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Abstract

Management of RA patients has significantly improved over the past decades. However, a substantial

proportion of patients is difficult-to-treat (D2T), remaining symptomatic after failing biological and/or tar-

geted synthetic DMARDs. Multiple factors can contribute to D2T RA, including treatment non-

adherence, comorbidities and co-existing mimicking diseases (e.g. fibromyalgia). Additionally, currently

available biological and/or targeted synthetic DMARDs may be truly ineffective (‘true’ refractory RA)

and/or lead to unacceptable side effects. In this narrative review based on a systematic literature

search, an overview of underlying (immune) mechanisms is presented. Potential scenarios are dis-

cussed including the influence of different levels of gene expression and clinical characteristics.

Although the exact underlying mechanisms remain largely unknown, the heterogeneity between individ-

ual patients supports the assumption that D2T RA is a syndrome involving different pathogenic

mechanisms.
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Introduction

With the introduction of biological and targeted synthetic

DMARDs (b/tsDMARDs), outcomes of RA have significantly

improved [1]. However, a substantial proportion of patients

can be categorized as having ‘difficult-to-treat’ (D2T) RA.

As per consensus, D2T RA remain symptomatic after failing

at least two b/tsDMARD with different mechanisms of ac-

tion (Table 1) [2]. The unmet need for these patients has

been recognized by rheumatologists across Europe [3].

The term ‘refractory’ RA is frequently used to describe

D2T RA patients and may be incorrect in some cases

[2, 4]. Multiple factors may contribute to the persistence

of symptoms and/or signs in D2T RA patients (Fig. 1)

[4–7]. Only if all currently available (b/ts)DMARDs are
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truly ineffective, ‘true’ refractory RA is present.

Mechanisms underlying DMARD inefficacy as well as

(unacceptable) side effects in D2T RA are largely un-

known [4–7]. To optimize treatment strategies, including

the discovery of new therapeutic drug targets, more in-

sight is needed into these underlying mechanisms.

The aim of this narrative review based on a systematic

literature search was to explore if ‘true’ refractory RA

exists and, if so, how prevalent it is, and to explore and

summarize potential (immune) mechanisms underlying

DMARD inefficacy as well as (unacceptable) side effects

in D2T RA patients.

TABLE 1 EULAR definition of difficult-to-treat RA [2]

1. Treatment according to EULAR recommendations and failure of �2 b/tsDMARDs (with different mechanisms of action)a after
failing csDMARD therapy (unless contraindicated).b

2. Signs suggestive of active/progressive disease, defined as �1 of:

a. at least moderate disease activity (according to validated composite measures including joint counts e.g. DAS28-ESR
>3.2 or CDAI >10);

b. signs (including acute phase reactants and imaging) and/or symptoms suggestive of active disease (joint related or
other);

c. inability to taper glucocorticoid treatment (below 7.5 mg/day prednisone or equivalent);
d. rapid radiographic progression (with or without signs of active disease)c; and
e. well-controlled disease according to above standards, but still having RA symptoms that are causing a reduction in qual-

ity of life.

3. The management of signs and/or symptoms is perceived as problematic by the rheumatologist and/or the patient.

All three criteria need to be present in D2T RA. b: biological; CDAI: clinical disease activity index; cs: conventional synthet-
ic; DAS28-ESR: disease activity score assessing 28 joints using erythrocyte sedimentation rate; DMARD: disease-modifying

antirheumatic drug; EULAR: European League Against Rheumatism; mg: milligram; RA: rheumatoid arthritis; ts: targeted
synthetic. aUnless restricted by access to treatment due to socioeconomic factors. bIf csDMARD treatment is contraindi-

cated, failure of �2 b/tsDMARDs with different mechanisms of action is sufficient. cRapid radiographic progression: change
in van der Heijde-modified Sharp score �5 points at 1 year.

FIG. 1 Factors contributing to difficult-to-treat RA

Multiple factors that potentially contribute to difficult-to-treat RA are presented [5, 7]. All contributing factors, except

for misdiagnosis of disease, could coexist. ‘true’ refractory RA is only present if all currently available DMARDs are

truly ineffective. Factors in yellow may result in persistent inflammation (factors in light yellow may influence these

factors); factors in orange may result in non-inflammatory symptoms and/or persistent inflammation; factors in red

may result in non-inflammatory symptoms. *These factors may additionally hamper proper grading of inflammatory

disease activity. ADAs: anti-drug antibodies.
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Methods

Research questions

The systematic literature search was conducted follow-

ing the EULAR Standardized Operating Procedures [8].

