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Abstract
Purpose  Advancements of deep learning in medical imaging are often constrained by the limited availability of large, anno-
tated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a 
generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy 
scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.
Methods  We trained a generative model on 99mTc-bone scintigraphy scans from 9,170 patients in one center to generate 
high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake 
indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis. A blinded reader study was per-
formed to assess the clinical validity and quality of the generated data. We investigated the added value of the generated data 
by augmenting an independent small single-center dataset with synthetic data and by training a deep learning model to detect 
abnormal uptake in a downstream classification task. We tested this model on 7,472 scans from 6,448 patients across four 
external sites in a cross-tracer and cross-scanner setting and associated the resulting model predictions with clinical outcomes.
Results  The clinical value and high quality of the synthetic imaging data were confirmed by four readers, who were unable 
to distinguish synthetic scans from real scans (average accuracy: 0.48% [95% CI 0.46–0.51]), disagreeing in 239 (60%) of 
400 cases (Fleiss’ kappa: 0.18). Adding synthetic data to the training set improved model performance by a mean (± SD) of 
33(± 10)% AUC (p < 0.0001) for detecting abnormal uptake indicative of bone metastases and by 5(± 4)% AUC (p < 0.0001) 
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for detecting uptake indicative of cardiac amyloidosis across both internal and external testing cohorts, compared to models 
without synthetic training data. Patients with predicted abnormal uptake had adverse clinical outcomes (log-rank: p < 0.0001).
Conclusions  Generative AI enables the targeted generation of bone scintigraphy images representing different clinical condi-
tions. Our findings point to the potential of synthetic data to overcome challenges in data sharing and in developing reliable 
and prognostic deep learning models in data-limited environments.

Graphical abstract
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Introduction

The rise of artificial intelligence (AI) has introduced a 
paradigm shift in medical imaging. Deep neural networks 
have shown promising results in the accurate diagnosis of 
diseases [1, 2], segmentation of anatomical structures (3), 
prediction of patient prognosis [4, 5], and treatment response 
evaluation [6], with increasing numbers of AI-related proce-
dures applied as part of clinical routine [7]. Moreover, AI is 
being studied for image reconstruction and formation tasks, 

such as scatter and attenuation correction, with the aim of 
improving image quality, reducing noise, achieving faster 
processing times, and potentially lowering radiation doses 
for patients [8].

This advancement, however, is restricted by the availabil-
ity of large, annotated datasets, as substantial quantities of 
data are required to train deep learning models effectively. 
The collection of such large datasets is costly and labori-
ous. Hence, it poses a significant challenge, particularly in 
the medical field, necessitating the organization of extensive 
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multicenter studies to assemble large, representative, and 
annotated patient cohorts. Yet, the endeavor of pooling data 
across different institutions is difficult, primarily due to the 
complexities surrounding data sharing and patient privacy 
concerns inherent to healthcare research. These difficulties 
hinder models from generalizing to unseen data and hamper 
their clinical translation.

Synthetic data generation provides a promising alterna-
tive to complement training datasets and increase research 
scale [9]. Recent advances in generative AI have shown 
promising results in synthesizing medical images such as 
chest X-rays [10–12]. However, these studies did not explore 
the applicability of synthetic image generation to molecular 
imaging, where the fundamentals of image acquisition and 
clinical indication differ. Hence, pre-existing findings from 
these studies cannot be adopted to other imaging domains 
without thorough investigation.

Bone scintigraphy plays an important role in the workup 
of various diseases and conditions such as osseous metasta-
ses, cardiac amyloidosis, Paget’s disease, radiographically 
occult injury, osteomyelitis, and the assessment for prosthe-
sis infection or loosening. Most commonly, patients with 
solid tumors at risk for osteoblastic bone metastases are 
being imaged. The five-year survival rates after de novo bone 
metastasis diagnosis have been estimated in 2022 as 22% 
for prostate, 23% for breast, 2% for lung, and 7% for renal 
cancer [13]. While promising new treatments have emerged 
in recent years, potentially improving survival rates, such 
as [177Lu]Lu-PSMA radioligand therapy [14] or targeted 
radionuclide therapy with the alpha emitter Radium-223 for 
metastatic prostate cancer [15], the prognosis for patients 
with bone metastases remains poor. Thus, the identifica-
tion of abnormal uptake indicative of bone metastases is of 
great importance and enables interventions to reduce pain, 
maintain mobility, and improve quality of life. Moreover, 
bone scintigraphy has recently emerged as a valuable tool 
for identifying cardiac amyloidosis. Transthyretin cardiac 
amyloidosis (ATTR-CA) has lately gained significant inter-
est due to recent advances in diagnostics [16], treatment 
[17], and increased disease awareness. Scintigraphy imaging 
with bone-avid tracers enables the non-invasive diagnosis 
of ATTR-CA through visual assessment. Early treatment in 
ATTR-CA has been associated with improved survival [18]. 
Accurate and timely diagnosis via scintigraphy can therefore 
play a crucial role in initiating life-saving ATTR treatment.

