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Abstract

Background: Males have worse survival for childhood cancer, but whether this disparity exists among all childhood cancer

types is undescribed.

Methods: We estimated sex differences in survival for 18 cancers among children (0-19 years) in Surveillance, Epidemiology,
and End Results 18 (2000-2014). We used Kaplan-Meier survival curves (log-rank P values) to characterize sex differences in
survival and Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the asso-
ciation between sex and death for each cancer type. We used an inverse odds weighting method to determine whether the
association between sex and death was mediated by stage of disease for solid tumors.

Results: Males had worse overall survival and a higher risk of death for acute lymphoblastic leukemia (HR = 1.24, 95% CI =
1.12 to 1.37), ependymoma (HR = 1.36, 95% CI = 1.05 to 1.77), neuroblastoma (HR = 1.28, 95% CI = 1.09 to 1.51), osteosarcoma
(HR = 1.29, 95% CI = 1.08 to 1.53), thyroid carcinoma (HR = 3.25, 95% CI = 1.45 to 7.33), and malignant melanoma (HR = 1.97,
95% CI = 1.33 to 2.92) (all log-rank P values < .02). The association between sex and death was mediated by stage of disease for
neuroblastoma (indirect HR = 1.12, 95% CI = 1.05 to 1.19), thyroid carcinoma (indirect HR = 1.24, 95% CI = 1.03 to 1.48), and
malignant melanoma (indirect HR = 1.28, 95% CI = 1.10 to 1.49). For these six tumors, if male survival had been as good as
female survival, 21% of male deaths and 13% of total deaths after these cancer diagnoses could have been avoided.
Conclusions: Consideration of molecular tumor and clinical data may help identify mechanisms underlying the male excess

in death after childhood cancer for the aforementioned cancers.

Cancer continues to be a leading cause of death among children
and adolescents, particularly those aged 5-14 years (1). Survival
differences between childhood cancer types are well-
documented with central nervous system and bone tumors
resulting in lower survival and acute lymphoblastic leukemia
(ALL) and lymphomas having higher survival rates (2-4). In epi-
demiologic survival analyses, males and females are tradition-
ally grouped together to estimate survival percentages, and
sex-adjusted hazard ratios (HRs) for the risk of death from child-
hood cancer are often presented. However, even though males
have worse survival than females for childhood cancer overall,
there is little information on sex differences in survival by can-
cer type, making it unclear whether the sex variation observed
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for childhood cancer survival overall extends to individual
childhood tumor types (2,5,6).

The identification of sex differences in survival after a child-
hood cancer diagnosis may be helpful in uncovering biological
mechanisms responsible for the increased risk of death among
males. These findings may also help guide future research to
identify treatments that may have greater benefit in male or fe-
male children as done among adults, where sex differences in
tumor genomics were used to identify clinically actionable ther-
apies with potential sex-specific benefits (7). The survival differ-
ences between sexes are likely to be multifactorial depending
on features such as sex differences in diagnosis delay (8), phar-
macogenetics (9-12), and/or cancer biology. To identify cancer
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types with sex differences in survival and to determine whether
these differences depend on stage of disease, we used the
Surveillance, Epidemiology, and End Results (SEER) Program 18
registries (2000-2014) to conduct a survival analysis for 18 child-
hood cancers (13). We characterized sex differences in overall
survival and estimated the risk of death for males relative to
females for each cancer. We then conducted a mediation analy-
sis for the association between sex and death, treating stage of
disease as a mediator.

Methods

Study Population

Cancer cases (n=>57004) aged 0-19years were identified using
the SEER Program 18 registries. Cases included in SEER 18
(14) (2000-2014) arise from Atlanta, Connecticut, Detroit,
Hawaii, lowa, New Mexico, San Francisco-Oakland, Seattle-
Puget Sound, Utah, Los Angeles, San Jose-Monterey, rural
Georgia, the Alaska Native Tumor Registry, greater California,
greater Georgia, Kentucky, Louisiana, and New Jersey. To be in-
cluded in this analysis, individuals must have had a microscopi-
cally confirmed first primary tumor classified as one of the
main International Classification of Childhood Cancer [3rd edi-
tion (13)] types that had at least 500 cases (n =45 229) available
for analysis. Additional tumor types excluded were germ cell
tumors, because these arise from different cell types in males
and females and survival differences have been characterized
elsewhere (15), and tumors with “other” classifications
(Supplementary Table 1, available online). Of the cases identi-
fied in SEER for this analysis, 47 were missing survival time and
were not included in the survival analyses.