The research questions were formulated and approved

by the Task Force on management recommendations

for D2T RA [9]. The questions focussed on (i) the fre-

quency of ‘true’ refractory RA and (ii) reasons for

DMARDs being ineffective or toxic (including side

effects) in D2T RA (Supplementary Data S1, available at

Rheumatology online) [10].

Search strategy

The databases of PubMed and Embase were searched

for papers in English until November 2020. Additionally,

conference abstracts of EULAR and ACR from 2017 to

2020 were screened. In addition to terms for RA, terms

for potential underlying mechanisms, outcome measures

and DMARDs were included (Supplementary Data S1,

available at Rheumatology online). A search limit was

set to the last seven years. This cut-off was chosen be-

cause D2T RA is a new concept.

Selection of studies, data extraction and analyses

First, titles and abstracts were screened by N.M.T.R.

and P.M.J.W. according to a set list of selection criteria

(Supplementary Data S1, available at Rheumatology on-

line). Articles regarding RA patients who had been

treated with at least one b/tsDMARD were eligible for in-

clusion, as evidence in D2T RA specifically was

expected to be scarce. Articles were selected if they

reported the frequency of refractory RA and/or an asso-

ciation between an underlying mechanism and DMARD

inefficacy or (unacceptable) side effects. Second, full-

text versions were screened. Articles were screened in

duplicate, until the percentage of conflicts was below

5%. Disagreements were discussed until consensus

was reached. Information was extracted from the

included articles using a predetermined format.

As many different underlying mechanisms exist and

can be studied, results are summarized descriptively

and additional context is narratively added.

Results

Study characteristics

The systematic literature search resulted in 3801 unique

papers. After title, abstract and full text screening, 115

papers were selected (Fig. 2) [4, 11–124].

Frequency of ‘true’ refractory RA

The frequency of refractory RA was only reported in two

studies, which used different definitions and follow-up

periods (Table 2) [4, 11]. Both studies defined refractory

RA as failure of at least two bDMARDs. Only the cohort

study explicitly reported that these should have different

mechanisms of action [11], as in the D2T RA definition

[2]. In this cohort study, 6% started a third bDMARD

with a different mechanism of action after a median of

8 years. In the narrative review, it was estimated that

20% of patients progress to a third bDMARD during

their disease course, which was based on data from

RCTs into the efficacy of different bDMARDs [4].

Although the methodology used in these studies (i.e. a

cohort study; and estimations based on RCT data in the

narrative review) and reported incidence measures are

different [i.e. different definitions of refractory RA (using

bDMARDs with another mechanism of action in the co-

hort study; and using a low hurdle response criterion in

the narrative review)], results may indicate that over life-

time a considerable part of RA patients become refrac-

tory to multiple (�2) bDMARDs.

Nevertheless, not all currently available b/tsDMARDs

have been tried in these patients nor have other factors

potentially contributing to D2T RA (Fig. 1) been excluded

in these studies and, therefore, it remains formally un-

known whether ‘true’ refractory RA really exists. The fre-

quency of ‘true’ refractory RA may be much lower than

estimated above, as ‘true’ refractory RA only represents

a subgroup of these patients.

Immune mechanisms underlying inefficacy

Numerous studies have been performed on associations

between treatment response to specific drugs and

mechanisms underlying inefficacy. These do not only

highlight the mechanism of action of the drug, but also

reveal potential pathogenic pathways in non-responders

vs responders. Although no studies have been per-

formed in D2T RA patients (with ‘true’ refractory RA)

specifically, the identified studies may aid in unravelling

mechanisms underlying DMARD inefficacy in ‘true’ re-

fractory RA. Below, we will discuss some examples as

identified in the literature search (see also Fig. 3).

The innate and the adaptive immune system

Differences in the role of the innate vs the adaptive im-

mune system have been suggested to explain differen-

ces in DMARD (in-)efficacy [4]. In patients treated with

TNFi, genes associated with innate immune cells were

expressed at higher levels at baseline in good respond-

ers, while genes associated with adaptive immune cells

were expressed at higher levels in non-responders [43].

