-Florl C, Petrikkos G, Richardson MD, Roilides E,
Verweij PE, Viscoli C, Ullmann AJ. 2012. ESCMID* guideline for the
diagnosis and management of Candida diseases 2012: non-neutropenic
adult patients. Clin Microbiol Infect 18(Suppl 7):9 –37. https://doi.org/10
.1111/1469-0691.12038.

12. Pappas PG, Kauffman CA, Andes D, Benjamin DK, Jr, Calandra TF, Ed-
wards JE, Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli
AC, Rex JH, Walsh TJ, Sobel JD. 2009. Clinical practice guidelines for the
management of candidiasis: 2009 update by the Infectious Diseases
Society of America. Clin Infect Dis 48:503–535. https://doi.org/10.1086/
596757.

13. Lin S, Chen R, Zhu S, Wang H, Wang L, Zou J, Yan J, Zhang X, Farmakiotis
D, Tan X, Mylonakis E. 2018. Candidemia in adults at a tertiary hospital in
China: clinical characteristics, species distribution, resistance, and outcomes.
Mycopathologia 183:679–689. https://doi.org/10.1007/s11046-018-0258-5.

14. Berrio I, Maldonado N, De Bedout C, Arango K, Cano LE, Valencia Y,

Jimenez-Ortigosa C, Perlin DS, Gomez BL, Robledo C, Robledo J. 2018.
Comparative study for 147 Candida spp. identification and echinocan-
dins susceptibility in isolates obtained from blood cultures in 15 hospi-
tals, Medellin, Colombia. J Glob Antimicrob Resist 13:254 –260. https://
doi.org/10.1016/j.jgar.2017.11.010.

15. Spellberg BJ, Filler SG, Edwards JE, Jr. 2006. Current treatment strategies
for disseminated candidiasis. Clin Infect Dis 42:244 –251. https://doi.org/
10.1086/499057.

16. Lortholary O, Desnos-Ollivier M, Sitbon K, Fontanet A, Bretagne S, Dro-
mer F. 2011. Recent exposure to caspofungin or fluconazole influences
the epidemiology of candidemia: a prospective multicenter study in-
volving 2,441 patients. Antimicrob Agents Chemother 55:532–538.
https://doi.org/10.1128/AAC.01128-10.

17. Fernández-Ruiz M, Aguado JM, Almirante B, Lora-Pablos D, Padilla B,
Puig-Asensio M, Montejo M, García-Rodríguez J, Pemán J, Ruiz Pérez de
Pipaón M, Cuenca-Estrella M, CANDIPOP Project, GEIH-GEMICOMED
(SEIMC), REIPI. 2014. Initial use of echinocandins does not negatively
influence outcome in Candida parapsilosis bloodstream infection: a pro-
pensity score analysis. Clin Infect Dis 58:1413–1421. https://doi.org/10
.1093/cid/ciu158.

18. Colombo AL, Ngai AL, Bourque M, Bradshaw SK, Strohmaier KM, Taylor
AF, Lupinacci RJ, Kartsonis NA. 2010. Caspofungin use in patients with
invasive candidiasis caused by common non-albicans Candida species:
review of the caspofungin database. Antimicrob Agents Chemother
54:1864 –1871. https://doi.org/10.1128/AAC.00911-09.

19. Kofteridis DP, Lewis RE, Kontoyiannis DP. 2010. Caspofungin-non-
susceptible Candida isolates in cancer patients. J Antimicrob Chemother
65:293–295. https://doi.org/10.1093/jac/dkp444.

20. Castanheira M, Woosley LN, Diekema DJ, Messer SA, Jones RN, Pfaller
MA. 2010. Low prevalence of fks1 hot spot 1 mutations in a worldwide
collection of Candida strains. Antimicrob Agents Chemother 54:
2655–2659. https://doi.org/10.1128/AAC.01711-09.

21. Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS. 2009. Effect of
Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity
and kinetics of 1,3-beta-D-glucan synthase: implication for the existing
susceptibility breakpoint. Antimicrob Agents Chemother 53:3690 –3699.
https://doi.org/10.1128/AAC.00443-09.

