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Simple Summary: Nowadays, heavy metal polluted wastewater is one of the global challenges
that leads to an insufficient supply of clean water. Taking advantage of what nature has to offer,
several organisms, including microalgae, can natively bioremediate these heavy metals. However,
the effectiveness of such processes does not meet expectations, especially with the increasing amount
of pollution in today’s world. Therefore, with the goal of creating effective strains, synthetic biology
via bioengineering is widely used as a strategy to enhance the heavy metal bio-removing capability,
either by directly engineering the native ability of organisms or by transferring the ability to a more
suitable host. In order to do so, a list of genes or proteins involved in the processes is crucial for
stepwise engineering. Yet, a large amount of information remains to be discovered. In this work,
a comprehensive library of putative proteins that are involved in heavy metal bio-removal from
microalgae was constructed. Moreover, with the development of machine learning, the 3D structures
of these proteins are also predicted, using machine learning-based methods, to aid the use of synthetic
biology further.

Abstract: Synthetic biology is a principle that aims to create new biological systems with particular
functions or to redesign the existing ones through bioengineering. Therefore, this principle is often
utilized as a tool to put the knowledge learned to practical use in actual fields. However, there is still
a great deal of information remaining to be found, and this limits the possible utilization of synthetic
biology, particularly on the topic that is the focus of the present work—heavy metal bio-removal. In
this work, we aim to construct a comprehensive library of putative proteins that might support heavy
metal bio-removal. Hypothetical proteins were discovered from Chlorella and Scenedesmus genomes
and extensively annotated. The protein structures of these putative proteins were also modeled
through Alphafold2. Although a portion of this workflow has previously been demonstrated to
annotate hypothetical proteins from whole genome sequences, the adaptation of such steps is yet to
be done for library construction purposes. We also demonstrated further downstream steps that allow
a more accurate function prediction of the hypothetical proteins by subjecting the models generated
to structure-based annotation. In conclusion, a total of 72 newly discovered putative proteins were
annotated with ready-to-use predicted structures available for further investigation.

Keywords: synthetic biology; microalgae; bio-removal; wastewater treatment; alphafold

1. Introduction

Heavy metal contaminated wastewater has been a major global concern that directly
affects the human population [1,2]. A considerable amount of heavy metals is released into
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the environment by several industries. The steel industry, for example, is a well-known
source of heavy metal contamination [3]. Not only do industrial processes cause pollu-
tion, but the products from many industries, such as batteries, are also a major source of
contamination [4,5]. Microalgae are promising bio-removers of contaminated heavy metals
from wastewater effluents [6]. In our latest review, we summarized three mechanisms used
by microalgae to bio-remove heavy metals from wastewater: biosorption, bioaccumulation
and biotransformation [7]. In brief, biosorption is a process by which microalgae absorb
heavy metal ions onto their cell surface; the anionic composition plays a role in attracting
positive heavy metal ions (Figure 1A). This allows the cells to remove heavy metals from
aqueous phases by simply attaching them to the cell surface. Interestingly, this process does
not need the cells to be in an active form, meaning that dead cells can also function similarly
to the living cells as long as the heavy metals can attach to the cell surface. Bioaccumula-
tion is another process by which heavy metals are taken up by microalgal cells and later
sequestered in vacuoles or specialized compartments. Lastly, biotransformation allows the
conversion of toxic heavy metals to lesser or non-toxic forms using intracellular enzymes.
Living cells are required for the latter two mechanisms to work continuously. Moreover,
other native cellular functions, such as metal transportation and cellular responses to stress,
could also impact the cell ability to bio-remove heavy metals. Heavy metal transporters
also play a role in these processes as they determine the efficiency of heavy metal uptake for
bioaccumulation and biotransformation. To put it simply, the more heavy metals are taken
up, the greater is the possibility that they can be accumulated and transformed. Moreover,
cellular responses to heavy metal-induced stresses have been reported to improve cells’
ability to remove heavy metals [8,9]. This is because the cell itself is able to tolerate higher
levels of heavy metals while continuing to function at a relatively higher concentration of
heavy metals.

Several microalgae have been reported to bio-remove heavy metals through the afore-
mentioned mechanisms [6]. Chlorella and Scenedesmus are two groups of microalgae exhibit-
ing their potential as heavy metal bio-removers. Chlorella has been well-known for its ability
as a heavy metal biosorbent and, in one study, could effectively remove 220 mg of Cu+2

per one gram of cells [10]. Similarly, Scenedesmus is another group of microalgae that has
been practically used for wastewater treatment in several parts of the world [11], though
its application may have not been as extensive; a bio-removal capability of 574 mg/g of
cells was reported from this group of microalgae [12,13]. Moreover, other microalgae
such as Tetraselmis, Porphyridium, and Pseudochlorococcum have been reported to effectively
bio-remove heavy metals [6,14,15], but since they are relatively underexplored, only one
genome sequence of Tetraselmis and Porphyridium was reported for each genus, and none
was reported for Pseudochlorococcum in the NCBI database (www.ncbi.nlm.nih.gov, accessed
on 20 June 2022). As the aim of this study is to construct a comprehensive library of proteins
based on reported genome sequences, Chlorella and Scenedesmus were selected, given the
relatively high number of their available genome sequences.