This study aimed to generate clinically meaningful syn-
thetic bone scintigraphy imaging data to enrich small-scale 
datasets and to improve the development of deep learning 
models in settings with limited data. To demonstrate the 
generalizability of this approach, we focused on generating 
images representing two clinical conditions: (i) tracer uptake 
indicative of bone metastases and (ii) cardiac uptake indica-
tive of cardiac amyloidosis.

Materials and methods

Study design and patient cohorts

This study included 15,799 patients (16,823 scans) from five 
different sites (Vienna General Hospital, Austria; ASST Spe-
dali Civili of Brescia, Italy; Careggi University Hospital, 
Italy; Champalimaud Foundation, Portugal; and West China 
Hospital, China) who underwent clinically indicated whole-
body 99mTc-scintigraphy imaging with bone-avid tracers 
(99mTc-DPD and 99mTc-HMDP) between 2010 and 2023. Of 
those, 9,170 patients from one center (Vienna General Hos-
pital, collected between 2010 and 2020, Cohort A) served 
as the development dataset for the training and validation 
of a generative model. To that end, we created three differ-
ent downstream classification scenarios to demonstrate how 
synthetic data can overcome data-sharing barriers by com-
plementing small single-center databases. In the first sce-
nario, we trained a deep learning model on all available local 
training data from a single center (181 patients from the 
ASST Spedali Civili of Brescia collected between 2016 and 
2022, Cohort B). This setting simulated an extreme scenario 
where only limited data is available, representing a small 
community hospital with a low patient throughput. While 
181 might be a low number of patients for deep learning 
applications, the purpose of this experiment was to demon-
strate that even with a real-world dataset from a small-scale 
center, models can still be developed effectively with the 
aid of synthetic data. The performance of this model served 
as the baseline for subsequent experiments. In the second 
scenario, we evaluated a setting where transferring real data 
between two or more institutions is challenging. Here, we 
complemented the small single-center dataset with syn-
thetic images to determine if the model’s performance can 
be improved compared to the baseline. Thirdly, we trained 
a model with only synthetic data to simulate an extreme 
case where no real data is available and to test if synthetic 
data itself can be used to build a reliable model. In all three 
scenarios, classification tasks were performed for two clini-
cal targets: (i) tracer uptake indicative of bone metastases 
(BM-indicative) and (ii) cardiac uptake indicative of cardiac 
amyloidosis (CA-indicative). The remaining four cohorts 
comprised 6,448 patients (7,472 scans) and included 200 
patients (200 scans) from the Careggi University Hospital 
(Cohort C), 2,446 patients (3,210 scans) from the Vienna 
General Hospital (collected between 2020 and 2023, Cohort 
D), 674 patients (934 scans) from the Champalimaud Foun-
dation (Cohort E), and 3,128 patients (3,128 scans) from the 
West China Hospital (Cohort F). These four cohorts were 
held out for independent and external cross-tracer and cross-
scanner testing and to associate the model predictions with 
clinical outcomes. The study design is outlined in Fig. 1A.
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An all-comer recruitment strategy was employed to 
ensure real-life routine conditions. Hence, inclusion cri-
teria were designed to be as inclusive as possible for the 
patient cohort from the Vienna General Hospital, aiming 

to acquire all consecutive patients referred for whole-body 
99mTc-scintigraphy (all-comers) between 2010 and 2023. 
For the patient cohort from Careggi University Hospi-
tal, an equal number of cases with and without cardiac 

b

c

a

Fig. 1   a Study design. b and c  Model performances for different 
training set sizes and real-to-synthetic data ratios for (b) the predic-
tion of uptake indicative of bone metastases and (c) the prediction of 

uptake indicative of cardiac amyloidosis. For the latter in (c), no AUC 
could be calculated for the external validation cohorts E-F as there 
were no cases with CA-indicative uptake
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amyloidosis-indicative uptake were selected. Details of 
the patient cohort from the West China Hospital (open-
access data) have been published elsewhere [19]. Exclu-
sion criteria were image acquisition at less than 2 h after 
radiotracer injection following the recommendations of 
current clinical guidelines [20, 21] and if the image quality 
was insufficient for clinical usage. A cohort flow diagram 
is shown in Fig. 2.