Cancer Type

The International Classification of Childhood Cancer categories
included in the current analysis were I Leukemias (Ia Acute lym-
phoid leukemia, Ib Acute myeloid leukemia), II Lymphomas (Ila
Hodgkin lymphoma, IIb Non-Hodgkin lymphoma, IIc Burkitt
lymphoma), III Central Nervous System (Illa Ependymoma, IIb
Astrocytoma, Illc.1 Medulloblastoma, 1IIc.2 Peripheral
Neuroectodermal Tumor [PNET]), IVa Neuroblastoma, V
Retinoblastoma, VIa Nephroblastoma, VIla Hepatoblastoma,
VIII Bone (VIIla Osteosarcoma, VIIIic Ewing tumor and related
sarcomas of bone [Ewing sarcoma]), IX Soft Tissue Sarcomas
(IXa Rhabdomyosarcoma), and XI Other malignant epithelial
neoplasms and malignant melanomas (XIb Thyroid carcinoma,
XId Malignant melanoma).

Variables of Interest

From SEER we obtained age at diagnosis (<1, 1-4, 5-9, 10-14, 15-
19years), year of diagnosis (2000-2004, 2005-2009, 2010-2014),
race or ethnicity (non-Hispanic, white, black, Asian or Pacific
Islander, Hispanic), tumor size (<2 c¢m, 2 to <5 cm, >5 cm; not
available for I Leukemias or II Lymphomas), stage of disease (lo-
cal, regional, distant; not available for I Leukemias), metastases
(yes or no; not available for I Leukemias or II Lymphomas),
months of survival (defined in SEER using the date of diagnosis
to the date of death from any cause or last contact by the study
end date of December 31, 2014), and vital status.

Statistical Analysis

Five-year survival percentages stratified by sex for each cancer
type were estimated. Kaplan-Meier survival curves and log-rank
P values to identify statistically significant sex differences in
overall survival were generated. We used Cox proportional haz-
ards models to estimate hazard ratios and the corresponding
95% confidence intervals (Cls) for the association between male
sex, relative to female sex, and death for each cancer. There was
no violation of the proportional hazards assumption when con-
sidering an interaction term between sex and time in the mod-
els. Age-stratified analyses for the association between sex and
death were carried out using age at diagnosis categories: 04, 4-
9, 10-14, and 15-19years. A P value was calculated for each can-
cer through use of an age-sex interaction term in each model.

For solid cancers with a statistically significant sex differ-
ence in survival, we conducted a mediation analysis to deter-
mine if the association between sex and the risk of death after a
cancer diagnosis was mediated by stage of disease using an in-
verse odds weighting method (16-19). Briefly, the inverse odds
weighting Cox proportional hazards model allows for estima-
tion of the association between sex and death, independent of
stage of disease. The weight for sex was estimated from a logis-
tic regression model for stage of disease in association with sex
where the reference category, female, was assigned the weight
of 1. Males were assigned a value of the inverse odds of the
aforementioned logistic models conducted separately for each
cancer. The indirect effect of sex on death operating through
stage of disease was calculated by subtracting the direct effect
beta from the total effect beta (Bindirect = Protal — Bdirect). FOT the
total, direct, and indirect effects, the resulting hazard ratios
were estimated, and bootstrapped standard errors (1000 replica-
tions) were used to estimate the 95% confidence intervals. A sta-
tistically significant indirect effect was interpreted as evidence
of mediation by stage of disease for the association between sex
and death.