Even though these processes in microalgae may sound as though they hold great
promise, there are still limitations in the bio-removing capabilities of microalgae [16].
Thus, there is potential for improvement, particularly in the development of a supreme
microalgal chassis for heavy metal contaminated wastewater treatment. Synthetic biology
is currently one of the most rapidly growing biological disciplines, with the aim of using
integrated knowledge of biology and bioengineering to develop or redesign biological
systems with specific functionalities. To provide a related example, an engineered Chlorella
sp. DT was constructed by expressing a heterologous mercuric reductase from Bacillus
megaterium MB1 and showed 2-fold increase in mercury bio-removal compared with the
wild type [17]. Such techniques allow us to design novel biological systems as solutions to
tackle unsolved challenges.

We propose that microalgal native abilities to bio-remove heavy metals could be
enhanced via synthetic biology-based approaches with the proposed strategies previously
listed [7]. Generally, the study of synthetic biology follows a guideline called “Design-

www.ncbi.nlm.nih.gov
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Build-Test-Learn” or DBTL cycle (Figure 1B), which allows systematic implementation
of the new system. Interestingly, the work on synthetic biology to enhance heavy metal
bio-removal is not well-established compared with other microorganisms (i.e., Escherichia
coli and cyanobacteria), and indeed this is true of microalgae in general. This may be
related to the low availability of genetic tools and techniques for microalgae as synthetic
biology builds on genetic manipulation. More importantly, synthetic biology often applies
bottom-up approaches to facilitate the design, in which genetic parts are handpicked and
put together to construct novel systems. In this case, the availability of genetic parts is
crucial for stepwise implementation. In addition to regulatory genetics (e.g., promoter,
ribosome binding site, etc.), a library of genes responsible for significant properties of the
systems is also important. To illustrate this, Figure 1C depicts the simplified workflow of a
bottom-up approach for synthetic biology and the importance of genetic part libraries.
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(DBTL) cycle. (C) Genetic part library construction to facilitate synthetic biology-based approaches 
for heavy metal bio-removal enhancement. The figure was created using https://biorender.com (ac-
cessed on 5 July 2022). 
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Figure 1. Microalgal heavy metal bio-removing mechanisms and the use of synthetic biology for
system enhancement. (A) Mechanisms and cellular functions used by microalgae to bio-remove
heavy metals (HMs) from wastewater, adapted from Sattayawat et al., 2021 [7]; (i) biosorption,
(ii) bioaccumulation (iii) biotransformation and (iv) cellular uptake of heavy metals via transporters
(v) cellular responses to heavy metal-induced stresses. (B) Synthetic biology Design-Build-Test-Learn
(DBTL) cycle. (C) Genetic part library construction to facilitate synthetic biology-based approaches
for heavy metal bio-removal enhancement. The figure was created using https://biorender.com
(accessed on 5 July 2022).

As the genetic part library—a collection of genetic parts and related genes—is essential
for structured design, genes involved in bio-removal should be identified to improve
microalgal abilities or even to employ such abilities in other chassis. Previously, a unicellular
microalga, Chlamydomonas, has been genetically engineered to enhance its abilities as a
heavy metal bio-remover. As a result, the engineered strains showed significantly improved
bio-removing capability [8,9,18–20]. Certainly, this demonstrates the potential of employing
synthetic biology to enhance the cell’s native ability for heavy metal bio-removal. However,

https://biorender.com
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on the basis of extremely limited data, systematic investigation is yet to be achieved, which
emphasizes the importance of this work. Thus, we aim to construct a library of potential
proteins involved in heavy metal bio-removal for further use via synthetic biology.

With a rapid growth of bioinformatics, a number of tools have been developed to
facilitate the analysis of biological data. Basic Local Alignment Search Tool or BLAST from
National Center for Biotechnology Information (NCBI) is one of the pioneer tools with a
great number of users up to today. Many web interfaces designed for function prediction
of the proteins from amino acid sequences and/or protein structures were also developed
to allow stepwise prediction of the proteins. Pfam, InterProScan, SUPERFAMILY 2.0, and
CATH are among the commonly use online tools [21,22]. Not only were the tools for func-
tional annotation developed, well-known web servers such as SignalP were also developed
to predict whether the proteins contain signal peptides or not [23]. Function prediction of
hypothetical proteins from whole genome sequences has been demonstrated previously.
One early example is the use of the aforementioned tools to annotate the function of all
hypothetical proteins from Haemophilus influenzae Rd KW20 genome aiming to use the
information retrieved for medical applications [22]. Later, in another work, hypothetical
proteins from a Gram-negative bacterium, Litorilituus sediminis, were computationally
predicted to be tumor-suppressors [21]. Apart from the medical point of view, hypothetical
proteins that play a role in cold adaptation in Pseudomonas sp. were characterized using
the similar computational workflow. However, all of these works follow the same general
pattern in that they aim to annotate and characterize hypothetical proteins from a single
organism, and/or only proteins involved in specific functions were targeted. This is in
contrast with the present study as we aim to construct a library of putative proteins from
whole groups of microalgae and to annotate as many proteins that contribute to heavy
metal bio-removal as possible using our proposed approach. Moreover, the development
of Alphafold [24], an accurate computational tool for protein folding prediction, caused
attention to shift from traditional methods to machine learning to study protein structure.
Therefore, to make the information ready to use, in this work, Alphafold2 was also used
to predict the 3-dimensional (3D) structures of all putative proteins, and the structures
were deposited in a protein structure database for future applications. In summary, a
comprehensive library of putative proteins from microalgal genomes was constructed to
allow stepwise engineering approaches to enhance heavy metal bio-removal in microalgae
and potentially in other organisms.