This study was granted ethical approval by the institu-
tional review board of the Medical University of Vienna 
(1376/2024). The requirement to obtain informed consent 
was waived.

Imaging and ground truth annotation

All scans were acquired after at least 2 h post-injection 
[20, 21]. An overview of the scanners and tracers utilized 
for each cohort is presented in Supplemental Table 1. The 
ground truth annotation of BM-indicative tracer uptake 
was performed for the purpose of this study by a nuclear 
medicine physician, who had access to the image and the 
clinical indication of the scan if available. The physician 
scored images as positive if (i) they showed abnormal 
tracer uptake that may indicate bone metastases and (ii) 
if further imaging or bioptic examinations would be rec-
ommended. The same procedure was performed for all 
cohorts except for Cohort E. There, ground truths were 
established based on the clinical reports of the scans. For 
CA-indicative uptake, ground truth annotation was derived 
from the consensus reading of at least three independent 
experts according to the Perugini grading scale and current 
clinical recommendations [16, 21]. In alignment with the 
clinical guidelines, scans were considered CA-indicative 

if rated with Perugini grade 2 or 3. Patient cohort charac-
teristics are presented in Table 1.

Image preprocessing

All scans were resampled to a target spacing of 2 × 2 mm2. 
In contrast to existing studies [10, 11], original image reso-
lutions were kept at 1024 × 256 and not downsampled (i.e. 
reduced in resolution), thereby maintaining clinical applica-
bility. High-resolution images are critical in clinical practice 
as they preserve fine details that are essential for accurate 
diagnosis and interpretation. By using the original resolu-
tion, we aimed to ensure that the generated synthetic images 
are more similar real-world clinical images where high-res-
olution images are used. Additionally, downsampling can 
result in the loss of important diagnostic information, which 
might negatively impact the model’s performance and its 
ability to generalize in real-world clinical settings. Image 
intensities were normalized using the 99.5 percentile inten-
sity values per scan for clipping. Only the anterior views of 
the bone scintigraphy scans were utilized.

Generative model

We used a generative model (StyleGAN2) to create synthetic 
bone scintigraphy images [22]. The model was trained from 
scratch using the clinical targets as conditional variables, 
enabling us to synthesize images with specific conditions. 
This was achieved by providing the ground truth label of 
an image to the network during training (Supplemental 
Fig. 3). This procedure allowed the network to learn how 
to generate synthetic images with different attributes, i.e., 
an image representing a patient with BM-indicative or CA-
indicative tracer uptake. During inference, the model can 
then be tasked to generate synthetic images with different 

Fig. 2   Cohort Flow Diagram
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labels. Additionally, we trained a convolutional neural net-
work (CNN) on the same training data and applied it to the 
synthetic images to ensure the correctness of the generated 
images. In this additional data curation step, a synthetic 
image was kept only if the CNN prediction matched the 
output of the generative model. We used the Fréchet incep-
tion distance (FID) as the primary metric for model selec-
tion. Details about the network architecture and training are 
provided in Supplemental Material A.

Qualitative assessment

The uniform manifold approximation and projection 
(UMAP) method [23] was used to create a two-dimensional 
embedding (2D scatterplot) to visualize the training data 
distribution consisting of real patient images and the infer-
ence data distribution consisting of synthetically generated 
images. The alignment of the two distributions reflects an 
approximation of whether the generative model has success-
fully learned to model the underlying real data distribution, 
i.e., to generate highly realistic synthetic images with simi-
lar attributes, e.g., an image showing a patient with BM-
indicative uptake.

Reader study

The quality and clinical value of the generated images were 
evaluated in two separate blinded reader studies, one for 
each clinical target. For each study, 200 scans were randomly 
selected, comprising 50 real positive, 50 real negative, 50 
synthetic positive, and 50 synthetic negative images. All 

readers were blinded to the distribution of real and syn-
thetic images and the number of positive and negative cases 
to avoid bias in their assessment. Four different physicians 
were independently asked to score whether they thought that 
a given image was real or synthetic. The images were pre-
sented individually in a randomized order. An explanation 
had to be provided if the reader marked an image as syn-
thetic. There were no time constraints for this task.

