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Comprehensive maps of genetic interactions in mammalian cells are daunting to

construct because of the large number of potential interactions, ∼ 2× 108 for protein

coding genes. We previously used co-inheritance of distant genes from published

radiation hybrid (RH) datasets to identify genetic interactions. However, it was necessary

to combine six legacy datasets from four species to obtain adequate statistical power.

Mapping resolution was also limited by the low density PCR genotyping. Here, we

employ shallow sequencing of nascent human RH clones as an economical approach

to constructing interaction maps. In this initial study, 15 clones were analyzed, enabling

construction of a network with 225 genes and 2,359 interactions (FDR < 0.05). Despite

its small size, the network showed significant overlap with the previous RH network and

with a protein-protein interaction network. Consumables were .$50 per clone, showing

that affordable, high quality genetic interaction maps are feasible in mammalian cells.

Keywords: cancer, cell growth, complex traits, gene interactions, GWAS, radiation hybrid, genetic variants, copy

number variants

INTRODUCTION

Intelligent intervention in normal and diseased mammalian cells requires a comprehensive map of
their biological networks. Protein-protein interactions (PPIs) have been identified using a variety
of technologies, including yeast two hybrid assays and immunoprecipitation-mass spectrometry
(Yugandhar et al., 2019; Luck et al., 2020). Although these approaches are resource intensive, most
human PPIs have been evaluated using large experimental efforts and cataloged in publicly available
databases (Bajpai et al., 2020; Luck et al., 2020).

Because of the cost, a survey of all PPIs in various cell types is not feasible. Further, PPIs do
not provide information on the cellular consequences of the relevant interactions. For example,
proteins may have no physical interaction, even though their genes show strong interactions.

Genetic interactions have been evaluated in a wide variety of organisms, ranging from bacteria
to Drosophila (Costanzo et al., 2019). The most thorough catalog is for the yeast Saccharomyces
cerevisiae (Costanzo et al., 2016). This network has provided surprising new information on the
connections between cellular pathways. Data in other organisms is far less complete. Assuming
20,000 protein coding genes in mammals, the number of potential interactions is ∼ 2× 108.
The addition of non-coding genes trebles the number of genes, bringing the number of possible
interactions to∼ 1.8× 109.

Multiple opportunities for therapeutic intervention in cancer will emerge from genetic
interaction maps (Mair et al., 2019). In particular, geneticists are beginning to use CRISPR-
Cas9 genetic editing technology to study the viability of cancer cells with double loss-of-function
mutations in trans. One recent study employed CRISPR interference (CRISPRi) to identify genetic
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interactions among 222,784 gene pairs in two cancer cell lines
(Horlbeck et al., 2018). However, even this effort only evaluated
∼ 0.1% of all possible coding gene pairs.

Overexpression alters cell physiology differently to loss-of-
function, and is a complementary strategy to understanding
cellular networks in both yeast and mammalian cells (Sopko
et al., 2006; Prelich, 2012; Khan et al., 2020). One recent
approach to obtaining targeted increases in gene expression
is CRISPR activation (CRISPRa), but this method causes
constitutive and non-physiological overexpression (Gilbert et al.,
2014; Kampmann, 2018).

Radiation hybrid (RH) mapping has been widely used to
construct genetic maps for the genome projects (Goss andHarris,
1975; Cox et al., 1990; Walter et al., 1994; McCarthy, 1996;
McCarthy et al., 2000; Avner et al., 2001; Hudson et al., 2001;
Olivier et al., 2001; Kwitek et al., 2004). In this technique,
lethal doses of radiation are used to randomly fragment the
genome of a human cell line (Figure 1A) (Goss and Harris,
1975). RH clones are then created by transferring a sample of the
DNA fragments to living hamster cells using cell fusion. Linked
markers are likely to reside on the same fragment, and hence

FIGURE 1 | Creating RH interaction networks. (A) RH clones are made by lethally irradiating human cells (HEK293). The human cells are fused to living hamster cells

(A23) to rescue the DNA fragments, and RH clones selected using TK1. Conventional RH mapping exploits the fact that nearby makers tend to be found on the same

DNA fragment and thus co-inherited (green triangles). RH interaction networks seek co-inheritance of distant markers (green and pink triangles). (B) Human DNA copy

number, clone 8, Chromosome 8. One of the human fragments encompasses the centromere. (C) Mean retention across 15 clones, showing increased retention at

centromeres and retention of 1 at TK1. (D) Mean retention across clones, Chromosome 17.

co-inherited in the RH clones. Because of the small size of the
DNA fragments, genotyping a panel of RH clones allows high
resolution mapping.