2. Materials and Methods

A simplified workflow and computational online tools used in this study are outlined
in Figure 2. The URLs of databases and tools are listed in Table S1.

To validate the annotation, three positive and negative controls each were annotated
along with the putative proteins (Phase II, Figure 2) [25]. These controls were selected
based on their experimental validation. The positive controls were validated proteins from
microalgae that are involved in heavy metal bio-removal: natural resistance-associated
macrophage protein (accession no. XP_001691702.1), ascorbate peroxidase (accession no.
AAY26385.1), and glutathione peroxidase (accession no. AFI55004.1), while the negative
controls are general characterized proteins that function in cellular processes: elonga-
tion factor EF-2 (accession no. NP_001321033.1), transcriptional regulator (accession no.
WP_097343503.1), and cytochrome C peroxidase (accession no. WP_016160016.1).

2.1. Target Protein Identification and Sequence Retrieval

The terms given in Table S2 were used as inputs to search for proteins in UniprotKB
database. The filter “reviewed” is also applied to obtain only the proteins that had been
characterized or computationally curated. All search hits were manually confirmed that all
proteins selected from this stage possess the expected function, as the search hits may also
result in different proteins with the same gene/protein abbreviation. All selected sequences
were exported as template sequences for the next step in a FASTA format.
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2.2. Sequence Similarity Search

NCBI BLASTp function was used for sequence similarity search, using the obtained
sequences as templates against the genomes of two microalgal groups namely Chlorella
and Scenedesmus (Table 1). Non-redundant protein sequences (nr) database and blastp
(protein-protein BLAST) algorithm were selected. Once the search results from BLASTp
showed hits for each group of proteins, only hypothetical protein sequences with an E-value
of less than 1 × 10−10 were selected. When searching a database, the E-value is a parameter
that indicates how many hits are likely to occur by chance: the lower the E-value, the more
significant the match is. It is recommended that the E-value between 1 × 10−10–1 × 10−50

should, at least, allow a domain match. The E-value between 1 × 10−50–1 × 10−100 in-
dicates almost identical sequences, and if the E-value is less than 1 × 10−100, it suggests
identical sequences as described in the Qiagen handbook [26]. However, it is important to
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note that E-value cutoffs should be considered on a case-by-case basis as they are dependent
on the length of the sequence and the size of the databases.

Table 1. Microalgae with reported HM bio-removal capability.

Microalga Reported Mechanism Reference

Chlorella
(taxid 3071) Biosorption, bioaccumulation, biotransformation [27]

Scenedesmus
(taxid 3087) Bioaccumulation, biotransformation, cellular stress response [28]

2.3. Function Prediction

To primarily predict the functions of the retrieved protein sequences, four differ-
ent webservers, namely, Pfam, InterProScan, SUPERFAMILY 2.0, CATH, were selected
(Table S1). All webservers were previously used to annotate hypothetical proteins from
whole genome sequences with a comparative assessment of each tool [29].

2.4. Signal Peptide Prediction

Signal peptide prediction is used to confirm the primary annotation as the target
proteins in this work localize specifically, either as transporters, which localize on the
cell membrane, or enzymes that function intracellularly. SignalP is one of the most used
webservers for signal peptide identification. This server has recently released its latest
version SignalP 6.0 early this year and claimed its ability to detect all types of signal
peptides [30].

2.5. Structure Modeling

Alphafold2 is used for structure prediction in this study. Alphafold is a recent in-
novative tool to accurately model the protein structures based on the provided protein
sequences [24]. With an increased interest in Alphafold, a recent work aiming to make the
structure modeling available to all has recently been published [31] and the online tool is
free to use under the name ColabFold. In this study, a related version of Alphafold via
Google Colab notebook was used (Table S1). The analysis was performed with default
parameters and Amber-Relax applied. The genetic database, mmseqs2, was selected. No
custom MSA was uploaded to any runs. The filter option was left unchanged since the
raw hypothetical protein was run without any trims. The Alphafold was run using pLDDT
metric with 512:1024 max msa. Five models were run for each template with the use of
ptm to fine-tune the model parameters. Each model was fed back to the neutral network
three times. All generated protein structures were deposited in ModelArchive with a list of
unique DOI as shown in Table S4.

2.6. Structure-Based Functional Annotation

All protein structures were investigated further to validate the primary annotation in
the previous step. ProFunc was used for this purpose. This tool was designed to annotate
the proteins based on sequence and structure inputs [32]. In our case, as mentioned,
the structures generated from Alphafold2 were used as the template. Option “reverse
templates” was examined and the E-value of at least 1 × 10−6 was considered, according
to the server.