Privacy assurance assessment

Image similarity metrics between each synthetic and real 
image were calculated to ensure that the generative model 
is not merely replicating images from the training set. The 
pixel-wise difference between each synthetic image and 
training sample in the development dataset was measured. 
To account for spatial variations (e.g., the model could copy 
a real patient but shifted by a few pixels), we extracted image 
features and performed a nearest neighbors’ analysis (Sup-
plemental Material B).

Deep learning model and downstream classification

Two deep learning models (one for each classification task) 
were built to evaluate the clinical value of the synthesized 
data in a downstream classification task. Both models were 
trained in a stratified 10-fold cross-validation scheme using 
a dedicated training, validation, and test set. Model infer-
ence on external holdout test sets was performed using an 
ensemble of all ten cross-validated models, with predic-
tions determined by majority vote. A scan was predicted 

Table 1   Patient cohort characteristics

*Age and sex were not made available on a patient level

Variable Vienna General 
Hospital (Cohort 
A)

Vienna General 
Hospital (Cohort 
D)

ASST Spedali Civili 
of Brescia (Cohort B)

Careggi University 
Hospital (Cohort C)

Champalimaud 
Foundation (Cohort 
E)

West China 
Hospital* 
(Cohort F)

No. of patients 9,170 2,446 181 200 674 3,128
No. of scans 9,170 3,210 181 200 934 3,128
Age (years) 61.8 (15.7) 64.1 (15.9) 76.4 (9.9) 78.1 (8.3) 63.6 (12.4) -
Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3,128 (100%)
Sex
Male 3326 (36%) 1325 (54%) 136 (75%) 154 (77%) 277 (41%) -
Female 5844 (64%) 1121 (46%) 39 (22%) 46 (23%) 397 (59%) -
Missing 0 (0%) 0 (0%) 6 (3%) 0 (0%) 0 (0%) 3,128 (100%)
Cardiac amyloidosis
Indicative 142 (2%) 137 (6%) 68 (38%) 103 (52%) 0 (0%) 0 (0%)
Non-indicative 9,028 (98%) 2,309 (94%) 113 (62%) 97 (48%) 674 (100%) 3,128 (100%)
Bone metastases
Indicative 1,055 (12%) 614 (25%) 11 (6%) 17 (9%) 110 (16%) 260 (8%)
Non-indicative 8,115 (88%) 1,832 (75%) 170 (94%) 183 (91%) 564 (84%) 2,868 (92%)
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as positive if the predicted probability was greater than or 
equal to 0.5. Standard data augmentations (rotations, zooms, 
additive noise, shifted and scaled intensities, smoothing) and 
random oversampling of the minority class were performed 
by default for all experiments on the training set. Both mod-
els were pre-trained on the ImageNet database [24]. Details 
about the training procedure are described in the Supple-
mental Material C. To further understand the impact of 
synthetic data on the model performance, we performed an 
augmentation study for different amounts of added synthetic 
data. We augmented the baseline training dataset by real-to-
synthetic data ratios of 1:2 (n = 543), 1:5 (n = 1,086), 1:10 
(n = 1,991), 1:25 (n = 4,706), 1:50 (n = 9,231), and 1:100 
(n = 18,281), while keeping the relative class distribution 
constant to simulate realistic prevalences of the disease.

Patient outcome data

We assessed the model predictions (i.e., predicted BM-/CA-
indicative uptake) for their association with clinical end-
points to ensure the validity and clinical value of the deep 
learning models. This is important because a model’s abil-
ity to accurately predict clinical outcomes directly reflects 
its potential utility in real-world clinical decision-making, 
ensuring that the model is not only technically valid but also 
relevant for patient care. The endpoint for BM-indicative 
uptake was all-cause mortality. Heart failure-associated hos-
pitalization (HFH) was the endpoint for analyzing patients 
with predicted CA-indicative uptake. Data on patient out-
comes were collected for Cohort D. For both endpoints, the 
day of scintigraphy was used as the starting date. The end 
of the follow-up period was July 14, 2023, and December 
31, 2023, for all-cause mortality and HF-associated hos-
pitalization, respectively. Data on all-cause mortality was 
acquired via the nationwide Austrian Death Registry. Heart 
failure-associated hospitalizations were determined from 
three sources, i.e., patient records of the Medical University 
of Vienna, the Vienna-Health-Association database, and the 
nationwide electronic health records.

