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ABSTRACT
Background  Bispecific T-cell engagers are an established 
therapeutic strategy for the treatment of hematologic 
malignancies but face several challenges when it comes 
to their application for the treatment of solid tumors, 
including on-target off-tumor adverse events. Employing 
an avidity-mediated specificity gain by introducing an 
additional binding moiety for the tumor-associated antigen 
can be achieved using formats with a 2+1 stoichiometry.
Methods  Besides biochemical characterization and 
validation of target cell binding to cancer cells with 
different HER3 expression, we used in vitro co-culture 
assays with human peripheral blood mononuclear cells 
(PBMCs) and HER3-expressing target cells to determine 
T-cell activation, T-cell proliferation and PBMC-mediated 
cancer cell lysis of HER3-positive cell lines by the trivalent, 
bispecific antibodies.
Results  In this study, we developed trivalent, bispecific 
antibodies comprising a silenced Fc region for T-cell 
retargeting to HER3-expressing tumor cells, combining 
a bivalent single-chain diabody (scDb) fused to a first 
heterodimerizing Fc chain with either an Fab or scFv fused 
to a second heterodimerizing Fc chain. All these HER3-
targeting T-cell engagers comprising two binding sites 
for HER3 and one binding site for CD3 mediated target 
cell killing. However, format and orientation of binding 
sites influenced efficacy of target cell binding, target cell-
dependent T-cell activation and T-cell-mediated target cell 
killing. Beneficial effects were seen when the CD3 binding 
site was located in the scDb moiety. These molecules 
showed efficient killing of medium HER3-expressing 
cancer cells with very low induction of cytokine release, 
while sparing target cells with low or undetectable HER3 
expression.
Conclusion  Our study demonstrates that these trivalent, 
bispecific antibodies represent formats with superior 
interdomain spacing resulting in efficient target cell killing 
and a potential advantageous safety profile due to very low 
cytokine release.

BACKGROUND
The ErbB family member HER3 has been 
reported to play an essential role in cancer 
progression, and elevated expression 
has been shown to correlate with worse 
overall survival.1 2 Furthermore, it has been 

demonstrated that upregulation of HER3 
is an important resistance mechanism on 
epidermal growth factor receptor (EGFR) 
and HER2-targeted therapy.3–5 More than 
two dozen antibodies targeting HER3 are 
currently investigated in preclinical trials,6 7 
mostly interfering with ligand binding and/
or receptor dimerization.8 However, there is 
still no approved treatment targeting HER3. 
Since monoclonal antibodies9 10 as well as 
therapeutic approaches involving bispecific 
antibodies for dual targeting of HER3 and 
another member of the EGFR family11 have 
not shown improved therapeutic activity in 
clinical trials, therapeutic strategies such as 
HER3-directed antibody-drug conjugates12–14 
have been developed, uncoupling the thera-
peutic activity from receptor signaling.

Major histocompatibility complex (MHC)-
independent crosslinking of tumor cells and 
T-cells by bispecific antibodies represents 
a rapidly expanding treatment strategy 
in cancer therapies.15–17 Bispecific T-cell 
engagers are characterized by simultaneous 
binding of a tumor-associated antigen (TAA) 
and, in most cases, the CD3ε chain of the T-cell 
receptor (TCR)/CD3 complex, leading to the 
close apposition of target and effector cell 
resulting in activation of the T-cell. Secretion 
of cytokines and cytotoxic effector proteins 
by the T-cell eventually results in killing of the 
targeted tumor cell. Bispecific T-cell engagers 
are an established therapeutic strategy for the 
treatment of hematologic malignancies, for 
example, blinatumomab, a small bispecific 
T-cell engager (BiTE) targeting CD19 and 
CD3, approved for the treatment of acute 
lymphoblastic leukemia.18 However, bispecific 
T-cell engagers face several challenges when 
it comes to their application for the treat-
ment of solid tumors, including the attack of 
non-tumor cells with low expression level of 
the TAA and/or systemic cytokine-associated 
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adverse events.16 Recent studies have shown that an avidity-
mediated specificity gain through bivalent binding to the 
TAA can be achieved using novel formats with a 2+1 stoichi-
ometry.19–23 Additionally, formats in the 2+1 stoichiometry 
circumvent unspecific or non-targeted CD3-crosslinking 
and T-cell activation by monovalent binding to the trigger 
molecule CD3 on T-cells.17 24–26 We have recently demon-
strated that a small trivalent, bispecific single-chain diabody 
(scDb)-scFv showed superior binding to target expressing 
tumor cells translating into more efficient target cell killing 
by peripheral blood mononuclear cells (PBMCs).27 Small 
bispecific formats such as BiTEs,28 dual-affinity re-targeting 
antibodies (DARTs)29 and scDb30 have been reported 
to mediate tight contacts between target cell and T-cells 
due to their small size and the short distance between the 
two binding sites, resulting in efficient T-cell activation. 
However, their pharmacokinetic properties are character-
ized by a very short serum half-life and continuous infusion 
is necessary.31 32