22. Garcia-Effron G, Park S, Perlin DS. 2009. Correlating echinocandin MIC
and kinetic inhibition of fks1 mutant glucan synthases for Candida
albicans: implications for interpretive breakpoints. Antimicrob Agents
Chemother 53:112–122. https://doi.org/10.1128/AAC.01162-08.

23. Johnson ME, Katiyar SK, Edlind TD. 2011. New Fks hot spot for acquired
echinocandin resistance in Saccharomyces cerevisiae and its contribution
to intrinsic resistance of Scedosporium species. Antimicrob Agents Che-
mother 55:3774 –3781. https://doi.org/10.1128/AAC.01811-10.

24. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. 2014. Mecha-
nisms of antifungal drug resistance. Cold Spring Harb Perspect Med
5:a019752. https://doi.org/10.1101/cshperspect.a019752.

25. Perlin DS. 2015. Mechanisms of echinocandin antifungal drug resistance.
Ann N Y Acad Sci 1354:1–11. https://doi.org/10.1111/nyas.12831.

26. Arendrup MC, Perlin DS, Jensen RH, Howard SJ, Goodwin J, Hope W.
2012. Differential in vivo activities of anidulafungin, caspofungin, and
micafungin against Candida glabrata isolates with and without FKS
resistance mutations. Antimicrob Agents Chemother 56:2435–2442.
https://doi.org/10.1128/AAC.06369-11.

27. Johnson ME, Edlind TD. 2012. Topological and mutational analysis of
Saccharomyces cerevisiae Fks1. Eukaryot Cell 11:952–960. https://doi.org/
10.1128/EC.00082-12.

28. Garcia-Effron G, Katiyar SK, Park S, Edlind TD, Perlin DS. 2008. A naturally
occurring proline-to-alanine amino acid change in Fks1p in Candida
parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for

Attenuated Virulence in Resistant C. parapsilosis

November/December 2018 Volume 3 Issue 6 e00547-18 msphere.asm.org 15

https://doi.org/10.1111/myc.12661
https://doi.org/10.1111/myc.12661
https://doi.org/10.1111/myc.12714
https://doi.org/10.1128/CMR.00013-08
https://doi.org/10.1128/CMR.00013-08
https://doi.org/10.1086/432939
https://doi.org/10.1016/j.mycmed.2017.12.008
https://doi.org/10.1097/CCM.0b013e31819efac0
https://doi.org/10.1097/CCM.0b013e31819efac0
https://doi.org/10.1128/JCM.02363-09
https://doi.org/10.1128/JCM.44.5.1681-1685.2006
https://doi.org/10.1093/cid/civ933
https://doi.org/10.1111/1469-0691.12038
https://doi.org/10.1111/1469-0691.12038
https://doi.org/10.1086/596757
https://doi.org/10.1086/596757
https://doi.org/10.1007/s11046-018-0258-5
https://doi.org/10.1016/j.jgar.2017.11.010
https://doi.org/10.1016/j.jgar.2017.11.010
https://doi.org/10.1086/499057
https://doi.org/10.1086/499057
https://doi.org/10.1128/AAC.01128-10
https://doi.org/10.1093/cid/ciu158
https://doi.org/10.1093/cid/ciu158
https://doi.org/10.1128/AAC.00911-09
https://doi.org/10.1093/jac/dkp444
https://doi.org/10.1128/AAC.01711-09
https://doi.org/10.1128/AAC.00443-09
https://doi.org/10.1128/AAC.01162-08
https://doi.org/10.1128/AAC.01811-10
https://doi.org/10.1101/cshperspect.a019752
https://doi.org/10.1111/nyas.12831
https://doi.org/10.1128/AAC.06369-11
https://doi.org/10.1128/EC.00082-12
https://doi.org/10.1128/EC.00082-12
msphere.asm.org


reduced echinocandin susceptibility. Antimicrob Agents Chemother 52:
2305–2312. https://doi.org/10.1128/AAC.00262-08.