Similarly, a pre-treatment myeloid phenotype (macro-

phages and NF-jB expression) was associated with

good response to TNFi in a study using synovial biop-

sies [21]. In another study, higher baseline levels of

TNFR1-expressing monocytes were associated with bet-

ter response to etanercept [79]. In contrast, response to

tocilizumab [an interleukin-6 receptor (IL-6R) antagonist]

was associated with the adaptive immune system. In

the aforementioned synovial biopsy study, a pre-

treatment lymphoid phenotype (B-cell- and plasmablast-

dominated) was associated with good response to

tocilizumab [38].
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However, the association between the innate or adap-

tive immune system and treatment response is not al-

ways as clear-cut as described above. For instance,

higher baseline levels of innate cells [i.e. CD3-CD56þ
natural killer (NK) cells] have also been associated with

good response to tocilizumab [34]. The innate and adap-

tive immune systems are interacting on various levels

and can therefore not be seen as distinct. Cytokines,

such as TNFa and IL-6, are crucial in this interaction,

which also explains why both drugs can influence innate

and adaptive immune cells [78]. The importance of

TNFa and IL-6 in the pathogenesis of RA is underlined

by the success of bDMARDs targeting these cytokines

(i.e. TNFi, tocilizumab and sarilumab) [14, 41, 85].

However, in D2T RA patients who fail both drugs due to

true inefficacy, other immune factors may account for

persistent inflammation.

T cells

Decrease of self-tolerance by reduced frequencies of

regulatory T cells (Tregs) is thought to play a major role

in the pathogenesis of RA and has also been related to

DMARD (in-)efficacy. In patients treated with tocilizu-

mab, an increase in Tregs was associated with achiev-

ing remission [68]. IL-6 decreases the differentiation of

Tregs by inhibiting the expression of a specific transcrip-

tional factor (FoxP3). Tocilizumab prevents this by

blocking IL-6R, resulting in an increase in Tregs. This

was also reflected in another study, in which increased

Helios expression (a transcription factor selectively

induced in FoxP3þ Tregs and inhibited by IL-6) in CD4þ
Tregs after treatment with tocilizumab was associated

with good response [115]. A link between Tregs and

treatment response was also found in patients treated

with abatacept (which inhibits T-cell co-stimulation). In

FIG. 2 Flow chart of search and selection of papers

The questions focussed on (i) the frequency of ‘true’ refractory RA and (ii) reasons for DMARDs being ineffective or

toxic in D2T RA. b/tsDMARD: biological/targeted synthetic DMARD; n: number of studies.

TABLE 2 Papers on the frequency of ‘true’ refractory RA

Paper Design Description of
population

Description of refrac-
tory RA

Frequency of ‘true’
refractory RA

Buch, 2018 [4] Narrative review with
an estimation based
on RCT data (with
‘low hurdle response
endpoints’, e.g.
ACR20 response)

NA Failure of �2
bDMARDs

Almost 20% progress
to a 3rd bDMARD
(estimation)

Kearsley-Fleet, 2018
[11]

Cohort (BSRBR-RA) Patients with RA start-
ing first-line TNFi
from 2001 to 2014
(n¼13 502; 111 034
person years)

Starting 3rd class of
bDMARD (with differ-
ent mechanisms of
action)

6% (n¼867) devel-
oped refractory RA
(median duration
8 years)

BSRBR-RA: British Society for Rheumatology Biologics Register for RA; n: number; NA: not applicable; RCT: randomized
controlled trial; TNFi: TNF inhibitor.
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FIG. 3 A simplified overview of innate and adaptive immune processes and intracellular signalling pathways in RA as

well as potential factors influencing gene expression regulation

In the plasma and synovial membrane (white and light grey) and lymph node (dark grey) a simplified overview of dif-

ferent innate and adaptive immune cells is shown as well as their interactions that lead to a multitude of proinflamma-

tory mediators (including cytokines) that play a key role. Within the cell, different signalling pathways (e.g. JAK/STAT)

that contribute to cell activation are shown. Biological and targeted synthetic disease-modifying antirheumatic drugs

approved for the treatment of RA are shown in purple as well as the mechanisms/mediators they target. Within the

nucleus, examples of factors influencing gene expression regulation are presented. SNPs in the genetic code can en-

hance or repress gene transcription and affect the function of genes, if the SNP results in an amino acid change.