3. Results
3.1. Target Protein Identification

Microalgae perform three main mechanisms that allow them to bio-remove heavy
metals from wastewater effluents. Previously, we have compiled a list of genes with
reported use for genetic engineering to enhance microalgal bio-removing capacity [7]. Thus,
in this work, we utilize the list as a primary source for protein targets. As part of our effort
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to investigate all relevant aspects toward heavy metal bio-removal, we have broadened the
scope of the search by including more proteins from the literature. A total of 26 protein
targets are shown in Table S2, listed separately based on their function in each mechanism.
As for bioaccumulation, phytochelatins play an important role in binding with heavy metals,
and enzymes involved in the synthesis of phytochelatins namely glutamate cysteine ligase,
phytochelatin synthase, and glutathione synthetase [33] were therefore targeted. Although
another type of heavy metal binding proteins, metallothioniens, also play a role in the
same mechanism, they are directly transcribed and translated from nucleotide sequences
as cysteine-rich short peptides [33], which are difficult to search against the genomes.
Therefore, this type of heavy metal binding protein is not included in this study. Reductases
are a major group of enzymes that detoxify heavy metals by converting them into their less
or non-toxic derivatives [34,35]. In our list, three reductases specific to mercury, chromium,
and arsenic were used to search against the microalgal genomes, as these enzymes have
been reported to alleviate the toxicity of heavy metals in microalgae [18,36]. As previously
described, enhanced metal transportation is another strategy that allows better performance
of bio-removal, especially to facilitate the bioaccumulation and biotransformation in which
enzymes function intracellularly. Several types of transporters have been reported to
be responsible for microalgal metal transportation [37]. In this work, we selected a few
representatives of heavy metal transporters as our templates. Similarly, five different
enzymes were selected as representatives of cellular stress responses. All of these enzymes
were reported to take part in cellular responses to heavy metal toxicity in microalgae [38]. As
mentioned, biosorption is a mechanism by which heavy metal ions are attracted onto the cell
surface of microalgae and, in turn, removed upon removal of the microalgae. However, this
mechanism is not a direct effect from proteins synthesized by the cells, but rather indirectly
from the composition of the cell surface. To enhance biosorption efficiency, the strategy may
include cell surface modification to make the surface components more ionic and attract
more heavy metal ions. Such modifications could be achieved by, for example, addition
of CXXEE motif onto the cell surface components [39] or inducing biofilm formation [40].
Therefore, this mechanism is not included in our list. The proteins and keywords used are
listed in Table S2. However, it should be noted that when using UniprotKB database or other
keyword-based tools, the results are not exclusive for some keywords as different meanings
can be inferred. To state the obvious, the keyword “inorganic phosphate transporter”,
which is a family name of the protein transporters involved in import-export systems of
phosphate [41], resulted in a total of 712 hits from UniprotKB search. However, manual
selection only showed 52 hits of the inorganic phosphate transporters, the rest of the hit
results showed other related proteins such as vacuolar transporter chaperones, glucose-6-
phosphate exchangers, and other ATP-binding cassettes.

According to the UniprotKB database, we collectively report the number of hits for
each group of proteins (bioaccumulation, biotransformation, heavy metal transporters, and
cellular stress responses) as shown in Figure 3.

3.2. Sequence Similarity Search

The sequences of all 27 groups of protein targets were obtained and used as tem-
plates for BLASTp against two microalgal genomes, Chlorella (taxid 3071) and Scenedesmus
(taxid 3087). Hypothetical proteins with an E-value lower than 1 × 10−10 were obtained.
The number of matches is shown in Table 2.
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Table 2. Number of hypothetical proteins obtained from BLASTp analysis.

Protein Microalgal
Genome

Hypothetical
Protein

Hypothetical Protein after
Primary Function Prediction

Bioaccumulation

γ-Glutamylcysteine synthetase or Glutamate—cysteine ligase Chlorella 4 2
Scenedesmus 1 0

Phytochelatin synthase Chlorella 2 2
Scenedesmus 0 0

Glutathione synthetase Chlorella 2 2
Scenedesmus 0 0

Inorganic phosphate transporter Chlorella 10 7
Scenedesmus 0 0

Biotransformation

Mercuric reductase
Chlorella 10 0

Scenedesmus 5 0

Arsenate reductase
Chlorella 6 0

Scenedesmus 1 0

Chromate reductase
Chlorella 0 0

Scenedesmus 0 0

Metal transportation

Copper-transporting ATPase Chlorella 26 9
Scenedesmus 8 2

Manganese-transporting ATPase Chlorella 9 0
Scenedesmus 1 0

Cadmium-transporting ATPase Chlorella 22 0
Scenedesmus 4 0

Zinc-transporting ATPase Chlorella 25 0
Scenedesmus 6 0

Lead-transporting ATPase Chlorella 11 0
Scenedesmus 1 0

Manganese transporter domain (MntA) Chlorella 43 1
Scenedesmus 10 1

Manganese transporter domain (MntB) Chlorella 27 1
Scenedesmus 6 1

Manganese transporter domain
(MntC)

Chlorella 0 0
Scenedesmus 0 0

Manganese transporter domain
(MntD)

Chlorella
Scenedesmus

0
0

0
0

Mercuric transport protein (cytoplasmic/transmembrane) Scenedesmus 0 0
Scenedesmus 0 0

Mercuric transport protein
(periplasmic)

Chlorella 0 0
Scenedesmus 0 0

Zinc-regulated transporter (ZRT) Chlorella 5 1
Scenedesmus 1 0

Zinc transporter (ZIP) Chlorella 13 1
Scenedesmus 4 1

Natural resistance-associated macrophage protein Chlorella 2 2
Scenedesmus 0 0

Copper transporter Chlorella 0 0
Scenedesmus 0 0
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Table 2. Cont.