We previously used publicly available RH data to construct a
genetic interaction map for mammalian cells (Lin et al., 2010; Lin
and Smith, 2015). We reasoned that significant co-inheritance of
marker pairs separated from each other in the human genome
would disclose genetic interactions promoting cell survival.
Rather than loss-of-function, this interaction network depends
on extra gene copies. Moreover, the genes are expressed using
their natural promoters instead of constitutively.

We increased the statistical power of the RH network
by combining PCR genotyping datasets from six RH panels:
three human, one mouse, one rat, and one dog. The network
consisted of 18,324 genes linked by 7,248,479 interactions. The
overwhelming majority of interactions consisted of higher than
expected co-retention of the gene pairs.

Despite its statistical power, the quality of the network suffered
because of the need to combine datasets from different species.
In addition, the mapping resolution was limited by the legacy
PCR genotyping.
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In this study, we demonstrate the cost-effectiveness of the RH
approach in creating genetic interactionmaps for themammalian
genome. We used low pass DNA sequencing to genotype
emergent human RH clones, decreasing labor and cell culture
costs, while also improving mapping resolution. Expanding this
strategy will render construction of whole genome interaction
networks feasible.

RESULTS

Human DNA Retention in the RH Clones
We exploited the sensitivity of modern DNA technologies to
analyze RH clones upon appearance, avoiding the customary
need for additional growth. Our strategy cuts costs and saves
time. Fifteen independent RH clones were evaluated using low
pass sequencing at a depth of 0.31 ± 0.03 times the human
genome (14.5± 1.4 M single reads of 65 bp). Reads were aligned
to the human genome and those that also aligned to hamster were
discarded. Only human-specific reads remained for subsequent
analyses using 1 Mb windows and 10 kb steps (Khan et al., 2020).

The human DNA fragment length was 2.3 ± 0.1 Mb
and the retention frequency was 0.25 ± 0.08 (Figures 1B–D,
Supplementary Figures 1A–D). Due to the small number of
clones, 3% of the human genome had zero retention. Clone 2
had the highest retention (0.97) and harbored a nearly
complete copy of the human genome, plus additional fragments
(Supplementary Figure 2). The human genome was represented
with 3.8-fold± 1.3 redundancy in the 15 clones.

Centromeres showed increased retention, since they stabilize
the donated human DNA fragments (Wang et al., 2011;
Khan et al., 2020) (Figures 1B–D, Supplementary Figure 1E).
Fragments containing centromeres were also significantly longer
than other fragments, due to the large size of these chromosomal
elements (Supplementary Figure 1F). The human TK1 gene was
used as the marker to select hybrids, and its copy number was
therefore 1.

Mapping Accuracy
Based on the average fragment length, retention frequency
and panel size, the expected mapping resolution was 0.3
± 1.2 Mb . We further estimated mapping resolution by
evaluating the distance at which peak − log10 P-values for cis
linked 1 Mb windows decreased by one (−1 log10 P-values)
(Supplementary Figure 3). The −1 log10 P-value was 1.0 Mb
using − log10 P-values plotted against distance and 2.2 Mb using
distance against− log10 P.

As a surrogate measure of mapping accuracy, we also
evaluated the distance between the retention peak of TK1 and
its known location (Khan et al., 2020). We did the same
for the centromeres. The mapping resolution for TK1 was
33.3 ± 59.5 kb and for the centromeres, −0.5 ± 2.5 Mb
(Supplementary Figure 4), neither of which were significantly
different from the expected value of zero (P = 0.06 and 0.80,
respectively).

Although there were substantial differences between the
mapping accuracy estimates for this small RH panel, the
resolution is probably of the order of.1 Mb.

Human Genetic Interactions
We identified human genetic interactions by seeking co-
inheritance of distant genes (>2.4 Mb apart) across the 15 clones
(Figure 2). Interactions are hence identified using data from all
clones, rather than single clones. For example, if a gene shows
a retention pattern of {100110001000000} across the clones and
a distant gene shows the same pattern, there is significant co-
inheritance. Fisher’s exact test was used to assess significance
(false discovery rate, FDR < 0.05).