Statistical analyses

Continuous data are presented as means with standard devia-
tions (SD) or medians with interquartile ranges (IQR). Cat-
egorical variables are shown as numbers and percentages. 
Reader study performance was measured using accuracy, 
and interrater variability was assessed with Fleiss’ Kappa. 
The primary metric for downstream classification was the 
area under the receiver-operating characteristic curve (AUC) 
with a fixed operating point of 0.5. The DeLong test was 
used to compare the AUCs of different models. Event rates 
between patient groups were calculated using Kaplan-Meier 
estimators and the log-rank test. Only the first scan was 

included in the outcome analysis for patients with multiple 
scans. Initial and follow-up scans were used for downstream 
classification performance. Cox proportional hazards models 
were used for outcome analysis, with multivariate adjust-
ment for known available confounders and demographic 
factors (age and sex). Confidence intervals for deep learn-
ing performance were calculated using 1,000 bootstrapped 
samples. P-values ≤ 0.05 were considered statistically sig-
nificant. This study was performed in accordance with the 
CLAIM guidelines [16].

Results

Generation of synthetic bone scintigraphy scans

A visualization of the training dataset and the synthesized 
instances, including example images, is presented in Fig. 3. 
The alignment of the real and synthetic data distribution 
suggests that the generative model successfully learned to 
synthesize images from the underlying training distribu-
tion, irrespective of the clinical condition. Details about the 
model selection are in Supplemental Fig. 1. A dataset of 
representative synthetic images is publicly available (https://​
doi.​org/​10.​5281/​zenodo.​13275​306).

Expert readers cannot differentiate between real 
and synthetic scans

The four readers could not distinguish synthetic scans from 
real scans and had an average accuracy of 0.477 (95% CI 
0.446–0.506) among patients with or without BM-indicative 
uptake, and 0.490 (0.459–0.522) for CA-indicative uptake, 
respectively. The four readers disagreed in 239 (60%) of 
400 cases (inter-observer variability: Fleiss’ kappa 0.18, 
Table 2). Overall, all four readers correctly identified 6 
(1.5%) out of 400 scans as synthetic, of which four showed 
BM-indicative uptake and two CA-indicative uptake. Com-
mon characteristics for correctly identifying these scans, 
as specified by the readers, included unrealistic uptake at 
several anatomical sites and unnatural shapes of anatomical 
structures (e.g., deformed feet).

Synthetic scans are not merely replicas 
of the training data

The image similarity analysis revealed no exact replicas 
between the real and synthesized images. The most similar 
pairs had a mean squared error (MSE) of 144, mean absolute 
error (MAE) of 4, and multi-scale structural similarity index 
(MS-SSIM) of 0.89 (Fig. 4A). In Fig. 4B, we show a real 
scan from a patient along with the six most similar synthetic 
images (nearest neighbors) from the entire dataset.

https://doi.org/10.5281/zenodo.13275306
https://doi.org/10.5281/zenodo.13275306
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Diagnostic performances of models trained on real 
and synthetic data

The baseline model trained on all available local (real) data 
from a small single-center dataset (n = 181 scans, Cohort 
B) only achieved an internal cross-validated AUC of 0.436 

(95% CI 0.251–0.639) for the BM-indicative classification 
task. The performance of this baseline model on external 
testing was in line, with an AUC of 0.487 (0.333–0.647) 
for Cohort C, an AUC of 0.618 (0.590–0.644) for Cohort 
D, an AUC of 0.544 (0.500–0.592) for Cohort E, and an 
AUC of 0.626 (0.590–0.662) for Cohort F. Adding the same 

Fig. 3   Visualization of the 
training (blue, real images) and 
inference data (red, synthetic 
images), based on a two-dimen-
sional uniform manifold approx-
imation and projection (UMAP) 
embedding, where each dot 
represents an image. Real and 
synthetic data distributions are 
shown for (a) all scans, b scans 
indicative of bone metastases, 
and (c) scans indicative of car-
diac amyloidosis. The number 
of positive and negative cases of 
the synthetic data was set to the 
training data, reflecting realistic 
disease prevalences