Analyses were done using SAS v9.4 (SAS Institute, Cary, NC)
and Stata v15.0 (StataCorp, College Station, Texas). Figures were
generated in GraphPad Prism v8.0.1 (GraphPad Software, La
Jolla, CA). Statistical significance was determined using two-
sided hypothesis tests (alpha=.05). Because this is observa-
tional research, no adjustment for multiple comparisons was
made in our analysis (20).

Results

The distribution of age, race, tumor size, stage of diseases, me-
tastases at diagnosis, vital status, and year of diagnosis by sex
for each cancer is in Table 1. Males comprised 53% of the study
sample (results not shown). Tumors with a female predomi-
nance included nephroblastoma (48% male, 52% female), thy-
roid carcinoma (19% male, 81% female), and malignant
melanoma (43% male, 57% female). The race or ethnicity distri-
bution of cases was similar between sexes for each cancer.
Among children with solid cancers and tumor size available,
there were few sex differences except Ewing sarcoma, where
males more frequently had tumors larger than 5 cm (79% male,
70% female) and PNETs where males less frequently had tumors
larger than 5 cm (48% male, 57% female). For stage of disease,
differences in the distribution by sex emerged among some can-
cers. Males were more frequently diagnosed with distant stage
of disease for Hodgkin lymphoma (40% male, 33% female), neu-
roblastoma (56% male, 49% female), and osteosarcoma (24%
male, 20% female). Conversely, males were less frequently
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Figure 1. Kaplan-Meier survival curves for cancers with sex differences in overall survival. A) Acute lymphoblastic leukemia. B) Ependymoma. C) Neuroblastoma. D)
Osteosarcoma. E) Thyroid carcinoma. F) Malignant melanoma. Surveillance, Epidemiology, and End Results 18 (2000-2014). Two-sided P values were calculated using a

log-rank test.

diagnosed with local disease for thyroid carcinoma (45% male,
51% female) and malignant melanoma (78% male, 83% female).
Five-year survival differed by sex with males having worse
survival proportions (>3% difference) for ALL (85% male, 83% fe-
male), ependymoma (71% male, 78% female), PNET (56% male,
60% female), neuroblastoma (74% male, 78% female), hepato-
blastoma (77% male, 82% female), osteosarcoma (64% male, 71%
female), Ewing sarcoma (67% male, 71% female), and malignant
melanoma (92% male, 97% female) (survival proportions and
95% confidence intervals are in Supplementary Table 2 (avail-
able online), event and censor counts are in Supplementary
Table 3 (available online)). Males had statistically significantly
worse overall survival during the 15-year study period for ALL

(log-rank P<.001), ependymoma (log rank P=.02), neuroblas-
toma (log rank P=.003), osteosarcoma (log rank P = .004), thy-
roid carcinoma (log rank P = .003), and malignant melanoma
(log rank P <.001) (Figure 1A-F). Kaplan-Meier curves and log-
rank P values for the remaining cancers can be found in
Supplementary Figure 1 (available online).

The hazard ratios and 95% confidence intervals for male sex,
relative to female sex, and the risk of death were elevated for
ALL (HR = 1.24, 95% CI = 1.12 to 1.37), ependymoma (HR = 1.36,
95% CI = 1.05 to 1.77), neuroblastoma (HR = 1.28, 95% CI = 1.09
to 1.51), osteosarcoma (HR = 1.29, 95% CI = 1.08 to 1.53), thyroid
carcinoma (HR = 3.25, 95% CI = 1.45 to 7.33), and malignant mel-
anoma (HR = 1.97, 95% CI = 1.33 to 2.92) (Table 2). These results
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Table 3. Hazard ratios and 95% confidence intervals for the association between male sex and the risk of death by cancer type stratified by age

| JNCI Cancer Spectrum, 2019, Vol. 3, No. 2

at diagnosis category, Surveillance, Epidemiology, and End Results 18 (2000-2014)