Interacting genes were identified as genes closest to a− log10 P
peak consisting of a single window pair, with neighboring
window pairs showing decreased significance. Because the
selection procedure for interaction peaks ignores “plateaus” of
− log10 P-values, the realized mapping resolution may be better
than our empirical estimates. In fact, the resolution may be of the
order of the 10 kb steps, close to the estimate using TK1 retention.

We restricted our analysis to coding region genes to
facilitate comparison with the legacy RH-PCR network as well
as PPI networks. A total of 2,359 interactions connecting
225 genes were found in the RH-Seq network, with a mean
degree of 21.0 ± 1.4 (Figures 3A,B, Supplementary Figure 5,
Supplementary Table 1).

All interactions in the RH-Seq network were “attractive,” in
which gene co-retention occurred more often than expected by
chance. Gene pairs that interact as extra copies thus promote
cell growth. The interactions in our original RH-PCR network
were also overwhelmingly attractive (Lin et al., 2010). This
finding contrasts with loss-of-function alleles in yeast and cancer
cells, where some allele combinations promoted, while others
inhibited, growth (Costanzo et al., 2016, 2019; Horlbeck et al.,
2018).

PCDH7 had the largest number of interactions in the RH-
Seq network, 81 (Figures 3B–D). In addition, PCDH7 regulated
the expression of the most genes (614) in a mouse RH panel
(Park et al., 2008; Ahn et al., 2009). Perhaps genes with many
interactions also regulate the expression of many genes.

Clone Numbers and Genetic Interactions
Because the RH-Seq network used only 15 clones, the − log10 P
plots displayed discrete values (Figure 2). This phenomenon
was also shown by the number of interactions for each
gene (Figure 3C). The null expectation for the number of
clones harboring two distant genes is 0.96 ± 0.04 , while
the observed number for the significant genes was 3.35 ±

0.01 (Supplementary Table 1). The minimum clone number for
significant interactions was 2, corresponding to 104 interactions
(4.4%).

There was no obvious relationship between the number of
clones harboring interacting genes and the discrete interaction
numbers of 24–28 (number of clones, 4.0 ± 0.0) and 54–57
(number of clones, 3 ± 0) (Figure 3C). In particular, PCDH7,
which showed the largest number of interactions, had 3.3 ± 0.1
clones harboring the gene and its interacting partners. Thus,
genes with many interactions did not appear to be driven by an
inordinately small number of clones.
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FIGURE 2 | Chromosome plots of human genetic interactions. (A) Co-inheritance of peak window at TRIQK and windows on Chromosome 5, with FBLL1 exceeding

significance thresholds. (B) Co-inheritance of FBLL1 and windows on Chromosome 8, with TRIQK exceeding significance thresholds. (C) Co-inheritance of GFRA1

and windows on Chromosome 6, with LCA5 exceeding significance thresholds. (D) Co-inheritance of LCA5 and windows on Chromosome 10, with GFRA1

exceeding significance thresholds. Green horizontal line, P = 0.05, Red horizontal line, FDR = 0.05.

Overlaps With RH-PCR and PPI Networks
We found highly significant FDR corrected overlap between the
RH-Seq interaction network and the legacy RH-PCR network
(Figures 4A,B). The overlap significance diminishes as threshold
increases, due to decreased numbers (maximum overlap, FDR
< 2.2 × 10−16, odds ratio = 3.1, 97 common interactions, 32
expected). Considering the limited power of the RH-Seq dataset,
the overlap is encouraging.

We also found less strong, but still significant, overlap between
the RH-Seq interaction network and the STRING v11 PPI
database (maximum overlap, FDR = 4.64 × 10−2, odds ratio
= 2.23, 25 common interactions, 11 expected) (Figures 4C,D)
(Szklarczyk et al., 2019). The decreased overlap may reflect the
different data ascertainment methods of RH-Seq and STRING.

The peak overlap significance between RH-Seq and STRING
occurred at intermediate thresholds and is likely driven by
two competing trends—as the STRING score increases, the
quality of interactions improves while the number of potential
overlaps decreases. Concerns that the overlap is only detected at
specific thresholds is alleviated by the observation that it survives
FDR correction.