In the present study, trivalent, bispecific Fc-comprising 
anti-HER3×anti-CD3 antibodies were generated by 
combining an scDb molecule and an scFv or Fab fragment 
with a silenced heterodimerizing Fc part (scDb/scFv-Fc, 
scDb/Fab-Fc).33 Thus, the trivalent bispecific antibodies 
employ bivalent binding to the TAA HER3 and monova-
lent binding to CD3, combining the favorable proper-
ties of the scDb format with improved pharmacokinetic 
properties due to the introduced Fc part. We analyzed the 
effects of the different possible geometries on target cell 
binding, T-cell-mediated target cell killing and T-cell acti-
vation in vitro, demonstrating that these HER3-targeting 
T-cell engagers efficiently mediate target cell destruction 
independent of cytokine release, with a superior activity 
observed for the scDb/scFv-Fc format.

MATERIALS AND METHODS
Materials
Antibodies were purchased from BioLegend (PerCP/Cy5.5 
anti-human CD3, 317336; PE anti-human CCR7, 353204; 
APC anti-human CD45RA; 304112), Miltenyi Biotec (anti-
human CD4-VioBlue, 130-097-333; anti-human CD8-PE/
Vio770, 130-096-556) or Dianova (goat IgG anti-human IgG 
(Fc)-RPE, 109-115-098). Human IFN-γ DuoSet ELISA kit 
(DY285) and Human IL-2 DuoSet ELISA kit (DY202) were 
obtained from R&D Systems. CellTrace CFSE Cell Prolifera-
tion Kit (C34554) was purchased from Thermo Fisher Scien-
tific. FaDu, SKBR-3 and MCF-7 cells were obtained from 
different sources and cultured as described previously.34 
LIM1215 were obtained from Merck KGaA (10092301-
1VL) and cultured in RPMI-1640 (Thermo Fisher Scien-
tific, 11875), 10% fetal bovine serum (FBS) (Pan Biotech, 
P30-3309). Density gradient centrifugation (Lymphocyte 
Separation Medium 1077, PromoCell, C-44010) was used 
to isolate human PBMCs from buffy coats of healthy donors 
(Blood Bank, Klinikum Stuttgart). PBMCs were cultivated 
in RPMI-1640, 10% FBS.

Antibody production and purification
Human anti-HER3 antibody 3–4334 and a humanized 
version of anti-CD3 UCHT127 were used to generate the 
different trivalent, bispecific antibodies. Genes encoding 
the different polypeptide chains (see figure  1) were 
cloned into the pSecTagAL1 vector (a modified version 
of pSecTagA (Invitrogen, Thermo Fisher Scientific, 
V90020)) and were produced in transiently transfected 
HEK293-6E cells (NRC Biotechnology Research Insti-
tute, Canada) using polyethylenimine (linear, 25 kDa, 
Sigma-Aldrich, 764604) as described previously.27 After 96 
hours of incubation at 37°C and 5% CO2 shaking, super-
natants were harvested and proteins were purified by 
Protein A affinity chromatography (Protein A Sepharose 
4 Fast Flow, Pharmacia Biotech, Sweden, 17-0974-03) and 
subsequent size-exclusion fast protein liquid chromatog-
raphy (FPLC) on a Superdex 200 10/300 GL column 
(phosphate-buffered saline (PBS) as mobile phase, 
0.5 mL/min flow rate).