Protein Microalgal
Genome

Hypothetical
Protein

Hypothetical Protein after
Primary Function Prediction

Cellular tolerance

Ascorbate peroxidase Chlorella 9 8
Scenedesmus 0 0

Superoxide dismutase Chlorella 10 9
Scenedesmus 4 4

Heme oxygenase Chlorella 5 4
Scenedesmus 2 2

Glutathione peroxidase Chlorella 15 10
Scenedesmus 0 0

Glutathione S-transferase
Chlorella 40 20

Scenedesmus 11 2

3.3. Protein Function Prediction

The NCBI accession numbers for all protein matches from BLASTp are listed in Table 3.
Function and signal peptide prediction for each hypothetical protein were investigated. As
we aim to only annotate the uncharacterized proteins, only sequences described as hypo-
thetical proteins were selected and run through function prediction servers as described
above. The results for all hypothetical proteins are listed in Table S3. Each bioinformatic
server has its own strength and weakness. Thus, using multiple servers would result in
a more accurate prediction. A recent publication has compared several webservers for
protein prediction and the results revealed that Pfam and InterPro showed the highest
scores among the compared webservers [29]. Pfam is a widely used protein family database
and tool that is still active with a recent update in 2021 [42]. InterProScan is another well-
known functional classification tool that is based on several databases [43]. SUPERFAMILY,
another webserver used in this study, was also considered the second-best server according
to the aforementioned study. This tool was designed to predict both superfamily and family
of the protein sequences [44]. In the same comparative report [29], SBase was also used
and demonstrated to have high overall scores for accuracy, sensitivity, specificity, and ROC
analysis, yet the server was last updated in 2006; therefore, SBase was not included in the
present study. Lastly, although CATH did not score much in the aforementioned compar-
ison especially regarding the specificity, according to our predictions, CATH produced
relatively specific results (Table S3). To provide an explanation, when CATH was used to
predict the function of a template (accession no. XP_005845237.1) expected to be a man-
ganese transporter, CATH predicted the protein as “ABC transporter G family member 22”,
whilst Pfam predicted as “ABC transporter”. Moreover, CATH is the only webtool that
allows a specific annotation of copper-transporting ATPase (Table S3). Pfam, on the other
hand, predicted the function of ATPases separately for different protein domains. For
example, copper-transporting ATPase shows 4 predicted functions: (1) cation transporting
ATPase, C-terminus, (2) E1-E2 ATPase, (3) haloacid dehalogenase-like hydrolase (CL0137),
and (4) cation transporter/ATPase, N-terminus, which are basic structures for ATPase
activity [45]. Similarly, InterProScan also resulted in a list of molecular functions that could
be inferred as ATPase rather than stating that the proteins are ATPase (Table S3).

Signal peptide prediction was used to double-validate the predicted function of the
hypothetical proteins. SignalP is a well-reputed webserver for signal peptide prediction. A
report on the comparison of signal peptide prediction suggests that the use of SignalP 4.1 is
most consistent compared with the other versions [46]. However, the most recent version,
SignalP 6.0, was released after that [30]. Interestingly, the results showed that most of the
proteins did not contain signal peptides, even though some of them were expected to be
transporters (Table 3).
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Table 3. List of selected hypothetical protein matches when the template sequences were used to
BLASTp against the selected microalgal genomes.

Genome Accession No. Signal Peptide * Putative Function

Bioaccumulation
Chlorella desiccata (nom. nud.) KAG7671258.1 N Glutamate-cysteine ligase
Chlorella variabilis XP_005844806.1 N Glutamate-cysteine ligase
Chlorella desiccata (nom. nud.) KAG7668718.1 N Phytochelatin synthase
Chlorella variabilis XP_005845668.1 N Phytochelatin synthase
Chlorella desiccata (nom. nud.) KAG7673317.1 N Glutathione synthetase
Chlorella variabilis XP_005847003.1 N Glutathione synthetase

Metal transportation
Chlorella variabilis XP_005845243.1 Y Heavy metal transporting ATPase
Chlorella variabilis XP_005851032.1 Y Heavy metal transporting ATPase
Scenedesmus sp. NREL 46B-D10 KAF6264708.1 Y Manganese transporter domain (MntA) **
Chlorella desiccata (nom. nud.) KAG7670010.1 Y Manganese transporter domain (MntB)
Chlorella variabilis XP_005845281.1 Y Manganese transporter domain (MntB) **
Chlorella variabilis XP_005844148.1 Y Zinc-regulated transporter (ZRT)/Zinc transporter (ZIP) **
Chlorella variabilis XP_005846850.1 Y Zinc-regulated transporter (ZRT)/Zinc transporter (ZIP) **
Chlorella desiccata (nom. nud.) KAG7667456.1 Y Zinc-regulated transporter (ZRT)/Zinc transporter (ZIP)
Chlorella desiccata (nom. nud.) KAG7675010.1 N Natural resistance-associated macrophage protein
Chlorella variabilis XP_005847346.1 N Natural resistance-associated macrophage protein