Age at diagnosis category
0-4 years 5-9 years 10-14 years 15-19 years Age-sex P

Cancer type HR* (95% CI) HR* (95% CI) HR* (95% CI) HR* (95% CI) interaction
Ia Acute lymphoblastic leukemia 1.11 (0.93 to 1.34) 1.28 (1.01 to 1.62) 1.11 (0.90 to 1.37) 1.06 (0.86 to 1.29) 7
Ib Acute myeloid leukemia 0.92(0.74t01.14)  1.09 (0.75 to 1.57) 1.00(0.77t01.31)  1.03 (0.83 to 1.28) 8
IIa Hodgkin lymphoma 0.36 (0.02 to 5.71) 2.76 (0.63 to 12.15) 0.84 (0.47 to 1.50) 0.79 (0.58 to 1.08) 4
IIb Non-Hodgkin lymphoma 0.88 (0.47 to 1.65) 0.69 (0.40 to 1.20) 0.71 (0.50 to 1.00) 1.28 (0.97 to 1.68) .04
Ilc Burkitt lymphoma t 0.88 (0.30 to 2.64) 0.84 (0.34t02.06)  0.88 (0.40 to 1.92) 9
Illa Ependymoma 44 (1.02 to 2.02) 1.06 (0.59 to 1.88) 1.89 (0.87 to 4.13) 1.24 (0.51 to 3.03) 7
IIb Astrocytoma o 75(0.54t01.03)  1.23(0.94 to 1.59) 1.15(0.88t0 1.50)  1.22 (0.94 to 1.59) .07
Illc.1 Medulloblastoma 1.27 (0.91t01.77)  0.71(0.50 to 1.02) 145(0.77t02.73)  1.15(0.63 to 2.07) .09
IlIc.2 Peripheral neuroectodermal tumor 1.34 (0.91 to 1.97) 0.91 (0.50 to 1.65) 0.80 (0.43 to 1.47) 1.18 (0.64 to 2.19) 5
IVa Neuroblastoma 1.25 (1.03 to 1.50) 1.29 (0.88 to 1.89) 2.39 (1.18 to 4.81) 1.81 (0.56 to 5.82) 4
V Retinoblastoma 1.15 (0.51 to 2.60) 1 + T +
VIa Nephroblastoma 0.99(0.70t0 1.39)  0.73 (0.37 to 1.42) 1.82(0.44t07.62)  0.97 (0.18 to 5.29) 7
VIla Hepatoblastoma 1.28 (0.85 to 1.94) 5.17 (0.63 to 42.11) 0.34 (0.06 to 2.09) 1.41 (0.09 to 23.57) 2
VIIla Osteosarcoma 145 (0.44t04.76)  1.26 (0.77 to 2.05) 1.23(0.94t01.62)  1.24(0.95 to 1.62) 9
VIIIc Ewing sarcoma 0.59 (0.20 to 1.75) 1.22 (0.60 to 2.49) 0.91 (0.61 to 1.35) 1.53(1.05 to 2.21) 2
IXa Rhabdomyosarcoma 1.21 (0.89 to 1.63) 0.86 (0.57 to 1.30) 0.92 (0.65 to 1.28) 0.83 (0.60 to 1.16) 3
XIb Thyroid carcinoma T T 1.90 (0.37 t0 9.89) 5.03 (1.89 to 13.40) 7
XId Malignant melanoma 0.68 (0.16 to 2.84) 1.52 (0.21 to 10.79) 0.98 (0.40 to 2.41) 2.72 (1.67 to 4.43) 1

*Unadjusted model. CI = confidence interval; HR = hazard ratio.

1HR, P value for an interaction between age category and sex not applicable due to low sample size.

Table 4. Hazard ratios and 95% confidence intervals from the mediation analysis for the association between sex and the risk of death for
males, compared with females, diagnosed with ependymoma, neuroblastoma, osteosarcoma, thyroid carcinoma, and malignant melanoma,
with stage of disease as the mediator, Surveillance, Epidemiology, and End Results 18 (2000-2014)