Epigenetic modification can render the DNA more or less accessible to transcription factors. For instance, DNA

methylation at CpG sites can repress genes. Additionally, microRNAs are another mode of gene expression regula-

tion. MicroRNAs bind to messenger RNA products of target genes and block gene translation into proteins. ADA:

anti-drug antibodies; DNA: deoxyribonucleic acid; EPO: erythropoietin; JAK: Janus kinase; G-CSF: granulocyte col-

ony-stimulating factor; GM-CSF: granulocyte-macrophage colony-stimulating factor; mIL-6R: membrane-bound IL-6

receptor; RNA: ribonucleic acid; sIL-6R: soluble IL-6 receptor; SNP; single-nucleotide polymorphisms; STAT: signal

transducer and activator of transcription; Th cell: T helper cell; Thf cell: follicular T helper cell; TNFi: TNF inhibitor;

Treg cell: regulatory T cell; TPO: thrombopoietin.
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responders to abatacept, increased activity of Tregs

after treatment was found [84]. Abatacept may increase

the number of Tregs by enhancing early growth re-

sponse gene 2 (EGR2) expression, which is responsible

for negative regulation of T-cell activation [125].

Although these studies emphasize the heterogeneity in

the underlying mechanisms between responders and

non-responders, unique pathways operative in non-

responders were not identified.

Furthermore, the decreased self-tolerance by reduced

frequencies of Tregs contributes to an expansion of Th1

and Th17 cells because the differentiation of Th17 cells

is stimulated by the same signals that inhibit Treg differ-

entiation (e.g. IL-6 and TGF-b) [126]. In a study in

patients treated with TNFi, high baseline levels of IL-

17A-producing Th17 cells were associated with non-re-

sponse [29]. Targeting these Th17 cells may therefore

be a potential drug target in ‘true’ refractory RA.

However, clinical trials in RA patients with drugs target-

ing IL-17A showed insufficient benefit [127], although

this may be due to patient selection and does not dir-

ectly mean that these drugs are not beneficial in ‘true’

refractory RA patients. Nevertheless, IL-17A serves as

an amplifier of inflammation [128], so it might be

hypothesized that IL-17A-targeting drugs need to be

combined with a TNFi or another cytokine-targeted ther-

apy to be effective [129]. Whether such combination

therapy is useful in ‘true’ refractory RA remains to be

demonstrated.

B cells

Higher baseline levels of (synovial) B cells resulted in a

more favourable response to rituximab [14]. Yet higher

baseline levels of activated peripheral memory B cells

(CD95þ Ki67) was associated with non-response to rit-

uximab [37]. Whether other b/tsDMARDs may influence

these cells is unknown. Presence of activated memory

B cells may therefore underlie DMARD inefficacy in

‘true’ refractory RA.

Furthermore, the presence of synovial lymphoid

aggregates (containing B and T cells) has been associ-

ated with worse response to TNFi [130]. These lymphoid

aggregates produce TNFa [131] which may at least part-

ly explain this association. Additionally, the presence of

these lymphoid aggregates has been associated with

more refractory disease, potentially suggesting that

these can also underlie DMARD inefficacy in ‘true’ re-

fractory RA.

Anti-drug antibodies

The formation of ADAs can lead to neutralization of

bDMARDs and subtherapeutic serum drug levels (i.e.

immunogenicity) [4, 80, 86, 94, 101, 103, 121]. ADAs are

mainly IgM and IgG antibodies although IgE antibodies

may also occur [23, 86]. ADAs are more frequently

found during treatment with non-fully-human-derived

antibodies: the chimeric TNFi (infliximab) and humanized

antibodies (TNFis: adalimumab, certolizumab pegol and

golimumab) [23, 80, 121]. However, ADAs have also

been found in patients treated with etanercept,

abatacept, rituximab and tocilizumab [23, 132, 133].

Figures up to 53% for infliximab and 30% for adalimu-

mab have been reported [23, 134]. For adalimumab, cer-

tolizumab pegol, golimumab and infliximab, ADAs

mostly target the Fab part, directly neutralizing the drug

[86]. ADAs can also target the Fc part, which does not

neutralize the drug, but can result in deceased circulat-

ing levels due to enhanced pharmacokinetic clearance

of these immune complexes [86].

Subcutaneous and intramuscular administration may

result in a higher occurrence of ADAs due to differences

in antigen presentation by dendritic cells (DCs) [25, 80,

94]. Additionally, a longer dose interval has been linked

to a higher occurrence of ADAs, as this could trigger a

secondary immune response [19, 80, 94]. Patients with

higher disease activity may also be more prone to ADA

formation via enhanced interaction between DCs and T

cells. This may even trigger ADAs for bDMARDs that are

less immunogenic [135]. Genetic factors, e.g. IL-10 poly-

morphisms, have also been associated with ADAs [101,

136].

Addition of methotrexate to bDMARDs reduces the

formation of ADAs and is associated with better re-

sponse [26, 46, 101]. This may be explained by the sup-

pression of early T- and B-cell expansion resulting in

reduced ADA formation, but could also be due to the

additional anti-inflammatory effect of methotrexate itself.