29. Ben-Ami R, Garcia-Effron G, Lewis RE, Gamarra S, Leventakos K, Perlin DS,
Kontoyiannis DP. 2011. Fitness and virulence costs of Candida albicans
FKS1 hot spot mutations associated with echinocandin resistance. J
Infect Dis 204:626 – 635. https://doi.org/10.1093/infdis/jir351.

30. Saiman L, Ludington E, Dawson JD, Patterson JE, Rangel-Frausto S,
Wiblin RT, Blumberg HM, Pfaller M, Rinaldi M, Edwards JE, Wenzel RP,
Jarvis W. 2001. Risk factors for Candida species colonization of neonatal
intensive care unit patients. Pediatr Infect Dis J 20:1119 –1124. https://
doi.org/10.1097/00006454-200112000-00005.

31. Kuranda K, Leberre V, Sokol S, Palamarczyk G, Francois J. 2006. Investi-
gating the caffeine effects in the yeast Saccharomyces cerevisiae brings
new insights into the connection between TOR, PKC and Ras/cAMP
signalling pathways. Mol Microbiol 61:1147–1166. https://doi.org/10
.1111/j.1365-2958.2006.05300.x.

32. Chassot F, Venturini TP, Piasentin FB, Rossato L, Fiorini A, Svidzinski TI,
Alves SH. 2016. Exploring the in vitro resistance of Candida parapsi-
losis to echinocandins. Mycopathologia 181:663– 670. https://doi.org/
10.1007/s11046-016-0028-1.

33. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, Rex JH, Alexander BD,
Andes D, Brown SD, Chaturvedi V, Ghannoum MA, Knapp CC, Sheehan
DJ, Walsh TJ. 2008. Correlation of MIC with outcome for Candida species
tested against caspofungin, anidulafungin, and micafungin: analysis and
proposal for interpretive MIC breakpoints. J Clin Microbiol 46:
2620 –2629. https://doi.org/10.1128/JCM.00566-08.

34. Rosenberg A, Ene IV, Bibi M, Zakin S, Segal ES, Ziv N, Dahan AM,
Colombo AL, Bennett RJ, Berman J. 2018. Antifungal tolerance is a
subpopulation effect distinct from resistance and is associated with
persistent candidemia. Nat Commun 9:2470. https://doi.org/10.1038/
s41467-018-04926-x.

35. Lee KK, Maccallum DM, Jacobsen MD, Walker LA, Odds FC, Gow NA,
Munro CA. 2012. Elevated cell wall chitin in Candida albicans confers
echinocandin resistance in vivo. Antimicrob Agents Chemother 56:
208 –217. https://doi.org/10.1128/AAC.00683-11.

36. Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, Gow NA, Erwig LP.
2012. Stage specific assessment of Candida albicans phagocytosis by
macrophages identifies cell wall composition and morphogenesis as key
determinants. PLoS Pathog 8:e1002578. https://doi.org/10.1371/journal
.ppat.1002578.

37. Pérez-García LA, Csonka K, Flores-Carreón A, Estrada-Mata E, Mellado-
Mojica E, Németh T, López-Ramírez LA, Toth R, López MG, Vizler C,
Marton A, Tóth A, Nosanchuk JD, Gácser A, Mora-Montes HM. 2016. Role
of protein glycosylation in Candida parapsilosis cell wall integrity and
host interaction. Front Microbiol 7:306. https://doi.org/10.3389/fmicb
.2016.00306.

38. Martí-Carrizosa M, Sánchez-Reus F, March F, Cantón E, Coll P. 2015.
Implication of Candida parapsilosis FKS1 and FKS2 mutations in reduced
echinocandin susceptibility. Antimicrob Agents Chemother 59:
3570 –3573. https://doi.org/10.1128/AAC.04922-14.

39. Fekete-Forgács K, Gyüre L, Lenkey B. 2000. Changes of virulence factors
accompanying the phenomenon of induced fluconazole resistance in
Candida albicans. Mycoses 43:273–279. https://doi.org/10.1046/j.1439
-0507.2000.00587.x.

