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3 Deconstructing the Melting Pot in Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a disease that is typically
fatal within 5-7 years of diagnosis for most subjects and occurs
in all ancestral populations (1). Since the initial discovery of
BMPR?2 (bone morphogenetic protein receptor type 2) mutation as
a cause of PAH, countless publications have further expanded the
genetics of PAH, including discoveries of other causative genes and
the role of common gene variant associations (2-4). Yet, few
studies have comprehensively explored how ancestry, race, or
ethnicity plays a role in PAH development and response to therapy.
The lack of such studies is striking given the intense focus on
providing personalized care to patients with PAH. Of course,
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studies of discrete populations, such as minority groups, are
challenging to perform in rare diseases given the small numbers
of subjects.

Nearly a decade ago, Gabler and colleagues conducted a pooled
analysis of data from placebo-controlled trials of the use of
endothelin receptor antagonists in >1,000 participants with PAH,
and uncovered variations in response to endothelin receptor
antagonists related to sex and self-reported race (5). Race-based
comparisons focused on black versus white individuals showed a
difference in placebo-adjusted beneficial treatment response,
favoring white individuals by considerable effect sizes. However,
this difference did not meet statistical significance. Although other
racial groups were not explored, the study was an important
reminder that variations in treatment response may occur among
individuals of different racial and ethnic groups. A few subsequent
studies reported the impact of self-reported African ancestry;
overall, there appears to be a higher degree of severity and perhaps
a reduced treatment response among those who self-report as
black (6-10).
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The self-reported data suggesting that black individuals have
poorer outcomes are troubling and raise more questions than
answers. More broadly, this also highlights our inadequate
understanding, even to this date, of the role of racial, ethnic, and
ancestral factors in PAH and pulmonary hypertension. As a
reminder, in biomedical research, the term “race” refers to an
individual’s appearance. In contrast, “ethnicity” suggests a
communal participation in a group (or groups) of individuals who
share specific cultural traits, including traditions, language, social
practices, and even geopolitical factors (11). Unfortunately, these
categorizations typically rely on an individual participant’s self-
report or assignment by investigators, both of which are highly
prone to error, especially when compared with DNA-based
determination (12). Errors may arise from an individual’s lack of
knowledge about his or her actual background and alignment with
an ethnic group that has a genetically admixed background (11). As
a result, recent studies found that self-reported race is likely to
be incorrect and/or have a higher degree of admixture than
would be assumed (13, 14). Self-identified Hispanics in New
York City, for example, were shown to be 29% European, 26%
African, and 45% Native American by ancestry-informative
markers (15).

In this issue of the Journal, Karnes and colleagues (pp.
1407-1415) explore the role of race and ethnicity in PAH (16).
They determined ancestry in patients with PAH using genetic
markers by incorporating information contained in several large
U.S. datasets. Self-reported race and ethnicity were combined to
form selected groups of non-Hispanic white (NHW), non-Hispanic
African American (NHAA), and Hispanic subjects. Reasonably
consistent with prior studies, NHWs were 97% European, NHAAs
were 82% African (16% European), and Hispanics were 85%
European, 36% Native American, and 7% African by genetically
determined ancestry. Although the groups were similar by most
standard PAH-relevant comparisons, Hispanics were younger,
with a higher mean pulmonary artery pressure and pulmonary
vascular resistance but lower concurrent use of prostacyclin
analogs. Intriguingly, in survival analyses, self-reported Hispanic
status in both the PAH Biobank and Allegheny Health Network
cohorts was associated with a statistically significantly improved
transplant-free survival. It does not appear that survival was
modified by genetic ancestry according to the a priori level of
statistical significance.

To strengthen their study, the authors evaluated a distinct
database of patients with PAH in self-reported or hospital-assigned
categories. This analysis included data for 8,829 NHWs, 2,628
NHAAs, 1,524 Hispanics, 403 Asians, and 185 Native Americans
from the U.S. National Inpatient Sample database. Regression
analyses of these data showed that both Hispanic status and Native
American status were protective of inpatient mortality versus
NHW status. In contrast, NHAA status conferred increased
mortality compared with NHW status, consistent with prior
concerns about poorer outcomes for African Americans with PAH
(5-9).

This study has multiple strengths, including the number of
subjects studied, the integration of self-report and genetic
identification, and the additional value of an extensive inpatient
database. Given the importance of distinguishing race, ethnicity, and
ancestry, the ability to assess ancestry-informative markers added a
layer of depth and supported the authors’ conclusion that Native
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American ancestry may contribute to Hispanics’ protection against
deleterious outcomes. The large sample size allowed the authors to
examine minority groups that are typically excluded or
insufficiently studied in large registries of PAH.