Biochemical characterization
SDS-PAGE analysis under reducing and non-reducing 
conditions stained with Coomassie Brilliant Blue G-250 
was used to evaluate purified proteins. Oligomerization 
state of the proteins was determined using Waters 2695 
HPLC and a TSKgel SuperSW mAb HR column (Tosoh 
Bioscience) at a flow rate of 0.5 mL/min with 0.1 M 
Na2HPO4/NaH2PO4, 0.1 M Na2SO4, pH 6.7 as mobile 
phase.27 Thyroglobulin (669 kDa, Sr 8.5 nm), β-amylase 
(200 kDa, Sr 5.4 nm), bovine serum albumin (67 kDa, Sr 
3.55 nm) and carbonic anhydrase (29 kDa, Sr 2.35 nm) 
were used as reference proteins.

Cell binding
Target cells (1×105 cells/well) were incubated with a serial 
dilution of the trivalent, bispecific molecules in phos-
phate buffered saline-fetal bovine serum-sodium azide 
buffer (PBA; PBS, 2% (v/v) FBS, 0.02% (w/v) sodium 
azide) at 4°C for 1 hour. A PE-conjugated anti-human Fc 
antibody (Dianova) was used for detection of bound anti-
bodies. Incubation and washing steps were performed 
in PBS, 2% FBS and 0.02% sodium azide. Fluorescence 
was determined using MACSQuant VYB or MACSQuant 
Analyzer 10 (Miltenyi Biotec) and data were analyzed 
using FlowJo (Tree Star). Relative median fluorescence 
intensities (rel. MFI) were calculated as followed: relative 
MFI = ((MFIsample−(MFIdetection−MFIcells))/MFIcells).

IL-2 / IFN-γ release assay
Previously seeded MCF-7 cells (2×104 cells/well) were 
incubated with a serial dilution of the trivalent, bispe-
cific antibodies for 15 min at RT and 2×105 PBMCs/well 
(effector to target cell ratio: 10:1) were added subse-
quently. After 24 hours (interleukin (IL)-2) or 48 hours 
(interferon (IFN)-γ), IL-2/IFN-γ concentration in cell-
free supernatants of the co-culture assay was determined 
using sandwich ELISA as described previously.27
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T-cell proliferation
PBMCs were stained with carboxyfluorescein diacetate 
succinimidyl ester (CFSE) at 625 nM/1×106 cells/mL to 
analyze the proliferative effect on T-cells.27 MCF-7 cells 
(2×104 cells/well) were incubated with a serial dilution 
of the trivalent, bispecific antibodies for 15 min at RT 

and 2×105 CFSE-labeled PBMCs/well were added subse-
quently. Following an incubation for 6 days at 37°C and 
5% CO2, fluorescence-conjugated antibodies directed 
against cell surface markers were used to label immune 
cells of interest and their proliferation was determined 

Figure 1  Biochemical characterization of scDb/scFv-Fc and scDb/Fab-Fc variants. (A) Composition and schematic illustration 
of trivalent, bispecific antibodies. Nomenclature: 1 refers to the HER3 binding site, 2 refers to the CD3 binding site. Numbers 
in brackets refer to the binding sites of the scDb moiety. Variable domains of HER3 and CD3 are shown in white and dark 
gray, respectively. Constant domains are shown in light gray. (B) Size-exclusion chromatography by high performance liquid 
chromatography using a Tosoh TSKgel SuperSW mAb HR column. (C) Sodium dodecylsulfate polyacrylamide gel electrophoreses 
analysis (12% PAA, 2 µg/lane, Coomassie blue staining) of (1) scDb/scFv-Fc (1-2)+1, (2) scDb/Fab-Fc (1-2)+1, (3) scDb/scFv-Fc 
(1-1)+2, (4) scDb/Fab-Fc (1-1)+2, (5) scDb/scFv-Fc (2-1)+1 and (6) scDb/Fab-Fc (2-1)+1 under reducing (R) and non-reducing 
(NR) condition. M, protein marker; AU, arbitrary units; CH1, constant heavy chain domain 1; CL, constant light chain domain; Fc, 
fragment crystallizable; scDb, single-chain diabody; VH, variable heavy chain domain; VL, variable light chain domain,
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by multicolor flow cytometry analysis using MACSQuant 
Analyzer 10 (Miltenyi Biotec) as described previously.27

Cytotoxicity
Target cells (2×104 cells/well) were incubated with a 
serial dilution of the trivalent, bispecific antibodies for 
15 min at RT before effector cells (PBMCs) were added 
in an effector to target cell ratio of 10:1.27 Supernatants 
were discarded after 3 days of incubation at 37°C and 5% 
CO2 and target cell viability was determined using crystal 
violet staining. Methanol (50 µL/well) was used to solve 
the staining and optical density measured at 550 nm using 
the Tecan spark (Tecan) as described previously.27

Statistics
All data are represented as mean±SD. Significances were 
calculated by GraphPad Prism V.7.0 and results were 
compared by t-test.