Indirect

Direct

Total
Change from total

Model and cancer type R (95% CI) P

R (95% CI) P

R (95% CI) P to direct effect, %*

Unadjusted model

Illa Ependymoma 1.01 (0.97 to 1.05) .60 1.35(1.03 to 1.76) .03 1.36 (1.05 to 1.77) .02 3
IVa Neuroblastoma 1.12 (1.05 to 1.19) <01 1.15 (0.99 to 1.34) 07 1.28 (1.09 to 1.51) <.01 44
VIIla Osteosarcoma 1.06 (1.00 to 1.12) .05 1.22 (1.03 to 1.43) .02 1.29 (1.08 to 1.53) <.01 22
XIb Thyroid carcinoma 1.24 (1.03 to 1.48) .02 2.63 (1.02 to0 6.75) .04 3.25(1.27 t0 8.35) .01 18
XId Malignant melanoma 1.28 (1.10 to 1.49) <.01 1.53(1.05 to 2.24) .03 1.97 (1.33 t0 2.91) <.01 37
Model adjusted for race, age at diagnosis, and year of diagnosis

Illa Ependymoma 1.03 (0.95 to 1.13) 44 44 (1.07 t0 1.92) 02 1.49(1.12t0 1.97) 01 8
IVa Neuroblastoma 1.09 (1.02 to 1.17) .01 1. 22 (1.04 to 1.44) .01 1.34 (1.13 to 1.59) <.01 31
VIIla Osteosarcoma 1.07 (0.99 to 1.15) .08 1.14 (0.95 to 1.35) .15 1.21 (1.01 to 1.45) .04 33
XIb Thyroid carcinoma 1.01 (0.61 to 1.66) 98  2.59(0.91t07.38) 08  2.61(0.95t07.19) .06 1
XId Malignant melanoma 1.23 (1.00 to 1.52) .05 1.89 (1.19 to 3.03) 01 2.33(146103.72) <01 25

*Percent change from total to direct effect (ftotal — pdirect)/ptotal)*100. CI = confidence interval; HR = hazard ratio.

were generally consistent in direction and magnitude of associ-
ation in models adjusted for age at diagnosis, race or ethnicity,
year of diagnosis, and stage of disease, where applicable.
Because age at diagnosis may modify the association be-
tween sex and death for some childhood cancers, we conducted
age-stratified analyses. There was heterogeneity in the associa-
tion between sex and death by age at diagnosis for some can-
cers (Table 3). Elevated hazard ratios that excluded the null
were observed for males aged 0-4 years for ependymoma (HR =
1.44, 95% CI = 1.02 to 2.02) and neuroblastoma (HR = 1.25, 95%
CI = 1.03 to 1.50). Among children aged 5-9years at diagnosis,
there was an elevated risk of death among males for ALL (HR =
1.28, 95% CI = 1.01 to 1.62). In adolescents aged 10-14 years at

diagnosis, male sex was associated with an increased risk of
death for neuroblastoma (HR = 2.39, 95% CI = 1.18 to 4.81). For
teens aged 15-19years, male sex was associated with an in-
creased risk of death for Ewing sarcoma (HR = 1.53, 95% CI =
1.05 to 2.21), thyroid carcinoma (HR = 5.03, 95% CI = 1.89 to
13.40), and malignant melanoma (HR = 2.72, 95% CI = 1.67 to
4.43). Estimates were similar in magnitude and direction when
all models were adjusted for race and year at diagnosis (results
not shown).

As stage of disease lies on the temporal path between sex
and death following a childhood cancer diagnosis, we con-
ducted a mediation analysis treating stage of disease as a medi-
ator for ependymoma, neuroblastoma, osteosarcoma, thyroid
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carcinoma, and malignant melanoma (Table 4), which com-
prised the solid tumors that displayed statistically significant
total associations between sex and death. In the first-leg analy-
ses (Supplementary Table 4, available online), male sex was
strongly associated with distant stage of disease for neuroblas-
toma, osteosarcoma, and malignant melanoma. The mediation
results (Table 4) revealed a statistically significant direct, but
not indirect, effect for male sex and death for ependymoma
(direct HR = 1.35, 95% CI = 1.03 to 1.76). In contrast, for neuro-
blastoma there was a statistically significant indirect, but not
direct effect, for sex, operating through stage of disease and
death (indirect HR = 1.12, 95% CI = 1.05 to 1.19). Statistically sig-
nificant indirect and direct effects for sex and death were ob-
served for thyroid carcinoma (indirect HR = 1.24, 95% CI = 1.03
to 1.48; direct HR = 2.63, 95% CI = 1.02 to 6.75) and malignant
melanoma (indirect HR = 1.28, 95% CI = 1.10 to 1.49; direct HR =
1.53, 95% CI = 1.05 to 2.24). For osteosarcoma, there was a bor-
derline statistically significant indirect effect for sex and death
(indirect HR = 1.06, 95% CI = 1.00 to 1.12) and a statistically sig-
nificant direct effect for sex and death (direct HR = 1.22, 95% CI
= 1.03 to 1.43). Effect estimates were similar in magnitude and
direction, though precision was lost, when the mediation analy-
ses were adjusted for age at diagnosis, race or ethnicity, and
year of diagnosis.