Cellular tolerance
Chlorella variabilis XP_005842918.1 N Ascorbate peroxidase
Chlorella variabilis XP_005847371.1 N Ascorbate peroxidase
Chlorella desiccata (nom. nud.) KAG7671272.1 N Ascorbate peroxidase **
Chlorella desiccata (nom. nud.) KAG7672626.1 N Ascorbate peroxidase
Chlorella variabilis XP_005842951.1 N Ascorbate peroxidase
Chlorella desiccata (nom. nud.) KAG7671850.1 N Ascorbate peroxidase
Chlorella variabilis XP_005851196.1 N Ascorbate peroxidase
Chlorella desiccata (nom. nud.) KAG7671273.1 N Ascorbate peroxidase
Chlorella variabilis XP_005852313.1 N Superoxide dismutase
Chlorella variabilis XP_005852314.1 N Superoxide dismutase
Chlorella variabilis XP_005850331.1 N Superoxide dismutase
Chlorella variabilis XP_005850533.1 N Superoxide dismutase
Chlorella variabilis XP_005850825.1 N Superoxide dismutase
Chlorella variabilis XP_005851580.1 N Superoxide dismutase
Chlorella desiccata (nom. nud.) KAG7672127.1 N Superoxide dismutase
Chlorella desiccata (nom. nud.) KAG7672915.1 N Superoxide dismutase
Chlorella desiccata (nom. nud.) KAG7673432.1 N Superoxide dismutase
Scenedesmus sp. NREL 46B-D3 KAF6253844.1 N Superoxide dismutase
Scenedesmus sp. PABB004 KAF8054759.1 N Superoxide dismutase
Scenedesmus sp. PABB004 KAF8070899.1 N Superoxide dismutase

Scenedesmus sp. PABB004 KAF8072345.1 N Superoxide dismutase
Chlorella variabilis XP_005851913.1 N Heme oxygenase 1
Chlorella desiccata (nom. nud.) KAG7671693.1 N Heme oxygenase 1
Chlorella variabilis XP_005845884.1 N Heme oxygenase 1
Chlorella variabilis XP_005842792.1 N Heme oxygenase 1
Scenedesmus sp. NREL 46B-D3 KAF6256065.1 N Heme oxygenase 1
Scenedesmus sp. PABB004 KAF8061310.1 N Heme oxygenase 1
Chlorella variabilis XP_005852198.1 N Glutathione peroxidase
Chlorella desiccata (nom. nud.) KAG7666639.1 N Glutathione peroxidase
Chlorella variabilis XP_005847444.1 N Glutathione peroxidase
Chlorella variabilis XP_005848232.1 N Glutathione peroxidase
Chlorella variabilis XP_005851691.1 N Glutathione peroxidase
Chlorella desiccata (nom. nud.) KAG7666823.1 N Glutathione peroxidase
Chlorella variabilis XP_005850288.1 N Glutathione peroxidase
Chlorella desiccata (nom. nud.) KAG7675006.1 N Glutathione peroxidase
Chlorella variabilis XP_005844151.1 N Glutathione peroxidase
Chlorella desiccata (nom. nud.) KAG7671063.1 N Glutathione peroxidase



Biology 2022, 11, 1226 12 of 18

Table 3. Cont.

Genome Accession No. Signal Peptide * Putative Function

Chlorella desiccata (nom. nud.) KAG7667083.1 N Glutathione S-transferase **
Chlorella desiccata (nom. nud.) KAG7667402.1 N Glutathione S-transferase
Chlorella desiccata (nom. nud.) KAG7667544.1 N Glutathione S-transferase
Chlorella desiccata (nom. nud.) KAG7667774.1 N Glutathione S-transferase
Chlorella desiccata (nom. nud.) KAG7667817.1 N Glutathione S-transferase
Chlorella desiccata (nom. nud.) KAG7669352.1 N Glutathione S-transferase
Chlorella desiccata (nom. nud.) KAG7669598.1 N Glutathione S-transferase **
Chlorella desiccata (nom. nud.) KAG7670514.1 N Glutathione S-transferase
Chlorella desiccata (nom. nud.) KAG7675170.1 N Glutathione S-transferase
Chlorella variabilis XP_005843180.1 N Glutathione S-transferase
Chlorella variabilis XP_005845006.1 N Glutathione S-transferase
Chlorella variabilis XP_005845127.1 N Glutathione S-transferase
Chlorella variabilis XP_005845396.1 N Glutathione S-transferase
Chlorella variabilis XP_005847002.1 N Glutathione S-transferase
Chlorella variabilis XP_005848700.1 N Glutathione S-transferase
Chlorella variabilis XP_005849485.1 N Glutathione S-transferase
Chlorella variabilis XP_005849684.1 N Glutathione S-transferase
Chlorella variabilis XP_005850654.1 N Glutathione S-transferase
Chlorella variabilis XP_005852104.1 N Glutathione S-transferase
Scenedesmus sp. NREL 46B-D3 KAF6265595.1 N Glutathione S-transferase

* Note that Y indicates Yes and N indicates No. The cutoff value is 0.1 for Signal Peptide (Sec/SPI). ** Note that
these proteins were annotated differently when using ProFunc structure-based annotation.

3.4. Homology Modeling

All hypothetical protein sequences primarily characterized to have the same function
and signal peptide as their templates were modeled using Alphafold2. Amber-relax was
applied to generate more accurate models. Examples of protein structures generated are
presented in Figure 4. It should be noted that a hypothetical protein from Scenedesmus sp.
PABB004 (accession no. KAF8061310.1) is 1553 amino acid long; therefore, this protein
was not modeled through Alphafold2 as the recommended longest sequence was 1400
amino acids. When using Alphafold, the confidence measure of the models can be eval-
uated using a pLDDT score (0–100), by which the guidance is as follows; regions with
a pLDDT score of more than 90 are considered highly accurate. Regions with a pLDDT
score between 70 and 90 are considered generally good and regions with a pLDDT score
between 50 and 70 are considered with low confidence. In our case, out of 72 models,
31 models showed the average pLDDT scores of more than 90, 31 models showed the aver-
age scores between 70 and 90, and 10 models showed the average scores between 50 and 70
(Table S4). All generated models were deposited in ModelArchive with the accession ID
listed in Table S4. It is also important to note that the commonly used Protein Data Bank
(PDB) currently only accepts experimental model depositions [47].