RESULTS
Generation of bispecific antibodies
Trivalent, bispecific antibodies comprising a silenced Fc 
region and directed against HER3 and CD3 were gener-
ated by combining an scDb molecule fused to a first 
heterodimerizing Fc chain with either an Fab or scFv frag-
ment fused to a second heterodimerizing Fc chain. All 
molecules were bivalent for HER3 (referred to as ‘1’ in 
the nomenclature) and monovalent for CD3 (referred to 
as ‘2’ in the nomenclature). Binding sites were arranged 
in all three possible configurations (figure 1A).

The trivalent, bispecific antibodies were produced in 
transiently transfected HEK293-6E cells and purified by 
protein A affinity chromatography (online supplemental 
figure S1) followed by a preparative size-exclusion chro-
matography step (SEC) using FPLC to remove high-
molecular and low-molecular weight species (figure 1B). 
Protein purity was confirmed by SDS-PAGE analysis under 
reducing and non-reducing conditions, revealing one 
band under non-reducing conditions showing correct 
assembly of the antibodies (figure 1C, left panel). SDS-
PAGE under reducing conditions revealed two bands 
at  ~80 kDa and  ~56 kDa for all scDb/scFv-Fc molecules 
corresponding to the calculated molecular mass of 
80 kDa for the scDb-Fc(hole) chain and 54 kDa for the 
scFv-Fc(knob) chain (figure  1C, right panel). For the 
scDb/Fab-Fc molecules, three bands at ~80 kDa, ~55 kDa 
and ~25 kDa were observed, corresponding to the scDb-
Fc(hole) (80 kDa), the heavy chain (knob) (52 kDa) and 
the light chain (26 kDa) (figure 1C, left panel). In analyt-
ical SEC, all trivalent, bispecific antibodies eluted as one 
major peak confirming purity and integrity of the proteins. 
A molecular mass of ~134 kDa for the scDb/scFv-Fc mole-
cules and  ~157 kDa for the scDb/Fab-Fc molecules was 
determined in accordance with the calculated molecular 
mass of 129 kDa and 150 kDa, respectively (figure  1B). 
In summary, all six trivalent, bispecific antibody config-
urations could be produced in mammalian cells and 

assembled into intact proteins with yields between 1.2 
and 16 mg/L (online supplemental table S1).

Binding to HER3-expressing target cells
A panel of cell lines expressing varying HER3 receptor 
levels was used to determine tumor cell binding. On the 
tumor cell lines LIM1215 (~20,000 HER3/cell), MCF-7 
(~18,000 HER3/cell), SKBR-3 (~14,000 HER3/cell) 
and FaDu (~3000 HER3/cell), the scDb/scFv-Fc mole-
cules in the (1-2)+1 and the (2-1)+1 configuration (see 
figure 1) showed similar binding with EC50 values in the 
low picomolar range, while the scDb/scFv-Fc molecule 
in the (1-1)+2 configuration showed a 10-fold to 15-fold 
lower binding capacity (figure 2A–D, table 1). A similar 
trend was observed for the scDb/Fab-Fc molecules, with a 
twofold to fivefold reduced binding for the (1-1)+2 config-
uration. No binding for all trivalent, bispecific molecules 
was observed on the HER3-negative cell lines HT1080 
and MDA-MB-231 (figure  2E,F). All trivalent, bispecific 
molecules showed binding to the CD3-expressing Jurkat 
cell line. Here, the scDb/Fab-Fc molecules in the (1-1)+2 
configuration showed sixfold reduced binding compared 
with the scDb/scFv-Fc in the same configuration, while 
all other molecules showed similar binding in the low 
nanomolar range (figure  2G, table  1). In summary, 
scDb/Fab-Fc and scDb/scFv-Fc in the (1-2)+1 and (2-1)+1 
configuration showed strong binding to HER3-expressing 
cell lines, while both formats in the (1-1)+2 configuration 
showed reduced binding.