Finally, we estimated the percentage of male deaths and to-
tal deaths that could have been avoided if males experienced
the same survival proportions as females for ALL, neuroblas-
toma, ependymoma, osteosarcoma, thyroid carcinoma, and
malignant melanoma during the study period. First, we
obtained the number of male deaths for each of these six can-
cers (n=1856; Table 1). Then, we calculated the number of
males that would have died if males had the same percentage
of deaths as females for each of the six tumors (estimated male
deaths =1467). We then calculated the difference between the
observed male deaths and the estimated male deaths (n =2388).
Finally, we estimated that approximately 13% of total deaths
([388/3082]*100=12.6%) and 21% of male deaths ([388/
1856]*100 = 20.9%) for these six cancers could have been avoided
if males experienced the same survival as females during the
15-year study period.

Discussion

We observed sex differences in survival for a number of pediat-
ric malignancies using the SEER 18 registries. Males had worse
overall survival than females, as others have observed (2,5,6).
We and others have reported worse survival and an increased
risk of death for males diagnosed with ALL (21-23), ependy-
moma, neuroblastoma, osteosarcoma (24), thyroid carcinoma
(25), and malignant melanoma (26,27). We note that the thyroid
carcinoma results arise from a very small number of events
(n=25); thus, these results should be interpreted with caution.
We observed slight variation in the association between sex and
death by age at diagnosis for ALL, ependymoma, neuroblas-
toma, osteosarcoma, thyroid carcinoma, and malignant mela-
noma. Importantly, we estimated that one in five male deaths
after a diagnosis with ALL, ependymoma, neuroblastoma, oste-
osarcoma, thyroid carcinoma, or malignant melanoma could
have been avoided if males experienced survival as good as
females in this population during the study period.

For neuroblastoma, thyroid carcinoma, and malignant mela-
noma, we found evidence of mediation by stage of disease for
the association between sex and death. Notably, 44%, 18%, and
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37% of the observed sex differences in the risk of death for neu-
roblastoma, thyroid carcinoma, and malignant melanoma, re-
spectively, operated through stage of disease in our study. Our
findings suggest that factors other than stage of disease at diag-
nosis may also contribute to the sex differences in survival and
risk of death after a childhood cancer diagnosis.

Although the purpose of this study was to identify survival
differences between males and females diagnosed with child-
hood cancer when considering individual tumor types, there
are a number of possible mechanisms underlying the male ex-
cess in death that may be relevant across cancer types and war-
rant further study in more appropriate datasets. The
identification of sex differences in diagnosis delay, treatment
response, tumor biology, or even treatment received may pro-
vide insight into the biological and/or social mechanisms un-
derlying the observed male excess in death. In a review article
characterizing diagnosis delay for childhood cancer, there was
some evidence of a delay in diagnosis for males compared with
females, particularly for Ewing sarcoma (28), which we found to
differ by sex in tumor size, 5-year survival, and the risk of death
among older children (8). However, the scarcity of literature ex-
amining the delay in diagnosis for all cancer types using mod-
ern cancer classifications and adequate sample sizes highlights
the necessity for further investigation into this factor as a po-
tential mechanism for the male excess in death following child-
hood cancer.