The overlap between the RH-Seq and RH-PCR networks
is not caused by a few genes with many interactions, since
the most significant overlap included all significant interactions
(Figures 4A,B). Similarly, the RH-Seq genes at the most
significant overlap of the RH-Seq network with STRING
(Figures 4C,D) showed significantly lower degree (10.2 ± 0.8)
than the null (P = 7.4× 10−11).

We found no overlap of the RH-Seq network with four other
PPI datasets, BioGRID, HIPPIE, HINT and a yeast two-hybrid
dataset, reflecting the modest size of the RH-Seq network (Das
and Yu, 2012; Alanis-Lobato and Schaefer, 2020; Bajpai et al.,
2020; Luck et al., 2020; Oughtred et al., 2021).

Nevertheless, the overlap of the RH-Seq and STRING
networks suggests that gene products which interact to promote
cell growth may also interact physically. A similar overlap
was found between loss-of-function genetic interactions using
CRISPRi in two cancer cell lines and the STRING database
(Horlbeck et al., 2018). There was no overlap between the
RH-Seq and the CRISPRi networks, but it is difficult to draw
firm conclusions about the similarities and differences of these
networks given that each are of limited size.

Overlaps With Disease and Gene Ontology
Networks
The original RH-PCR interaction network showed significant
overlap with networks constructed using a gene-disease database
and using gene ontology (GO) (Lin et al., 2010; Pletscher-
Frankild et al., 2015; Gene Ontology Consortium, 2021). We
found that the RH-Seq network also overlapped with these
networks (Supplementary Figure 6).

Due to diminishing interaction numbers, the
overlap significance of the RH-Seq and gene-disease
networks decreased as the − log10 P threshold increased
(Supplementary Figure 6A). Since maximum significance
occurred when all interactions were considered, the overlaps
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FIGURE 3 | Human genetic interactions. (A) Location and significance of interactions. (B) Circos plot of interactions. Outer track, location of interacting genes; inner

track, histograms of interaction numbers normalized for each chromosome. Location of PCDH7 on Chromosome 4 shown. (C) Number of interactions for each gene.

PCDH7 has the most. (D) Subnetwork featuring PCDH7.

were not dominated by a small number of genes with
many interactions.

The RH-Seq and GO networks showed maximum overlap at
intermediate thresholds, representing the competing trends of
improving interaction quality and decreasing overlap numbers
(Supplementary Figure 6B). The RH-Seq network genes at the
peak overlap had significantly lower degree (5.56± 0.6) than the
null (P < 2.2 × 10−16), suggesting that the overlap was not due
to genes of high degree. The significant overlaps of RH-Seq with
the gene-disease and GO datasets suggest that interacting genes
may cause similar diseases and have similar functions.

Clustering of the RH-Seq Network
The RH-Seq network appeared to have many mutually
interacting genes, or cliques (Figure 3). The clustering coefficient
(or transitivity) of a network evaluates its propensity to be divided
into clusters (Pavlopoulos et al., 2011). The RH-Seq network
had a much higher clustering coefficient (0.82 ± 0.02) than the
RH-PCR network (0.13± 9.6× 10−5).

We constructed a subnetwork from the RH-PCR dataset
using the same genes as the RH-Seq network. This subnetwork
showed a significantly increased clustering coefficient (0.31 ±

1.58 × 10−3.), although not as high as the original RH-PCR

network (P < 2.2 × 10−16, all comparisons). Nevertheless,
the increased clustering coefficient of the RH-Seq network
is likely genuine. Genes with many mutual interactions may
be preferentially ascertained in small networks. Larger RH-
Seq datasets are likely to have decreased clique sizes and
clustering coefficients.

A heatmap of the RH-Seq network demonstrated that it
consists of ∼ 10–15 cliques (Figure 5, Supplementary Table 2).
The five largest clusters comprised 124 genes (55% of the
total) and 2,126 interactions (90% of the total), reflecting
the high clustering coefficient of the RH-Seq network
(Supplementary Table 1). The largest cluster, cluster 1,
comprised 56 genes (25%) and 1,534 interactions (65%).

In each cluster, we evaluated the number of RH clones
containing both interacting genes. Of the five cliques, three
had increased clone numbers and two had decreased. Cluster
4 had the most clones (5 ± 0) and cluster 5 had the least (2
± 0). The cliques did not appear to be driven solely by small
clone numbers.