Activation of effector T-cells by trivalent, bispecific molecules
Co-culture assays were used to demonstrate simultaneous 
binding of the trivalent, bispecific molecules to T-cells 
and target cells resulting in T-cell activation. First, cyto-
kine release (IL-2 and IFN-γ) was determined. No or only 
a marginal induction of IL-2 release was observed for all 
molecules (figure 3A). Similar results were obtained for 
the IFN-γ release (figure 3B). An scDb directed against 
HER3 and CD327 was included in these experiments, 
showing a strong cytokine release in both assays. Next, we 
investigated proliferation of CD4+ and CD8+ T-cells. All 
molecules in the scDb/scFv-Fc format mediated prolifer-
ation of CD4+ and CD8+ T-cells. Regarding proliferation 
of CD4+ T-cells, superior activity was observed for the 
scDb/scFv-Fc format compared with the scDb/Fab-Fc 
format for all configurations (figure 3C, table 2). In line 
with this, the scDb/scFv-Fc formats also showed higher 
proliferative capacity on CD8+ T-cells (figure 3D, table 2). 
However, the difference between the scDb/scFv-Fc and 
the scDb/Fab-Fc format was more pronounced for the 
(1-2)+1 configuration for CD8+ T-cell proliferation, as 
the scDb/Fab-Fc (1-2)+1 only showed a low induction 
of proliferation. Additionally, the effect of the triva-
lent, bispecific molecules on the proliferation and the 
frequency of T-cell subpopulations was investigated. Treat-
ment with the scDb/scFv-Fc (2-1)+1 and scDb/Fab-Fc 
(2-1)+1 mainly led to proliferation of central memory 
(TCM) and effector memory (TEM) CD4+ T-cells (figure 4A, 
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Figure 2  Binding properties of scDb/scFv-Fc and scDb/Fab-Fc variants. Binding to (A) LIM1215, (B) MCF-7, (C) SKBR-3, (D) 
FaDu, (E) HT1080, (F) MDA-MB-231 and (G) CD3-expressing Jurkat cells was analyzed in flow cytometry. A PE-labeled anti-
huFc mAb was used to detect bound protein. Mean±SD, n=3. MFI, median fluorescence intensities; scDb, single-chain diabody.
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left panel). Similar results were obtained for the scDb/
scFv-Fc (1-2)+1. However, the scDb/Fab-Fc (1-2)+1 mainly 
induced proliferation of naive (TN) CD4+ T-cells. Low to 

no proliferation was observed for the two molecules in 
the (1-1)+2 configuration. Similarly, treatment with the 
scDb/scFv-Fc (1-2)+1, scDb/scFv-Fc (2-1)+1 and scDb/

Table 1  Binding to HER3-expressing tumor cells of scDb/scFv-Fc and scDb/Fab-Fc variants

LIM1215
20,000 HER3/cell

MCF-7
18,000 HER3/cell

SKBR-3
14,000 HER3/cell

FaDu
3000 HER3/cell Jurkat

scDb/scFv-Fc (1-2)+1 31±7 39±5 29±11 41±40 1290±502

scDb/Fab-Fc (1-2)+1 53±13 17±9 12±3 138±121 2269±846

scDb/scFv-Fc (1-1)+2 882±588 390±327 317±257 879±308 688±189

scDb/Fab-Fc (1-1)+2 249±192 711±255 482±371 258±232 8655±6943

scDb/scFv-Fc (2-1)+1 82±46 31±4 33±8 45±37 1516±130

scDb/Fab-Fc (2-1)+1 172±115 137±103 38±8 210±159 1667±223

EC50 (pM), mean±SD, n=3.
scDb, single-chain diabody.