Autoantibodies

Inefficacy of bDMARDs has also been linked to sero-

positivity for ACPA and/or RF. Presence of these auto-

antibodies has been related to differences in synovial

tissue phenotypes, B-cell-rich synovitis being associated

with higher titres of autoantibodies [137]. Seropositive

patients were found to have a more favourable response

to rituximab and abatacept compared with seronegative

patients [45, 48, 95]. This may be explained by the influ-

ence of these treatments on autoantibody producing B

cells, contrary to cytokine-targeted therapies, such as

TNFi and tocilizumab [48, 138].

Intracellular signalling pathways

The JAK/STAT signalling pathway has also been related

to bDMARD (in-)efficacy. For example, higher baseline

levels of STAT-1 and -3 phosphorylation after ex vivo

cytokine stimulation of leukocytes [with interferon-c
(IFNc), IL-10, IL-4 and IL-2] have been associated with

better clinical response to tocilizumab [89]. STAT-1 and

-3 regulate Th17 differentiation and may become

exhausted after persistent activation by high IL-6 signals

through IL-6R [89]. By blocking IL-6R with tocilizumab,

these STATs become available again for other cytokines

(e.g. IFNc) resulting in restored T-cell balance. In another

study in differently treated patients (TNFi, tocilizumab,

rituximab), this was confirmed for STAT1 and also found

for STAT6 [72]. STAT6 promotes expression of several

Th2-specific transcription factors resulting in production

of Th2 cytokines (e.g. IL-4, IL-5, IL-13) and Treg cell re-

sponse [139]. Again, the pathways that are still active in

non-responders remain unknown.

Mechanisms underlying DMARD inefficacy in difficult-to-treat rheumatoid arthritis

https://academic.oup.com/rheumatology 3557



Heterogeneity in underlying immunology

In recent studies in early RA, three pre-treatment syn-

ovial pathotypes were identified: lympho-myeloid [i.e. B

cells and myeloid cells (innate and adaptive cells)],

diffuse-myeloid [i.e. myeloid lineage predominance (in-

nate cells)] and pauci-immune (i.e. stromal cells, few im-

mune cells) [140]. Patients with a pauci-immune synovial

pathotype responded less to bDMARDs, yet those with

a lympho-myeloid phenotype had poorer prognosis:

worse radiographic outcomes and a higher proportion of

patients requiring bDMARDs at 12-month follow-up.

This phenotype may thus be an early indicator of ‘true’

refractory RA.

In the R4RA trial, patients were treated with tocilizu-

mab and rituximab, stratified using synovial biopsies at

baseline in B-cell-poor and B-cell-rich patients [141]. In

patients histologically classified as B-cell poor and in

those classified as B-cell rich, no difference in respon-

siveness to tocilizumab or rituximab was found.

However, when patients were classified as B-cell poor

based on RNA sequencing, significant higher response

rates at 16 weeks were found for tocilizumab compared

with rituximab. RNA sequencing could be more sensitive

than histology to assess the underlying immunology and

may have a role in selecting the appropriate (b/

ts)DMARD strategy, this also further highlights the het-

erogeneity in the underlying immunology in RA. An im-

portant limitation is the difference in treatment history of

included patients, which may have confounded the dif-

ferences in histopathology.

Influence of (epi-)genetics

Epigenetic and genetic heterogeneity strongly affect

gene expression, which can contribute to DMARD ineffi-

cacy as another independent layer (Fig. 3). Although the

majority of the findings is not (well) validated, the data

reveal influences of gene expression regulation at mul-

tiple levels of genetic organization (see also

Supplementary Table S1, available at Rheumatology

online).

Single-nucleotide polymorphisms

Single-nucleotide polymorphisms (SNPs) in the genetic

code may be related to differences in DMARD (in-)effi-

cacy. These SNPs can either be located in regulatory or

coding regions of genes.

Alterations in the regulatory region can enhance or re-

press gene transcription. For example, a more favour-

able response to TNFi treatment was found in carriers of

the rs28362491-94ins/del ATTG polymorphism in the

NF-kB1 promoter, while homozygous carriers of the

T-allele of the rs187084-1486T>C SNP in the toll-like

receptor (TLR)9 promoter showed a less favourable re-

sponse [51]. TLRs are part of the innate immune re-

sponse and promote an increase in inflammatory

chemokines, cytokines and cell adhesion molecules via

NF-kB [142].