40. Laffey SF, Butler G. 2005. Phenotype switching affects biofilm formation
by Candida parapsilosis. Microbiology 151:1073–1081. https://doi.org/10
.1099/mic.0.27739-0.

41. Clinical and Laboratory Standards Institute. 2008. Reference method for
broth dilution antifungal susceptibility testing of yeasts; approved stan-
dard, 3rd ed. CLSI document M27-A3. Clinical and Laboratory Standards
Institute, Wayne, PA.

42. Clinical and Laboratory Standards Institute. 2012. Reference method for
broth dilution antifungal susceptibility testing of yeasts; approved stan-
dard, 4th ed. CLSI document M27-S4. Clinical and Laboratory Standards
Institute, Wayne, PA.

43. Nemeth T, Toth A, Szenzenstein J, Horvath P, Nosanchuk JD, Grozer Z,
Toth R, Papp C, Hamari Z, Vagvolgyi C, Gacser A. 2013. Characterization
of virulence properties in the C. parapsilosis sensu lato species. PLoS One
8:e68704. https://doi.org/10.1371/journal.pone.0068704.

44. Mora-Montes HM, Bates S, Netea MG, Díaz-Jiménez DF, López-Romero E,
Zinker S, Ponce-Noyola P, Kullberg BJ, Brown AJP, Odds FC, Flores-
Carreón A, Gow NAR. 2007. Endoplasmic reticulum alpha-glycosidases of
Candida albicans are required for N-glycosylation, cell wall integrity, and
normal host-fungus interaction. Eukaryot Cell 6:2184 –2193. https://doi
.org/10.1128/EC.00350-07.

45. Estrada-Mata E, Navarro-Arias MJ, Pérez-García LA, Mellado-Mojica E,
López MG, Csonka K, Gacser A, Mora-Montes HM. 2015. Members of the
Candida parapsilosis complex and Candida albicans are differentially
recognized by human peripheral blood mononuclear cells. Front Micro-
biol 6:1527. https://doi.org/10.3389/fmicb.2015.01527.

46. Mora-Montes HM, Netea MG, Ferwerda G, Lenardon MD, Brown GD,
Mistry AR, Kullberg BJ, O’Callaghan CA, Sheth CC, Odds FC, Brown AJ,
Munro CA, Gow NA. 2011. Recognition and blocking of innate immunity
cells by Candida albicans chitin. Infect Immun 79:1961–1970. https://doi
.org/10.1128/IAI.01282-10.

47. Graham LM, Tsoni SV, Willment JA, Williams DL, Taylor PR, Gordon S,
Dennehy K, Brown GD. 2006. Soluble Dectin-1 as a tool to detect
beta-glucans. J Immunol Methods 314:164 –169. https://doi.org/10.1016/
j.jim.2006.05.013.

48. Marakalala MJ, Vautier S, Potrykus J, Walker LA, Shepardson KM, Hopke
A, Mora-Montes HM, Kerrigan A, Netea MG, Murray GI, Maccallum DM,
Wheeler R, Munro CA, Gow NA, Cramer RA, Brown AJ, Brown GD. 2013.
Differential adaptation of Candida albicans in vivo modulates immune
recognition by dectin-1. PLoS Pathog 9:e1003315. https://doi.org/10
.1371/journal.ppat.1003315.

49. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30:2114 –2120. https://doi.org/10
.1093/bioinformatics/btu170.

50. Li H. 2013. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. arXiv:1303.3997v1. https://arxiv.org/abs/1303
.3997v1.

51. Skrzypek MS, Binkley J, Sherlock G. 2018. Using the Candida Genome
Database. Methods Mol Biol 1757:31– 47. https://doi.org/10.1007/978-1
-4939-7737-6_3.

52. Garrison E, Marth G. 2012. Haplotype-based variant detection from
short-read sequencing. arXiv:1207.3907. https://arxiv.org/abs/1207.3907.

53. Tsirigos KD, Peters C, Shu N, Kall L, Elofsson A. 2015. The TOPCONS web
server for consensus prediction of membrane protein topology and
signal peptides. Nucleic Acids Res 43:W401–W407. https://doi.org/10
.1093/nar/gkv485.

54. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting
transmembrane protein topology with a hidden Markov model: appli-
cation to complete genomes. J Mol Biol 305:567–580. https://doi.org/10
.1006/jmbi.2000.4315.

Papp et al.

November/December 2018 Volume 3 Issue 6 e00547-18 msphere.asm.org 16

https://doi.org/10.1128/AAC.00262-08
https://doi.org/10.1093/infdis/jir351
https://doi.org/10.1097/00006454-200112000-00005
https://doi.org/10.1097/00006454-200112000-00005
https://doi.org/10.1111/j.1365-2958.2006.05300.x
https://doi.org/10.1111/j.1365-2958.2006.05300.x
https://doi.org/10.1007/s11046-016-0028-1
https://doi.org/10.1007/s11046-016-0028-1
https://doi.org/10.1128/JCM.00566-08
https://doi.org/10.1038/s41467-018-04926-x
https://doi.org/10.1038/s41467-018-04926-x
https://doi.org/10.1128/AAC.00683-11
https://doi.org/10.1371/journal.ppat.1002578
https://doi.org/10.1371/journal.ppat.1002578
https://doi.org/10.3389/fmicb.2016.00306
https://doi.org/10.3389/fmicb.2016.00306
https://doi.org/10.1128/AAC.04922-14
https://doi.org/10.1046/j.1439-0507.2000.00587.x
https://doi.org/10.1046/j.1439-0507.2000.00587.x
https://doi.org/10.1099/mic.0.27739-0
https://doi.org/10.1099/mic.0.27739-0
https://doi.org/10.1371/journal.pone.0068704
https://doi.org/10.1128/EC.00350-07
https://doi.org/10.1128/EC.00350-07
https://doi.org/10.3389/fmicb.2015.01527
https://doi.org/10.1128/IAI.01282-10
https://doi.org/10.1128/IAI.01282-10
https://doi.org/10.1016/j.jim.2006.05.013
https://doi.org/10.1016/j.jim.2006.05.013
https://doi.org/10.1371/journal.ppat.1003315
https://doi.org/10.1371/journal.ppat.1003315
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://arxiv.org/abs/1303.3997v1
https://arxiv.org/abs/1303.3997v1
https://doi.org/10.1007/978-1-4939-7737-6_3
https://doi.org/10.1007/978-1-4939-7737-6_3
https://arxiv.org/abs/1207.3907
https://doi.org/10.1093/nar/gkv485
https://doi.org/10.1093/nar/gkv485
https://doi.org/10.1006/jmbi.2000.4315
https://doi.org/10.1006/jmbi.2000.4315
msphere.asm.org

	RESULTS
	Generation and altered susceptibility of microevolved strains. 
	Microevolution alters stress response in evolved strains. 
	Acquired resistance to echinocandins resulted in attenuated virulence in vivo. 
	Echinocandin microevolution affects the exposure, but not the ratio, of inner cell wall components. 
	Echinocandin microevolution does not affect phagocytosis or phagolysosome colocalization. 
	Microevolution in the presence of echinocandins is possibly due to acquired amino acid substitutions in C. parapsilosis Fks1. 

	DISCUSSION
	MATERIALS AND METHODS
	Generation of C. parapsilosis echinocandin-evolved strains. 
	Strains and culture conditions. 
	Antifungal susceptibility testing. 
	Determination of abiotic stressor tolerance by spot assay and growth capabilities under no-stress condition. 
	Isolation of peripheral blood mononuclear cells (PBMCs) and differentiation of PBMC-derived macrophages (PBMC-DMs). 
	Phagocytosis and phagolysosome colocalization (flow cytometry). 
	In vivo infection of mice and fungal burden. 
	Ethic statement. 
	Survival of Galleria mellonella larvae. 
	Analysis of cell wall composition. 
	Fluorochrome staining for chitin and -glucan exposure (microscopy, flow cytometry). 
	Genome sequencing. 
	Genome analysis of C. parapsilosis strains. 
	Other computational methods. 
	Statistical analysis. 
	Accession number(s). 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