Figure 3  Activity of scDb/scFv-Fc or scDb/Fab-Fc variants on cytokine release, T-cell activation and proliferation. (A) IL-2 and 
(B) IFN-γ release mediated by scDb/scFv-Fc or scDb/Fab-Fc variants. Peripheral blood mononuclear cells were co-cultured with 
MCF-7 cells in the presence of a serial dilution of the scDb/scFv-Fc or scDb/Fab-Fc variants. Cytokine release was determined 
after 24 hours (IL-2) or 48 hours (IFN-γ) using sandwich ELISA. Proliferation of (C) CD4+ and (D) CD8+ T-cells was measured by 
carboxyfluorescein diacetate succinimidyl ester dilution in flow cytometry. Mean±SD, n=3. IFN-γ, interferon-γ; IL-2, interleukin 2; 
scDb, single-chain diabody.
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Fab-Fc (2-1)+1 mainly led to the proliferation of TCM 
and TEM CD8+ T-cells. Regarding the frequency of T-cell 
subtypes, no differences for the CD4+ T-cells was observed. 
However, scDb/Fab-Fc (1-2)+1 and scDb/scFv-Fc (1-1)+2 
mediated an increased frequency of CD8+ effector T-cells, 
while all other molecules shifted the population toward 
CD8+ effector memory T-cells (figure  4B). In summary, 
the scDb/scFv-Fc molecules were more potent in medi-
ating proliferation of T-cells compared with the scDb/
Fab-Fc format with a low or neglectable induction of cyto-
kine release for all trivalent, bispecific molecules.

Cancer cell lysis of HER3-positive cell lines by trivalent, 
bispecific antibodies
Cell lines with medium (LIM1215, MCF-7, SKBR-3), low 
(FaDu) and undetectable (HT1080, MDA-MB-231) HER3 
expression were used to determine the cytotoxic effects 
of PBMCs on target cells mediated by the trivalent, bispe-
cific antibodies. All trivalent, bispecific antibodies in the 
(1-2)+1 and (2-1)+1 configuration were able to redirect 
unstimulated PBMCs to lyse target cells with medium 
HER3 expression in a concentration-dependent manner. 
Regarding potency (EC50 value in cell killing), scDb/

Table 2  T-cell proliferation mediated by scDb/scFv-Fc and scDb/Fab-Fc variants

Proliferation of CD4+ T-cells Proliferation of CD8+ T-cells

scDb/scFv-Fc (1-2)+1 599±546 1627±375

scDb/Fab-Fc (1-2)+1 1075±461 564±335

scDb/scFv-Fc (1-1)+2 34±8 144±70

scDb/Fab-Fc (1-1)+2 –

scDb/scFv-Fc (2-1)+1 209±45 497±182

scDb/Fab-Fc (2-1)+1 546±150 1652±363

EC50 (pM), mean±SD, n=3.
scDb, single-chain diabody.

Figure 4  Activity of scDb/scFv-Fc or scDb/Fab-Fc variants on proliferation and composition of T-cell subpopulations. 
(A) Proliferation of naive (TN, CD45RA+, CCR7+), central memory (TCM, CD45RA−, CCR7+), effector (TE, CD45RA+, CCR7−) 
and effector memory (TEM, CD45RA−, CCR7−) subpopulations of CD4+ T-cells and CD8+ T-cells was determined by 
carboxyfluorescein diacetate succinimidyl ester dilution in flow cytometry. (B) Composition of CD4+ and CD8+ T-cell 
subpopulation was measured in flow cytometry. Mean±SD, n=3. scDb, single-chain diabody.
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scFv-Fc (1-2)+1 and scDb/scFv-Fc (2-1)+1 mediated supe-
rior target cell killing compared with the scDb/Fab-Fc in 
the same configuration on the medium HER3-expressing 
cell lines (figure  5A–C). In general, the differences 
between the scDb/scFv-Fc and the scDb/Fab-Fc format 
were more pronounced in the (1-2)+1 configuration 
(13-fold to 88-fold) than in the (2-1)+1 configuration 
(4-fold to 7-fold) (figure 5A–C, table 3). For the trivalent, 

bispecific molecules in the (1-1)+2 configuration, a 
10-fold to 40-fold lower cytotoxic capacity compared with 
the molecules in the (1-2)+1 and (2-1)+1 configuration 
was observed. Additionally, predominant target cell killing 
for the scDb/scFv-Fc (1-1)+2 compared with the respec-
tive scDb/Fab-Fc format was only observed on the MCF-7 
cell line (fourfold) while no target cell lysis was observed 
on the LIM1215 cells with the scDb/scFc-Fc (1-1)+1 and 