We examined the functional enrichment of the five largest
clusters using the biological process term of GO (Gene
Ontology Consortium, 2021) (Figure 5). The genes in each
cluster showed nominally significant enrichment (P < 0.05,
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FIGURE 4 | Overlaps of RH-Seq network. (A) Overlap of RH-Seq and RH-PCR networks, thresholded on RH-PCR − log10 P (abscissa). (B) Overlap of RH-Seq and

RH-PCR networks, thresholded on RH-Seq − log10 P. (C) Overlap of RH-Seq and STRING interactions, thresholded on STRING score. (D) Overlap of RH-Seq and

STRING interactions, thresholded on RH-Seq − log10 P. Horizontal red lines, FDR = 0.05.

but FDR > 0.05). For example, cluster 1 was enriched in
genes related to transcription and cell division, cluster 2 in
morphogenesis and cluster 4 in transmembrane ion transport.
This enrichment suggests that the clusters represent functionally
relevant gene groups.

RH-Seq Network and Growth Genes
We recently used selection of pooled RH cells to identify
mammalian growth genes (Khan et al., 2020). Consistent with
the idea that the RH-Seq interaction network is involved in
control of cell proliferation, there was significant overlap between
the RH-Seq network and the RH growth genes (Figures 6A,B).
In contrast, both the RH-Seq network genes and RH growth
genes (Khan et al., 2020) showed significant non-overlap with
growth genes identified in CRISPR loss-of-function screens,
depending on the cell type (Hart et al., 2015; Wang et al.,
2015) (Figures 6C–F). These observations support the idea
that over-expression alters cell physiology differently from loss-
of-function, and suggests that the two approaches will give
complementary interaction networks.

RH-Seq Network and Expression
The genes in the RH-Seq network showed decreased expression
in a human RH panel (Supplementary Figure 7A), but
not in the GTEx dataset (v8) of human tissue expression
(Supplementary Figure 7B) (Wang et al., 2011; GTEx
Consortium, 2020). Similarly, the RH growth genes showed

decreased expression in both the human RH panel and the GTEx
dataset (Khan et al., 2020). Genes identified for their interactions
and growth effects as a result of an extra copy are likely to be
evolutionarily selected for decreased expression.

Functional Enrichment
The interacting genes in the RH-Seq network were highly
enriched in cancer terms from a disease database (FDR
< 0.05), with the top eight terms being cancer related
(Supplementary Figures 8A,B, 9A) (Pletscher-Frankild et al.,
2015; Kuleshov et al., 2016). This observation is consistent with
a key role for the RH-Seq network in cell proliferation. Examples
of cancer related genes in the network included GAS6,MAP3K4,
PRKD1, PTPRD, and VEGFA.

The RH-Seq interaction network was also significantly
enriched in the catalog of human genome-wide association
studies (GWAS) (Kuleshov et al., 2016) and in theNCBIDatabase
of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.
nih.gov/gap/) (FDR < 0.05; Supplementary Figures 8C, 9B,C).
The same was true for the RH growth genes (Khan et al., 2020).
In contrast, growth genes from loss-of-function CRISPR screens
showed no such enrichment. The effects of an extra gene copy in
the RH cells may be closer to the mild effects of common disease
variants than the more severe effects of a knockout.

Gene ontology analysis (GO) of all the genes in the RH-
Seq network revealed enrichment in a number of categories
related to cell growth (P < 0.05, but FDR > 0.05), including
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FIGURE 5 | Clustering of the RH-Seq network. The five largest clusters are highlighted, together with the top three GO biological process terms for each cluster.

Horizontal gray bars, GO − log10 P-values; vertical green lines, P = 0.05 (all FDRs > 0.05). The entire network is shown, but space only allows labeling of ∼ 1
3
rd of the

225 genes.

cell proliferation, p38MAPK, growth factor, tyrosine kinase
and replication fork (Supplementary Figures 10, 11) (Gene
Ontology Consortium, 2021).

Evolutionary Properties of RH-Seq
Network Genes
The RH-Seq network genes displayed significantly
decreased numbers of duplications (paralogs)
(Supplementary Figure 12A). The evolutionary selection
against duplication of the RH-Seq network genes is consistent
with their effects on cell survival as an extra copy. Similarly, the
RH growth genes also showed decreased numbers of paralogs
(Khan et al., 2020).