a

b

c
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number of synthetic images to the training set (i.e., n = 181 
synthetic scans resulting in a real-to-synthetic data ratio of 
1:1 or n = 362 scans) improved the model performance by 
a mean (± SD) of 12(± 7)% AUC (p = 0.8239) over all test 
cohorts. The results are shown in Fig. 1B (blue line). With 
increasing training samples, the model performance substan-
tially improved and eventually converged at a real-to-syn-
thetic data ratio of 1:50 (n = 9,231), resulting in an absolute 
improvement of 33(± 10)% AUC (p < 0.0001) on average 
across both internal and external testing cohorts. The results 
for this mixed (real and synthetic data) training scheme 
were benchmarked against purely synthetic training, with 
the same number of training data but only synthetic scans. 
The performances of purely synthetically trained models 
are shown in Fig. 1B (red line). Similar performances were 
observed except for the internal test set, where the synthetic 
training outperformed the mixed training scheme. A compre-
hensive overview of the model performances for each data 
ratio is shown in Supplemental Table 2.

A comparable trend was observed for the second clas-
sification task (Fig. 1C). The cross-validated baseline per-
formance of the CA-indicative prediction model was AUC 
0.900 (0.850–0.942) for the internal test set (Cohort B), and 
AUC 0.968 (0.946–0.986) for Cohort C, and AUC 0.978 

(0.961–0.992) for Cohort D on external testing. Since there 
were no CA-indicative positive cases in Cohort E-F, no 
AUC could be calculated. Adding synthetic images to the 
training improved the test AUC in all centers. The highest 
increase of 5(± 4)% AUC (p < 0.0001) on average over all 
test cohorts was observed for a real-to-synthetic data ratio of 
1:100. Similar to the first classification task, performances of 
purely synthetically trained models were comparable to the 
ones from mixed training, especially for larger training set 
sizes, indicating that more synthetic data might be needed 
to achieve the same level of accuracy. Detailed results are 
listed in Supplementary Table 3.

Prognosis of patients based on model predictions

Outcome data was available for Cohort D, which included 
2,446 patients. Data on all-cause mortality were available 
for all 2,446 patients (100%), of which 262 (11%) had died 
after a median follow-up of 1.8 years (IQR 1.1–2.4) after 
first scintigraphy. Predicted BM-indicative tracer uptake 
was significantly associated with all-cause mortality. This 
was true for a model trained on mixed (real and synthetic) 
data (crude HR 3.76 [2.74–5.17]; log-rank p < 0.0001; 
Fig. 5A first column) and a purely synthetically trained 

Table 2   Results of the reader 
study in discerning synthetic 
scans from real scans

BM Bone metastases, CA  Cardiac amyloidosis, CI  Confidence Interval, R Reader

Task Cohort (scans) Reader Accuracy 95% CI Fleiss’ kappa

Uptake indicative of BM All cases (n = 200) R1 0.480 0.425–0.530
R2 0.466 0.395–0.535
R3 0.481 0.425–0.530
R4 0.483 0.415–0.545 0.16

BM-indicative (n = 100) R1 0.490 0.410–0.570
R2 0.469 0.370–0.570
R3 0.491 0.400–0.570
R4 0.490 0.400–0.580 0.20

Non-BM-indicative (n = 100) R1 0.470 0.400–0.540
R2 0.459 0.370–0.540
R3 0.471 0.420–0.510
R4 0.481 0.390–0.570 0.08

Uptake indicative of CA All cases (n = 200) R1 0.474 0.425–0.520
R2 0.468 0.400–0.540
R3 0.454 0.400–0.510
R4 0.561 0.490–0.630 0.20

CA-indicative (n = 100) R1 0.470 0.390–0.550
R2 0.450 0.360–0.540
R3 0.408 0.330–0.490
R4 0.658 0.570–0.740 0.04

Non-CA-indicative (n = 100) R1 0.481 0.430–0.530
R2 0.490 0.400–0.570
R3 0.500 0.450–0.550
R4 0.459 0.410–0.510 0.12
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model (4.25 [3.08–5.86]; log-rank p < 0.0001; Fig. 5A sec-
ond column). BM-indicative tracer uptake remained sig-
nificantly associated with mortality after the multivariate 
adjustment for confounders (Supplemental Table 4), result-
ing in an adjusted HRs of 3.09 [2.24–4.26] (p < 0.0001) 
for the mixed model and 3.50 [2.53–4.85] (p < 0.0001) for 
the synthetic model.