3.5. Structure-Based Annotation

Using the created models as a resource, ProFunc—a structure-based functional annota
tion—was used to annotate the proteins with structure inputs. ProFunc revealed that the
majority of the annotated proteins possess the same functions as primarily annotated in
Table 3. However, 7 structures out of 72 protein structures were annotated with different
functions as shown in Table S5. To elaborate, two structures with manganese transporter
domain (MntA) putative functions were annotated as ATP-bound human transporter found
in retina and human sterol transporter, respectively. Two zinc-regulated/zinc transporters
were annotated as NH3 transporter from Nitrosomonas europaea and multidrug transporter
from Lactobacillus lactis. One ascorbate peroxidase was annotated as cytochrome C peroxi-
dase and two glutathione S-transferases were annotated as apo-dehydroascorbate reductase
and glutathione-bound dehydroascorbate reductase, respectively.
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4. Discussion

The rise in the number of whole genome sequences prompts a rapid development
of computational tools for the analysis of this available data. A webtool was previously
developed to help predict the functions of genes from microalgal genomes and is currently
active via http://pathways.mcdb.ucla.edu/algal/index.html (accessed on 23 May 2022);
however, the database’s scope is limited only to two microalgae, Chlamydomonas reinhardtii
and Chlorella NC64A. Thus, other means of methods are still useful, particularly if the genes
or proteins from other microalgal strains are in question.

In our work, it is obvious that BLASTp resulted in greater numbers of hits against
Chlorella than Scenedesmus. The most straightforward explanation for this is because the
number of reported whole genome sequences of Chlorella is significantly higher (21 genomes;
www.ncbi.nlm.nih.gov, accessed on 23 May 2022), in comparison with that of Scenedesmus
(6 genomes; accessed on 23 May 2022). Moreover, Chlorella is considered a frequently used
microalga for wastewater treatment, despite the increased attention toward Scenedesmus.
Noticeably, no enzymes implicated in the bioaccumulation mechanism were found from
Scenedesmus genomes. This could be due to the explanation stated above, or it may suggest
that the Scenedesmus does not actually use this mechanism. However, it should also
be emphasized that glutathione peroxidase, which is a common enzyme found in most
organisms to protect the cell from oxidative damage [49], was also not found in Scenedesmus.
This may suggest that the use of BLASTp to retrieve proteins from microalgal genomes
could be further improved.

Available webtools for functional annotation are useful, especially to primarily screen
for protein sequences with particular functions. Interestingly, protein sequences retrieved
when using reductase enzymes as templates were not explicitly identified as reductases.
Although two proteins (accession no. KAG7668560.1 and XP_005845177.1) were iden-
tified by CATH as thioredoxin reductase, which is often seen coupled with arsenate
reductases [50,51], the other servers identified otherwise. Moreover, it is undeniably
challenging to predict the functions of transporters as they consist of several domains
to form a functional protein [37,52] and they are often broadly specific toward different
substrates [53]. This was illustrated clearly from BLASTp search where all cadmium-,
zinc- and lead-transporting ATPase showed the same hit results with copper-transporting
ATPase (Table S3), suggesting that their structures are similar, and they are broadly specific
to several heavy metals. All heavy metal transporting ATPases are classified as P-type

http://pathways.mcdb.ucla.edu/algal/index.html
www.ncbi.nlm.nih.gov
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ATPases and contain (1) E1-E2 ATPase (2) hydrolase (3) cation ATPase domains [54]. In
this regard, Pfam and InterProScan broadly annotate the molecular functions of different
regions on the hypothetical proteins as ATP hydrolysis activity, ATP binding, transporter
activity, nucleotide binding (Table S5). Though this fits the definition of P-ATPase, it sug-
gests that the specificity of these tools could be further improved. We suggest that the use
of these servers is still applicable, but further interpretation is required. Noticeably, the
results from SUPERFAMILY 2.0 and CATH showed several calcium-transporting ATPase
hits for all heavy metal transporting ATPase, which is because heavy metal transporting
ATPase could also function as a Ca2+ pump [55].

Alphafold is a breakthrough computational method for protein structure prediction
with atomic level accuracy. Using coding-based platform, this makes it challenging for
researchers outside of the computational fields to apply Alphafold to their studies. Recently,
a few reports, including from the Alphafold creators themselves, have developed relatively
more user-friendly Alphafold on Google Colab platform [31]. With such widely accessible
platforms, the number of models generated from Alphafold is anticipated to sharply
increase in the near future. In our work, we observed that a majority of the predicted
protein structures showed long amino acid chains that do not form secondary structures
with the rest of the protein region (Figure 4), which could be because the actual start
points of the protein sequences retrieved from BLASTp were not accurately identified. This
instantly brought us back to the signal peptide prediction from SignalP server, as this tool
only allows the prediction of the first 70 amino acids from the N-terminus, which means
that if the hypothetical protein sequences retrieved from NCBI contain more than 70 amino
acids upstream of the actual start point, the prediction using SignalP would not be accurate.