The RH-Seq network genes exhibited increased evolutionary
conservation, with decreased tolerance to loss-of-function (LOF)
variants (Supplementary Figure 12B) and decreased mouse-
human sequence divergence (Supplementary Figure 12C).
However, there was no significant increase in the number
of species with orthologs of the network genes (“phyletic
retention”), another measure of evolutionary conservation
(Supplementary Figure 12D). The RH growth genes also
displayed increased evolutionary conservation (Khan et al.,

2020). Both the RH-Seq network genes and the RH growth genes
had increased gene lengths (Supplementary Figures 12E–H).

DISCUSSION

We created a genetic interaction network using 15 RH clones.
Gene interactions were identified by seeking unlinked gene
pairs that showed significant co-retention. We used low pass
sequencing of nascent RH clones to save labor and consumable
costs, while obtaining high quality genotyping.

Unlike approaches such as weighted correlation network
analysis (WGCNA), which use similarity of gene expression to
assign function (Langfelder and Horvath, 2008), the endpoint of
the RH approach is cell proliferation. The RH network therefore
plays a causative, rather than correlative, role in cell viability.

The RH-Seq network showed highly significant overlap with
the original RH-PCR network. Unidentified systematic error is
unlikely to the cause of this agreement. The RH-Seq and RH-
PCR networks were obtained from separate data sources (our
laboratory vs. six different laboratories studying four species),
distinct genotyping technologies (low pass genome sequencing
vs. PCR) and independent coding and bioinformatics pipelines.
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FIGURE 6 | RH-Seq network and growth genes. (A) Overlap of RH-Seq network and RH growth genes, thresholded on RH-Seq network − log10 P. Overlap

significance diminishes as threshold increases due to decreased numbers. (B) Overlap of RH-Seq network and RH growth genes, thresholded on RH growth gene

− log10 P. (C) RH-Seq interaction genes (RH+) show lower growth effects when inactivated using CRISPR than non-interaction genes (RH−). Higher −CS values

(CRISPR score times −1) mean stronger growth effects of CRISPR null alleles (Wang et al., 2015). P-values shown above comparisons. (D) RH-Seq interaction genes

show lower growth effects when inactivated using CRISPR. Higher Bayes factors (BF) means stronger growth effect of CRISPR null alleles (Hart et al., 2015). (E)

Significant non-overlap of RH-Seq network genes and CRISPR growth genes, thresholded on −CS score. (F) Non-overlap of RH-Seq network genes and CRISPR

growth genes, thresholded on BF score. Horizontal red lines, FDR = 0.05.

The RH-Seq network also showed less strong, but still significant,
overlap with the STRING PPI database.

The large number of potential interactions in the networks
means that significance can occur even with modest overlaps.
Nevertheless, considering the small size of the RH-Seq dataset,
the significant overlaps suggest that this strategy is a reproducible
and scalable approach to genetic interaction networks.

The high clustering coefficient of the RH-Seq network is likely
genuine, since a RH-PCR subnetwork with the same genes also
showed significantly increased clustering. We speculate that the
high modularity of the RH-Seq network may reflect its derivation
from nascent clones. Newly emerging clones may rely heavily on

three way and higher order interactions for viability, leading to
the apparent increased clustering of the network (Crona et al.,
2017; Costanzo et al., 2019). A properly powered analysis of this
supposition will require a larger dataset.

The RH-Seq network genes displayed significant overlap
with RH growth genes but non-overlap with growth genes
identified using CRISPR loss-of-function screens. The extra gene
copies used by the RH approach will provide complementary
insights into cell physiology compared to loss-of-function
networks.

The interacting RH-Seq genes were enriched in terms related
to cancer in a gene-disease database, suggesting that the RH
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network strategy is relevant to cell proliferation and may provide
new therapeutic insights into tumorigenesis.

Both the RH-Seq interaction genes and the RH growth
genes showed significant enrichment in the GWAS and dbGaP
databases, while the CRISPR growth genes did not (Khan et al.,
2020). Most variants that contribute to complex traits are in
non-coding regions and affect gene expression (Gallagher and
Chen-Plotkin, 2018). The significant enrichment of the RH-Seq
network genes in the GWAS and dbGaP databases may reflect
the milder physiological effects of an extra gene copy driven
by its natural promoter, compared to the more severe effects
caused by CRISPR loss-of-function alleles or overexpression
using CRISPRa.