Data on heart failure-associated hospitalization was 
available for 2,172 (89%) patients. After a median follow-
up of 2.4 years (IQR 1.7–2.9) after scintigraphy, 83 (4%) 
of the 2,172 patients were hospitalized due to heart failure. 
Predicted CA-indicative uptake was a significant predictor 
for heart failure-associated hospitalization, irrespective of 
the model being trained on mixed data (crude HR 5.43 
[95% CI 3.12–9.46]; log-rank p < 0.0001; Fig. 5B first col-
umn) or synthetic data only (5.91 [3.44–10.14]; log-rank 
p < 0.0001; Fig. 5B second column) and remained signifi-
cant after multivariate adjustment (Supplemental Table 5) 
leading to adjusted HRs of 2.79 [1.56, 4.98] (p = 0.0005) 
for mixed and 3.05 [1.73–5.37] (p = 0.0001) for synthetic 
data.

The Kaplan-Meier estimates and hazard ratios for the 
reference standard (ground truth annotation) is shown in 
Supplemental Fig. 2.

Discussion

The progress of deep learning in medical imaging is con-
strained by the lack of extensive, annotated datasets neces-
sary for effectively training deep learning models. While 
collecting large datasets may be impractical or even impos-
sible at smaller centers such as community hospitals, col-
lecting data over multiple centers offers a viable alterna-
tive for enriching local databases. This becomes even more 
important for rare conditions that can be identified through 
bone scintigraphy, including but not limited to cardiac amy-
loidosis, Paget’s disease, and Osteoid Osteoma [25]. Here, 
the low prevalence in the general population makes the col-
lection of representative datasets a lengthy process, even 
at large-scale centers. However, due to the significant chal-
lenges in sharing medical data across institutions, primarily 
due to patient privacy concerns, researchers often resort to 
using small, single-center datasets with limited diversity. 
Moreover, the associated annotation effort of large datasets 
is labor-intensive and requires expert input, which further 
complicates the data collection and curation process. These 
difficulties pose significant hurdles in developing reliable 
models and hamper the progress of clinical translation.

Fig. 4   Most similar cases 
among the training dataset 
(blue) and the generated 
synthetic images (red). a Scans 
with the overall lowest mean 
squared error (MSE), mean 
absolute error (MAE), and the 
highest multi-scale structural 
similarity index measure (MS-
SSIM). b Real patient scan 
(blue) together with his six 
nearest neighbors across the 
entire dataset (red)

a

b
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In response, we trained a generative model to create 
synthetic medical imaging data using bone scintigraphy as 
an example of an imaging modality in nuclear medicine. 
To our knowledge, this is the first study investigating the 
capabilities of generative models to create synthetic molecu-
lar imaging data for the development of downstream deep 
learning models. We evaluated whether synthetic data can 
complement small datasets to improve the development of 
deep learning models in limited data regimes. We used a 
comprehensive all-comer database of routinely acquired 
whole-body bone scintigraphy scans from a tertiary uni-
versity hospital covering various pathologies and showed 
that the generative model successfully learned to synthesize 
scans from the underlying data distribution. Furthermore, we 

demonstrated the high quality of the AI-generated images, 
which were indistinguishable from real scintigraphy scans 
as assessed in a blinded reader study by four experts. We 
showcased that by controlling the data generation through 
conditioning variables, we were able to create authentic 
images related to predefined pathologies. Moreover, our 
analysis confirmed that the synthetic images are not mere 
replicas of the training data, thus ensuring patient privacy. 
Importantly, we also demonstrated that augmenting small 
datasets with synthetic images increased training data diver-
sity and improved the performance of deep learning models 
in downstream classification tasks, such as detecting abnor-
mal uptake indicative of bone metastases or cardiac amy-
loidosis. The performance increase was consistent across 

a

b

Fig. 5   Kaplan-Meier estimates for patients in Cohort D stratified by 
the model predictions. a  All-cause mortality was the endpoint for 
patients with predicted bone metastases-indicative tracer uptake. b 

Heart failure-associated hospitalization served as the endpoint for 
patients with predicted cardiac amyloidosis-indicative uptake
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external centers when compared to the baseline, including 
various scanners and tracers, suggesting an improved gen-
eralization ability of the model through the added synthetic 
data without disclosing patient-sensitive information. The 
clinical significance of these findings was emphasized by 
revealing the associations between the model predictions 
and clinical outcomes. Our results suggest that classification 
models trained on synthetic bone scintigraphy images can 
lead to prognostic models and better performance without 
relying on real-world data once trained generative models 
are available.