Variations in the coding regions of genes may lead to

amino-acid substitution in the corresponding proteins

and affect their function. The FcÇ receptor regulates im-

mune responses through the interaction with antibodies

(including bDMARDs) and is expressed on all immune

cells. In FCGR3A, within the gene for the FcÇ receptor

3B, the rs396991 SNP 596 T>G nucleotide substitution

causes an amino acid change of phenylalanine into val-

ine. The valine isoform is considered to have a higher af-

finity to IgG than the phenylalanine isoform and

correlates with a stronger immunological response [62,

91]. Carriers of one or more of the valine alleles had a

better treatment response to rituximab [62, 91], while

carriers of the FCGR3A 596 T-genotype (lower affinity

genotype) had a better response to tocilizumab [62].

Epigenetics

Epigenetic modification can render the DNA more or

less accessible to transcription factors. For instance,

DNA methylation at CpG sites represses genes, while

hypomethylation results in a permissive chromatin struc-

ture. For etanercept, five differentially methylated DNA

positions at baseline have been identified to differ be-

tween responders and non-responders, although this

could not be confirmed in another study [143, 144].

MicroRNAs are another mode of gene expression

regulation [145]. These non-coding short single-stranded

RNA molecules act by base pairing to messenger RNA

products of target genes. The resulting double-stranded

RNA molecules are recognized by the cell’s machinery

and targeted for degradation. Depending on the mode

of action of the target gene, microRNAs could enhance

or inhibit certain pathways. The microRNA expression

profile of patients could therefore constitute another

level at which differences in the DNA sequence can ac-

count for altered DMARD efficacy.

The expression of several microRNAs in RA patients

who failed multiple bDMARDs has been compared with

RA patients who failed csDMARDs, patients having low

disease activity and healthy controls [47]. A cluster of

microRNA-23a, -24–2 and -27a was significantly

reduced in patients who failed multiple bDMARDs and

in those who failed csDMARDs. Interestingly, microRNA-

23a and -27a were found to mediate the regulatory loop

of IL-6 and their expression was found to be repressed

by cytokines of the JAK/STAT signalling pathway (e.g.

IFN-y and GM-CSF). Additionally, cells lacking

microRNA-23a and -27a expressed higher levels of pro-

inflammatory cytokines (e.g. TNFa and IL-6). Whether

these patients failed bDMARDs interfering with these

cytokines was not described.

Influence of clinical characteristics

Smoking

Smoking has been associated with more severe disease

and reduced responsiveness to (b)DMARDs, notably

TNFi [31, 73, 146]. Smoking has been associated with

higher levels of (IgA) RF and ACPA, a poor prognostic

factor for response, by promoting the citrullination of

proteins [1, 147]. Furthermore, smoking has been asso-

ciated with higher levels of inflammatory cytokines:
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higher ratios of TNFa/soluble TNF receptor and higher

levels of serum soluble IL-2R [148]. Additionally, a higher

basal metabolism resulting in increased drug metabol-

ism has been found among smokers [149]. Higher ex-

pression levels of SEMA6B [a protein resulting in signal

transduction of fibroblast growth factor-receptor-1 and -

2 (FGFR1-2) and vascular endothelial growth factor-

receptor 2 (VEGFR2)] and GPR15 (a chemo attractant

for T cells on the cell surface of monocytes and neutro-

phils) are increased in smokers, potentially increasing

T-cell involvement and synovial vascular proliferation

[32]. In another study, the T allele of NLRP3(rs4612666)

was associated with non-response to TNFi in current

smokers. Smoking may result in the production of react-

ive oxygen species leading to increased expression and

activation of the NLRP3 inflammasome, an intracellular

innate immune sensor, which releases strong pro-

inflammatory cytokines (IL-1b and IL-18) [107].

Obesity

Obese patients may respond less favourably to TNFi

[13, 123]. A first explanation may be the higher distribu-

tion volume and different pharmacokinetics in obese

patients [13, 123]. However, the same association has

been found for infliximab, which is dosed based on

body weight. In early RA, the association between ineffi-

cacy and obesity was even found with infliximab doses

up to 10 milligrams per kilogram [150]. The increased

level of adipocytes as a result of more fatty tissue may

be another explanation [13]. Adipocytes release adipo-

kines, including leptin that is known to induce the ex-

pression of pro-inflammatory cytokines, such as TNFa
and IL-6. The impact of obesity on synovial tissue has

recently been shown [151]. Even in obese RA patients

who achieved remission after TNFi treatment, a higher

degree of residual synovitis (CD68þ macrophages,

CD20þ B cells, CD3þ T cells) was found compared with

normal weight patients.