It has been suggested that cataloging genetic interactions
will help illuminate the “missing heritability” in complex traits
(Costanzo et al., 2019). The enrichment of the RH-Seq network
genes in the GWAS and dbGaP catalogs suggests that the RH
genetic interaction networks will be particularly relevant to
understanding complex traits.

The cost of RH-Seq for mapping genetic interactions
compares favorably to other approaches. Comprehensive
coverage of the protein encoding interactome using CRISPR
would require ∼20,000 separate experiments. The RH-Seq
approach offers the cost savings of low pass sequencing and
lack of clone propagation. Further, each RH clone harbors
∼0.25 times the human genome and therefore evaluates
multiple genes in each cell. In contrast, CRISPR strategies
evaluate only a single gene in each cell. The additional layer
of multiplexing in RH-Seq lends efficiency to the construction
of genetic interactions maps. In fact, the size of the RH-Seq
network obtained using 15 clones (225 genes) is comparable
to a recent large CRISPRi study, which examined genetic
interactions for <450 genes in cancer cells (Horlbeck et al.,
2018).

The consumable cost per clone is .$50 in RH-Seq, making
the cost of analyzing 1,000 clones feasible. The labor costs of
data acquisition are also far lower than the other strategies.
One individual could easily create and analyze 1,000 clones.
In addition to high statistical power, such a panel would have
mapping resolution of 4 ± 18 kb , sufficient to confidently map
individual genes (Lin et al., 2010).

The cost advantages of the RH-Seq strategy will allow it to be
applied to wider areas. Analyzing nascent clones identifies the
genetic interactions necessary for initial viability. Further culture
of the clones will allow the evolution of genetic interactions
to be evaluated over time. Expanding the cell fusion reaction
to isogenic human cell lines will allow genetic networks to be
mapped in the presence or absence of oncogenic mutations.
Although these more ambitious experiments will increase costs,
using 1,000 RH clones would only be 5% of the consumable cost
of CRISPR approaches.

An additional advantage of the RH-Seq approach is that
non-coding genes can be incorporated into the genetic network
on an equal footing with coding genes (Khan et al., 2020).
This extension will not increase the cost of the RH-Seq
network, but would increase the cost of a CRISPR network
nine-fold. In addition, the RH-Seq approach can evaluate

haploinsufficient genes, which are difficult to assess using loss-
of-function methods.

Low pass sequencing of nascent RH clones is a realistic
and affordable approach to constructing comprehensive genetic
interaction maps of the human genome. The strategy can be
scaled in a cost-effective fashion to evaluate genetic networks that
contribute to cancer and other complex disorders, providing new
therapeutic insights.

METHODS

Cells
We used human HEK293 (TK1+) and hamster A23 cells (TK1-),
each previously validated by low pass sequencing (Khan et al.,
2020). Cell fusion was performed as described (Khan et al., 2020).
Before fusion, A23 cells were grown in the presence or absence
of bromodeoxyuridine (BrdU, 0.03 mg ml-1). We irradiated the
HEK293 cells using 100 (Gray) Gy, with an expected fragment
length of 4 Mb, close to the observed. After fusion, cells were
plated at a dilution of 1:10 in selective HAT medium (100 µM
hypoxanthine, 0.4 µM aminopterin, 16 µM thymidine; Thermo
Fisher Scientific R©). RH clones (TK1+) were picked at 3 weeks.

Sequencing
DNA was purified from 24 clones (20 BrdU and 4 non-BrdU)
using the Illumina NexteraTM DNA Flex Library kit, following
manufacturer’s instructions. Human DNA quantities as low as
100 ng can be sequenced using this kit. Illumina sequencing
employed 65 bp single reads.

We obtained human-specific reads by aligning reads to
the GRCh38/hg38 human genome assembly (hg38.fa) at high
stringency, allowing only one mismatch (Khan et al., 2020).
Reads that also aligned to the Chinese hamster (Cricetulus
griseus) genome assembly (RAZU01) (Rupp et al., 2018) were
then discarded, leaving human-specific reads. Alignments were
quantitated using the number of human-specific reads per 1 Mb
window with 10 kb steps (Khan et al., 2020).