However, this work identifies several possible future lines of
investigation that could further clarify these data. The inclusion of
several consented PAH cohorts increased the sample size, which
was needed, but also introduced phenotypic heterogeneity. For
example, the PAH Biobank only included idiopathic and heritable
PAH, whereas the Allegheny Health Network, Arizona, and
Stanford cohorts included all forms of PAH. The years in which the
studies were conducted, the duration of follow-up, the relationship
between diagnosis and enrollment, and other factors varied
among the cohorts. Furthermore, researchers establishing cohorts
derived from tertiary clinical care centers may inadvertently select a
certain type of subject (for example, those who are particularly ill),
excluding subjects from a given category. It is hoped that a large
cohort study that can provide more phenotypic homogeneity, as well
as a more in-depth degree of functional (e.g., imaging studies of right
ventricular function and changes over time) and multi-“omic”
assessments, will emerge to explore race, ethnicity, and ancestry in
more detail. Also, although the National Inpatient Sample database is
a useful addition to such research, it has significant limitations,
including a lack of biospecimens, reliance on accurate identification
of PAH from International Classification of Diseases, Ninth Revision,
Clinical Modification and International Classification of Diseases,
Tenth Revision, Clinical Modification data, and lack of outpatient
data. Finally, identification of differences according to race/ethnicity
may reflect lifestyle, options for subspecialty care, or other choices
that are irrelevant to genetic susceptibility (17).

Regardless, the current study highlights the need to carefully assess
differences between and among groups stratified by self-reporting as
well as according to genetic markers in PAH. If the findings are
replicated, the next steps would involve careful determinations of why
differences in clinical outcomes exist and how they may be corrected.
The solutions may be complicated and vary depending on the cause—
ethnic and ancestral differences have very different underlying causes
and thus would require different approaches for alteration. However,
understanding subpopulation and, ultimately, individual genetic
compositions will be crucial for the next generation of cohort studies,
clinical trials, and therapies for PAH.
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3 Clarity with INHindsight: High-Dose Isoniazid for Drug-Resistant

Tuberculosis with inhA Mutations

Isoniazid has been a cornerstone of tuberculosis treatment and
prevention since clinical introduction in the early 1950s and remains
a key drug in the standard, first-line regimen. Its utility is threatened
by expansion of drug-resistant tuberculosis; isoniazid
monoresistance, estimated at 10% globally (although in some
regions of the world as many as 27% of Mycobacterium tuberculosis
strains have isoniazid resistance [1]), is associated with
substantially worse treatment outcomes even with rifamycin-
containing regimens (2). Multidrug resistance (MDR; resistance to
at least isoniazid plus rifampin) requires longer and less-effective
therapy, threatening the prospects of the global goal to end
tuberculosis in the next decade (3). Although new and repurposed
agents have shifted the treatment landscape for drug-resistant
tuberculosis, none rival the potent early bactericidal activity (EBA)
of isoniazid. The possibility of leveraging isoniazid, a safe and
widely accessible antituberculosis drug with few pharmacokinetic
interactions, is therefore appealing.

After activation by KatG (catalase-peroxidase), isoniazid-
derived radicals bind InhA, a fatty acid synthase, potently inhibiting
the ability of M. tuberculosis to synthesize mycolic acids (4). This
results in rapid killing of replicating bacilli at drug concentrations
achieved with standard isoniazid dosing at 4 to 6 mg/kg, even
for individuals with “fast acetylator” genotypes (5). Mutations in
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the inhA active site or promoter region, causing reduced target
affinity or overexpression, respectively, lead to moderate minimum
inhibitory concentration (MIC) elevations (0.25-2 pg/ml) (6)
and are responsible for approximately 7% of isoniazid resistance
globally (1). Because isoniazid displays dose-dependent EBA (7),
higher doses may result in exposures that overcome inhA-mediated
resistance and translate into efficacy.

This is the postulated mechanism for observed clinical benefit
of high-dose isoniazid added to conventional agents in MDR-
tuberculosis (8, 9). A randomized controlled trial conducted in
India (9) and a retrospective cohort study in Haiti (8) both
reported reduced time to culture conversion and improved
outcomes with inclusion of isoniazid 16 to 18 mg/kg in MDR-
tuberculosis regimens, despite most measured isoniazid MICs
exceeding the critical concentration of 0.2 pg/ml. High-dose
isoniazid has also been studied as part of successful treatment-
shortening regimens for MDR-tuberculosis (10, 11), leading
to endorsement for this indication as part of a seven-drug
combination regimen by the World Health Organization (12, 13).
However, there is major uncertainty about the independent effect
of isoniazid on M. tuberculosis killing and optimal dosing in the
context of INH-resistance mutations, leading the World Health
Organization to call for more research in this area (12, 13).

In this issue of the Journal, Dooley and colleagues (pp. 1416-1424)
report findings from the INHindsight study, a phase IIA dose-ranging
trial of isoniazid for patients with pulmonary MDR-tuberculosis and
inhA mutations (14). Participants were recruited at a single site in
South Africa and randomized to receive isoniazid at standard
(5 mg/kg) or higher (10 or 15 mg/kg) doses. Another group of
participants with drug-susceptible tuberculosis was provided isoniazid
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