Furthermore, the higher level of Fc-receptors in omen-

tal adipocytes may play a role [152]. Infliximab binds to

these receptors, which may also explain why the associ-

ation between obesity and inefficacy of infliximab is

even stronger than with certolizumab pegol that lacks

the Fc fragment [123].

Immune mechanisms underlying (unacceptable) side
effects

Also for mechanisms underlying (unacceptable) side

effects, no studies have been reported in D2T RA

patients specifically. In studies in RA patients who failed

b/tsDMARDs, mechanisms were generally found to be

directly related to the mechanism of action of DMARDs

and general immune mechanisms were not found

(Supplementary Table S2, available at Rheumatology on-

line) [15, 17, 23, 27, 53–55, 59, 67, 71, 80, 81, 93, 96,

97, 100, 102, 113, 116]. As for mechanisms underlying

inefficacy, immune mechanisms underlying side effects

were also found to be influenced by (epi)genetics and

clinical characteristics.

Future perspective

Despite insights from studies on immune mechanisms

underlying (b/ts)DMARD (in-)efficacy, studies assessing

the mechanisms that are still active in non-responders

are scarce and studies in D2T RA patients who failed all

currently available b/tsDMARDs are lacking. Therefore, it

remains unknown which exact mechanisms are respon-

sible for the persistence of inflammatory disease activity

in ‘true’ refractory RA, although some hints were found

for a role of Th17 cells, activated memory B cells

(CD95þ Ki67) and synovial lymphoid aggregates.

In addition to individual differences in DMARD (in-)effi-

cacy that underline the heterogeneity in the pathogen-

esis of (D2T) RA, individual differences in (epi-)genetics

and clinical characteristics add an additional layer of

complexity to this heterogeneity. Future studies assess-

ing mechanisms underlying DMARD inefficacy in ‘true’

refractory RA patients are needed, comparing D2T and

non-D2T RA patients by combining analyses of blood

and synovial tissue, molecular profiling using different

technological platforms (e.g. proteomics, transcriptom-

ics, metabolomics) and (epi-)genetic analyses.

Before these analyses are conducted, the origin of the

signs and symptoms of D2T RA patients should be

ascertained (Fig. 1). Recently, three subgroups of estab-

lished RA patients (although not fulfilling the D2T RA

definition) [2] were identified using synovial histologic

features and RNA sequencing data: high inflammatory,

mixed and low inflammatory [153]. The low inflammatory

subgroup had high pain scores suggesting a non-

inflammatory origin of the symptoms. Therefore, careful

assessment of inflammation is important to select the

appropriate (‘true’ refractory RA) patients, as non-

inflammatory factors may confound findings.

In addition to a comparison of mechanisms in D2T

and in non-D2T RA, a deeper understanding of the

pathogenesis of RA might also help in unravelling mech-

anisms that are still active in ‘true’ refractory RA. For ex-

ample, deep single-cell profiling of the synovium has

shown that key cell lineages, such as synovial macro-

phages, are represented in functionally distinct popula-

tions, with levels of MerTKþ macrophage populations

that express negative regulators of inflammation inverse-

ly correlating with the risk of clinical flare, suggesting a

role for these cells [154]. Additionally, the Accelerating

Medicine Partnership—a public-private partnership

established to identify and validate promising targets for

therapeutics—has identified 18 synovial key cells

involved in the pathogenesis of RA: innate cells (e.g. IL-

1b pro-inflammatory monocytes), adaptive cells (e.g.

PDCD1þ peripheral and follicular Th cells) and

THY1(CD90)þHLA-DRAhi sublining fibroblasts [155].

Studies on associations with treatment response and

clinical phenotypes may provide useful insights.

Furthermore, studies on mechanisms underlying (in-

)efficacy of newer treatment options may aid in increas-

ing our understanding of mechanisms underlying failure

of multiple b/tsDMARDs. For instance, cellular therapies
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(such as tolerogenic DC transfer) and therapies select-

ively stimulating Tregs (e.g. using low-dose IL-2 ther-

apy), which aim to restore immune tolerance, are

currently under evaluation and may be promising in

‘true’ refractory RA [156, 157]. Additionally, vagus nerve

stimulation has recently been introduced as a therapeut-

ic option for patients who failed at least two b/

tsDMARDs with different mechanisms of action [158].