Sex differences in pharmacogenetics may also affect the phar-
macokinetics of therapies in male and female children as ob-
served in adults where pharmacokinetic sex differences of up to
40% have been reported (9-11). Although drug development gen-
erally focuses on overall therapeutic efficacy, it may be beneficial
to also consider sex differences in the response to current and
new therapies. In past, present, and future clinical trials, this
could be done by comparing and contrasting the therapeutic
responses between boys and girls through sex-stratified analyses.

Sex differences in tumor biology may be an important factor
in the observed sex differences in survival after a childhood can-
cer diagnosis. Concerning ALL, where we observed the strongest
increased risk of death among males for children aged 5-9years
at diagnosis, there are known differences the distribution of cyto-
genomic subtypes by age at diagnosis (29), which also have differ-
ing prognoses (30,31). However, there is little information
available on sex differences in ALL subtypes, particularly the
cytogenomic subtypes. With regard to ALL immunophenotype, T-
cell ALL, diagnosed in up to 15% of ALL cases, is twice as common
among males and is associated with worse outcomes than B-cell
ALL (31-33). This sex difference may contribute to the observed
increased risk of death among males.

Although ALL has the most well-characterized subtypes of
the pediatric tumors with an increased risk of death in males,
molecular subtypes with prognostic differences have been iden-
tified in neuroblastoma (34), namely, ploidy and MYCN status,
and ependymoma, which displays sex differences in subtype
(3,35); however, subtypes for osteosarcoma have failed to repli-
cate across studies (36). Molecular subtypes for thyroid carci-
noma and malignant melanoma are less often characterized. As
such, research on sex differences in childhood cancer subtypes
may shed light on the contribution of sex differences in tumor
biology to the observed survival differences between males and
females.

Even though our findings for the association between sex
and the risk of death after cancer diagnosis arise from a large,
population-based dataset for the main childhood cancers using
modern definitions, our study should be interpreted with the
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following limitations in mind. SEER does not have complete or
detailed treatment data (37) for cases; therefore, we considered
stage of disease to be a potential mediator of the association be-
tween sex and the risk of death. Because stage is routinely col-
lected by cancer registries contributing to SEER (38), we
hypothesized that stage of disease may serve as a surrogate for
treatment received. Treatment received is usually determined
by risk stratification for pediatric cancers, which generally
depends on age, tumor characteristics (ie, size or molecular sub-
type), and stage of disease but not sex (3,4,34,36). Clinical stud-
ies with detailed treatment and stage data are well-suited to
study sex differences in treatment received and should consider
treatment as a mediator between sex and death in the future.
Characterizing sex differences in survival by tumor subtypes or
risk groups is beyond the scope of this analysis, but studies with
detailed subtype data, such as the MLL-rearranged or ETV6-
RUNX1 subtypes of ALL or the MYCN status and risk group infor-
mation for neuroblastoma, would be well-suited to examine
these associations (30,39). Finally, consideration of insurance
status, which may affect access to care and care utilization,
should be evaluated in studies with adequate insurance infor-
mation to determine the role of insurance status in the ob-
served sex differences in pediatric cancer survival. Because this
information is not available in SEER for cases diagnosed before
2007, this was not considered in our analyses.

In conclusion, we observed sex differences in survival for
ALL, neuroblastoma, ependymoma, osteosarcoma, thyroid car-
cinoma, and malignant melanoma using the SEER 18 registries.
These six tumor types combined account for approximately
one-third of cancer diagnoses among children and adolescents
(5) and almost 40% of deaths in SEER data. Approximately 21%
of male deaths and 13% of total deaths due to ALL, neuroblas-
toma, ependymoma, osteosarcoma, thyroid carcinoma, and
malignant melanoma could have been avoided if males experi-
enced survival rates equal to those observed among females
during the study period. The observed sex differences in sur-
vival may depend to some degree on stage of disease but may
also depend on factors such as sex differences in diagnosis
delay, tumor biology, and receipt and response to treatment,
which should be investigated in epidemiologic or clinical stud-
ies with detailed molecular tumor and clinical data.
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