Though Alphafold has its own protein database (https://alphafold.ebi.ac.uk/ (accessed
on 20 June 2022)), the submission is not made available. Therefore, in this study, we sub-
mitted our Alphafold models to ModelArchive, which is the only database that allows
submission of modeling-based protein structures.

Structure-based annotation is considered a more accurate method for predicting
protein function than homology-based prediction, as the latter often considers only the
sequence similarity of the input proteins and their homologs, while the former also con-
siders other factors, including protein binding pocket [56]. In this work, ProFunc is used
as a method to validate the protein prediction from primary screening. The results were
not surprising, as most of the proteins were annotated to have the same function as from
homology-based prediction. This assures that the homology-based annotation could be
used to some extent. Interestingly, when looking at seven proteins with different annota-
tion results, it was noticed that the transporters were also annotated as transporters but
with specified substrates/ligands. It is important to point out that since homology-based
annotation only allows a broad annotation of transporters as unspecified transporters,
structure-based annotation allows the substrates/ligands of the transporters to also be
identified. Unfortunately, in these cases, the substrates identified were not heavy met-
als as expected. In the case of enzymes, however, predicted ascorbate peroxidase from
homology-based prediction was predicted as cytochrome C peroxidase in this step. This
could be linked to their highly similar protein structures, even though they have different
substrate-binding sites [57]. Therefore, this observation demonstrates that structure-based
annotation allows a more accurate prediction of the protein function, especially when
the proteins have similar structures. Two structures of glutathione S-transferases were
annotated as apo-dehydroascorbate reductase and glutathione-bound dehydroascorbate re-
ductase. The dehydroascorbate reductase (DHRA) is a member of glutathione S-transferase
superfamily [58] suggesting that ProFunc could identify subgroups of the proteins in some
cases. Moreover, the challenge encountered when using Pfam and InterProscan in the
primary annotation was not presented when using ProFunc. To give an example, instead of
predicting a heavy metal transporting ATPase (accession no. XP_005851032.1) separately for
each region as stated above, ProFunc predicted the protein to be similar to zinc-transporting
PIB-type ATPase. Overall, the use of structure-based annotation is a useful approach that

https://alphafold.ebi.ac.uk/
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accurately annotates the protein sequences, especially in our case, when investigating the
proteins with similar structures. Furthermore, it allows the annotation of transporters as a
whole protein rather than separated domains. However, it should also be taken into account
that out of all 72 protein structures used as templates for structure-based annotation via
ProFunc, only 31 of them were considered highly accurate predictions according to the
Alphafold2 confidence measures.

To validate the proposed approach, natural resistance-associated macrophage protein,
ascorbate peroxidase, and glutathione peroxidase with experimentally confirmed activ-
ities were used as positive controls. The results showed that after extensive annotation
following our workflow, the protein sequences were annotated as expected. Experimentally
validated elongation factor EF-2, transcriptional regulator, and cytochrome C peroxidase
were selected as negative controls. These proteins function in general cellular processes,
and in the case of cytochrome C peroxidase, it has a very similar structure with ascorbate
peroxidase and is often shown as matches when ascorbate peroxidase is blasted. Therefore,
this choice of negative control would allow the assessment of our approach even when
influenced by these factors. The results showed that these proteins were annotated to
possess their validated functions, which demonstrates that the workflow presented here
could distinguish between the two very similar-structured proteins.

Ultimately, the applications of our protein library could range from selection of the
proteins from our library for a single engineering design to combinatorial optimization of all
genetic parts. At present, the construction of synthetic biology-based systems mostly relies
on previously reported genes or proteins, which limits the possibility of the design and the
optimization. For example, engineering of a microalga to enhance heavy metal bioremedia-
tion was recently reported and the work utilized gene sequences from Arabidopsis that were
experimentally characterized prior to the study [18]. This limits the selection of the genes
to only the reported ones and raises the question whether the reported genes are the best
homologs that there are. Therefore, selection of the genes from our library could provide
more choices and allow a stepwise design [59]. Moreover, the predicted protein structures
from our work could be used for further computational analysis to predict the activity
of the proteins and compare homologs prior to the actual engineering step. Molecular
docking is a recent field of protein study that investigates the compatibility of proteins
and their ligands or substrates, which can be used to predict the activity of the proteins.
To provide a related example, a recent work performed molecular docking to confirm the
binding between chromium ion and cell surface proteins in biosorption mechanism [60].

5. Conclusions

In this work, we aim to construct a comprehensive library of putative proteins from
Chlorella and Scenedemus genomes to facilitate synthetic biology-based engineering for
heavy metal bio-removal. We selected 27 different groups of protein targets based on
their reported capability as proteins involved in heavy metal bio-removing mechanisms.
We found a total of 72 putative proteins. Among these, 65 were exclusively annotated
to possess the same functions as their templates. The protein structures of all annotated
proteins were also generated and deposited in the protein structure archive for any further
use. This study, therefore, provides a putative protein library that could be used as a
database for synthetic biologists to handpick the proteins for engineering purposes with
readily available structures for additional investigations. Nonetheless, it should be kept in
mind that some limitations remain when using our approach for putative protein discovery.
First, as encountered in our case, the relatively low number of reported microalgal genomes
limits the number of discoverable proteins. Second, the current platform of Alphafold2
only allows up to 1400 amino acid long proteins as templates for modeling. This restriction
is another factor to be considered if large proteins are in question. If these limitations
are mitigated, a larger number of putative proteins are anticipated to be discovered and
annotated using our approach.
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