Vagus nerve stimulation activates the inflammatory re-

flex, which plays a role in the regulation of innate and

adaptive immunity through the activation of the choliner-

gic anti-inflammatory pathway. When conducting such

pharmacological studies, the heterogeneity in the patho-

genesis of RA patients should be considered. As these

new drugs may only be beneficial for a subgroup of RA

patients, this heterogeneity may confound efficacy out-

comes and could result in the incorrect conclusion that

these new drugs are not beneficial. Therefore, selecting

the most appropriate patient population (i.e. ‘true’ re-

fractory RA patients) may help to discover novel

pharmacological strategies.

Conclusions

The presented heterogeneity in immune mechanisms

substantiates the assumption that RA is a heteroge-

neous disease, in which the pathogenesis differs be-

tween individuals. (Epi-)genetic predisposition and

clinical characteristics further contribute to this complex

interplay. D2T RA should specifically be seen as hetero-

geneous: not only different immune mechanisms may

underlie DMARD inefficacy, but other (additional) contri-

buting factors may also result in the persistence of signs

and symptoms suggestive of active disease.

Few studies were found in RA patients who failed

multiple b/tsDMARDs and no studies in patients with

‘true’ refractory RA, a subgroup of D2T RA patients in

whom DMARDs are truly ineffective. Therefore, the

exact immune mechanisms that are still active and can

potentially be targeted in ‘true’ refractory RA, a sub-

group of D2T RA patients in whom DMARDs are truly in-

effective, as well as whether ‘true’ refractory RA really

exists remain unknown. Future studies will be needed to

increase our understanding and ultimately improve out-

comes of D2T RA patients.
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65 Julià A, Ávila G, Celis R et al. Lower peripheral helper T

cell levels in the synovium are associated with a better

response to anti-TNF therapy in rheumatoid arthritis.

Arthritis Res Ther 2020;22:196.

66 Kasama T, Isozaki T, Takahashi R et al. Clinical effects
of tocilizumab on cytokines and immunological factors

in patients with rheumatoid arthritis. Int

Immunopharmacol 2016;35:301–6.

67 Kato M. New insights into IFN-c in rheumatoid arthritis: role

in the era of JAK inhibitors. Immunol Med 2020;43:72–8.

68 Kikuchi J, Hashizume M, Kaneko Y et al. Peripheral

blood CD4(þ)CD25(þ)CD127(low) regulatory T cells are

significantly increased by tocilizumab treatment in
patients with rheumatoid arthritis: increase in regulatory

T cells correlates with clinical response. Arthritis Res

Ther 2015;17:10.

69 Krintel SB, Dehlendorff C, Hetland ML et al. Prediction

of treatment response to adalimumab: a double-blind

Nadia M. T. Roodenrijs et al.

3562 https://academic.oup.com/rheumatology



placebo-controlled study of circulating microRNA in
patients with early rheumatoid arthritis.
Pharmacogenomics J 2016;16:141–6.

70 Aterido A, Ca~nete JD, Tornero J et al. A combined

transcriptomic and genomic analysis identifies a gene
signature associated with the response to anti-TNF
therapy in rheumatoid arthritis. Front Immunol 2019;10:

1459.

71 Kuchuk NO, Hoes JN, Bijlsma JW et al. Glucocorticoid-
induced osteoporosis: an overview. Int J Clin Rheumtol

2014;9:311–26.

72 Kuuliala K, Kuuliala A, Koivuniemi R et al. STAT6 and
STAT1 pathway activation in circulating lymphocytes
and monocytes as predictor of treatment response in

rheumatoid arthritis. PLoS One 2016;11:e0167975.

73 Nii T, Kuzuya K, Kabata D et al. Crosstalk between
tumor necrosis factor-alpha signaling and acryl
hydrocarbon receptor signaling in nuclear factor-kappa

B activation: a possble mechanism underlying the
reduced efficacy of TNF-inhibitors in rheumatoid

arthritis by smoking. J Autoimmun 2019;98:95–102.

74 Liu Y, Han Y, Qu H et al. Correlation of microRNA
expression profile with clinical response to tumor
necrosis factor inhibitor in treating rheumatoid arthritis

patients: a prospective cohort study. J Clin Lab Anal
2019;33:e22953.

75 Luxembourger C, Ruyssen-Witrand A, Ladhari C et al.
A single nucleotide polymorphism of IL6-receptor is

associated with response to tocilizumab in rheumatoid
arthritis patients. Pharmacogenomics J 2019;19:

368–74.

76 Maldonado-Montoro M, Ca~nadas-Garre M, González-
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