The capabilities of generative models to synthesize medi-
cal imaging data have been studied for different imaging 
modalities. Schütte et al. conducted a comprehensive evalu-
ation study about chest X-rays and 2D brain CT image gen-
eration [10]. Han et al. studied the generation of synthetic 
chest X-rays and investigated the potential of federated 
learning strategies for generative models [11]. Both stud-
ies found that the reader’s accuracy in discerning synthetic 
from real images improved by up to 80% with an increasing 
resolution. This poses a substantial limitation in comparison 
to the present study, as it indicates that their approaches 
failed to generate realistic images at conventional resolu-
tions used in clinical practice. Most importantly, both studies 
performed their experiments on images representing lower 
resolutions compared with images employed in clinical rou-
tine, therefore substantially reducing their similarity to real-
world medical images as well as their clinical applicability. 
A preliminary study in the field of molecular imaging used a 
stable diffusion model to generate synthetic thyroid scintig-
raphy images for enhancing deep learning-based multiclass 
thyroid classification. The authors reported improved model 
performance after incorporating synthetic data into the train-
ing process [26].

Our study is subject to several limitations. We used the 
anterior views of bone scintigraphy scans to train the genera-
tive model and the downstream classification model. This 
might have negatively impacted the obtained classification 
accuracy as certain pathologies might only be visible in the 
posterior projection. At one center (Champalimaud Founda-
tion), a different protocol was used for annotating BM-indic-
ative uptake compared to the standardized protocol followed 
by the other four centers, which could have impacted the 
performance results. Cohort D was used for external testing 
of the classification model. Since the generative model was 
trained on data (Cohort A) from the same hospital (Vienna 
General Hospital), adding synthetic data might qualify it as 
in-distribution data despite the two datasets originating from 
different time intervals (Cohort A: 2010–2020, Cohort D: 
2020–2023). Hence, the results of Cohort D cohort should 
be interpreted more carefully compared to the other external 
testing cohorts. While our findings may be of interest to 
environments where data privacy concerns or data scarcity 

limits access to real datasets entirely, they should be consid-
ered cautiously. These findings do not imply that generated 
data can replace real data. Synthetic data, although proven 
useful in this study, might not always capture the complex 
distribution of real-world routine data, especially in cases 
that could be considered out of distribution, such as images 
with drains, tubes, or catheters. This limitation could lead 
to overfitted models when training is performed solely on 
synthetic data, underscoring the importance of evaluating 
models on large and diverse patient cohorts - including mul-
tiple centers, scanners, and tracers - as demonstrated in this 
study, to ensure robustness and generalizability. Although 
synthetic medical imaging data represents a promising alter-
native to develop generalizable deep learning models in low 
data regimes, it is important to note that generating high-
quality synthetic data itself requires a large and well-curated 
dataset to train the generative model. Thus, the challenge of 
collecting comprehensive datasets remains a critical hurdle. 
Furthermore, imaging technology, protocols, or even diag-
nostic procedures are not static and may change over time, 
requiring generative models to be continuously updated 
with the latest data to prevent downstream models from 
becoming outdated. Since generative models learn from 
the underlying training distribution, biases in the original 
data may be preserved. Therefore, the use of synthetic data 
should be transparently reported, and downstream models 
should be rigorously tested with large, diverse evaluation 
cohorts. Finally, the question of how privacy guarantees 
can be provided when synthetic data is shared across insti-
tutions remains open. Although privacy assurance assess-
ments can be performed, there is no definitive method to 
ensure that individual data points cannot be reconstructed 
or inferred from the synthetic data, for instance, when a 
synthetic image is composed of individual parts of multiple 
real images. Future studies investigating the robustness of 
privacy protection methods for synthetic data and their asso-
ciated risks are essential to ensure that synthetic data can 
be safely shared across institutions without compromising 
patient confidentiality.

This study demonstrates the capabilities of generative 
AI to create high-quality bone scintigraphy images that 
accurately reflect prespecified pathologies. Incorporat-
ing synthetic images increased training data diversity 
and improved the performance of deep learning models 
in detecting disease-associated abnormal uptake. These 
improvements were consistent across multiple centers, 
scanners, and tracers, suggesting robust generalizability. 
The association between predicted abnormal uptake and 
adverse clinical outcomes underscores the validity and 
clinical relevance of our findings and highlights the prom-
ising role of synthetic data in advancing medical imaging 
research in data-constrained environments.
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