A total of 16.0 ± 1.3 M reads were obtained for each
of the 24 clones. Based on the similarity of human-specific
reads across the genome a total of 9 clones were duplicates,
presumably due to cell dispersion before clone picking (R
> 0.9). Seven clones were duplicates of clone 1, and two
were duplicates of clone 9. The 15 independent clones, 11
from BrdU and 4 from non-BrdU, were used to construct the
interaction network.

There was no significant difference in the retention frequency
of the BrdU (0.25 ± 0.10) and non-BrdU clones (0.27 ±

0.18, P = 0.90). While there were sufficient BrdU clones to
identify significant co-inheritance (P ≥ 2.2× 10−3), there were
insufficient non-BrdU clones by themselves (P ≥ 0.25). In
the independent RH clones, there were 589 ± 135 reads in
1 Mb windows containing human fragments and 18 ± 3 in
those without.

Evaluating Mapping Accuracy
To measure mapping resolution, we used the significance of cis
linkage for windows separated by <20 Mb. Linear models were
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employed to estimate initial slopes relating the − log10 P-values
and the distances between the windows and vice versa. The slopes
were then employed to quantitate−1 log10 P-values.

We also used the human DNA retention profiles averaged
across the 15 clones to evaluatemapping accuracy. Themidpoints
of retention peaks for TK1 or the centromeres were taken as
the estimated location of each element (Khan et al., 2020). The
distance between the estimated and actual midpoint positions
was the mapping resolution. Standard errors of the mean were
assessed by bootstrapping.

Genetic Interactions
Relative copy numbers in the 1 Mb windows were calculated
by normalizing human-specific sequence reads to those at TK1
in each clone. TK1 has a retention frequency of one, since it is
the marker used to select RH clones. A window was deemed to
harbor a human DNA fragment if log2(relative copy number + 1)
> 0.2, corresponding to the upper 28th percentile of values and a
relative copy number of 0.15.

Fisher’s exact test was used to identify pairs of windows
separated by > 2.4 Mb (upper 49th percentile of fragment
lengths) with significant co-inheritance (FDR < 0.05). FDR
correction used a sample of P-values from the 4.5× 105 window
pairs, a conservative procedure (Benjamini and Hochberg, 1995).

To ensure uniform sampling of the P-values while preventing
systematic bias, the rows of the interaction matrix were sampled
with a spacing of 1 in 100, and the columns were sampled
pseudorandomly, with a minimum spacing of one window, a
maximum of 2.4× 104 and a mean of 1.2× 104. FDR values were
calculated from the 3.9× 104 sampled P-values.

A genetic interaction was ascertained if the− log10 P peak was
a single window pair with FDR< 0.05, and adjacent window pairs
had decreased − log10 P-values. The genes corresponding to the
interaction peak were taken as the nearest protein coding genes
using GENCODE v31 (Frankish et al., 2021).

Networks
The gene-disease network was constructed using a literature
based database (Pletscher-Frankild et al., 2015). Genes sharing
the same disease were linked together, yielding a network with
16,254 genes and 23,983,208 interactions. The GO network was
constructed by linking genes sharing the same GO categories
containing ≥70 and ≤1,000 members (Lin et al., 2010). The
network consisted of 16,902 genes and 9,581,750 interactions.

The significance of network overlaps were FDR corrected for
the number of thresholded comparisons, as previously described
(Ahn et al., 2009).

Public Data
GO analyses used the 2021-01-01 release and the PANTHER
Overrepresentation Test, as well as Enrichr (Kuleshov et al.,
2016; Gene Ontology Consortium, 2021). The duplicated genes
database (DGD) together with Ensembl release 71 was used to
identify paralogs (Ouedraogo et al., 2012).

Intolerance of human genes to predicted loss-of-function
(pLoF) variants was evaluated using the observed/expected ratio
from the Genome Aggregation Database (gnomAD) release
2.1.1. (Karczewski et al., 2020). We assessed the evolutionary
divergence of mouse-human homologs using the ratio of non-
synonymous to synonymous substitutions (dN/dS) in Ensembl
release 97 (Cunningham et al., 2019). The number of species
with gene orthologs was evaluated using Homologene release 68
(Sayers et al., 2019). Unless otherwise noted, tests of significance
used Welch’s Two Sample t-test.
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