Figure 5  Cytotoxic potential of peripheral blood mononuclear cells (PBMCs) stimulated with scDb/scFv-Fc or scDb/Fab-Fc 
variants. (A) LIM1215, (B) MCF-7, (C) SKBR-3, (D) FaDu, (E) HT1080 and (F) MDA-MB-231 cells were incubated with a serial 
dilution of scDb/scFv-Fc or scDb/Fab-Fc variants in the presence of PBMCs in an effector:target cell ratio (E:T) of 10:1. Cell 
viability was determined using crystal violet staining after 3 days. Mean±SD, n=3. scDb, single-chain diabody.
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scDb/Fab-Fc (1-1)+2. Importantly, only a slight cytotoxic 
effect was observed on the low expression FaDu cell 
line for all trivalent, bispecific molecules at the highest 
concentration (figure  5D) while cell viability of the 
HER3-negative HT1080 and MDA-MB-231 cells remained 
unaffected (figure  5E,F). Furthermore, analyzing effi-
cacy (maximum target cell lysis at 10 nM trivalent, bispe-
cific antibody) revealed 50%–80% killing of LIM1215, 
MCF-7 and SKBR-3 cells for the molecules in the (1-2)+1 
configuration. Treatment with the scDb/scFv-Fc in the 
(1-1)+2 and (2-1)+1 configuration led to lysis of 70%–85% 
of MCF-7 and SKBR-3 cells while the respective scDb/
Fab-Fc molecules only showed 30%–70% killing. On the 
LIM1215 cell line, the molecules in the (2-1)+1 config-
uration showed an efficacy of 70% while no killing was 
observed for the (1-1)+2 antibodies.

DISCUSSION
In this study, we report the generation of novel Fc-com-
prising trivalent, bispecific antibody molecules capable 
of redirecting T-cells to HER3-expressing cancer cells. 
Deploying avidity effects by utilizing a 2+1 stoichiometry 
resulted in potent T-cell-engaging trivalent, bispecific 
antibodies, allowing to differentiate between cells of 
medium and low HER3 expression.

A critical step of T-cell-mediated eradication of tumor 
cells is the formation of a tight immune synapse between 
tumor cell and T-cell.35 Here, the close proximity of 
target and effector cell can be facilitated by the small, 
compact and rigid scDb format enforcing the formation 
of a cytolytic synapse similar to bispecific T-cell-engaging 
tandem scFv molecules (BiTE format).36–38 Moreover, 
our study showed that the molecular geometry and the 
arrangement of the different binding moieties impact the 
potency of bispecific antibodies.

For a FynomAb, comparing different geometries by 
fusing the TAA binders either N-terminally to an anti-
CD3 mAb or C-terminally to the Fc resulted in a more 
than 20-fold higher potency for the N-terminal fusion 
attributed to the favorable closer proximity between TAA 
and TCR binding.39 Similarly, others used a monovalent 
tumor-targeting IgG scaffold and fused an anti-CD3 scFv 

to the C-terminus of either the light chain of the TAA 
arm or the non-targeting binder.40 They showed that the 
fusion to the TAA arm benefits from smaller interdomain 
spacing resulting in higher in vitro and in vivo potency. 
In line with this, our data show that positioning the TAA 
binding sites and the CD3 moiety on opposing arms of 
the molecule in the (1-1)+2 configuration resulted in 
more than 30-fold lower potency in target cell killing.

Additionally, superior target cell killing by the scDb/
scFv-Fc format might also be attributed to the closer 
proximity of target cell and T-cell due to the smaller 
scFv compared with the Fab. Furthermore, prior studies 
have demonstrated that bispecific antibodies targeting 
epitopes proximal to the membrane elicited more 
potent T-cell killing compared with those binding distal 
epitopes.38 41–43 Targeting membrane-proximal epitopes 
augments the formation of cytolytic synapses by promoting 
target clustering and exclusion of the negative regulatory 
protein CD45 from the immune synapse,42 resulting in 
increased T-cell activation and higher potency in target 
cell lysis.38 41 42 44 45 Accordingly, the potency of the triva-
lent, bispecific antibodies might not only be attributed to 
the format, configuration and interdomain spacing but 
also to the anti-HER3 antibody targeting a membrane-
proximal epitope.34

While the trivalent, bispecific antibodies investigated 
in this study showed potent killing of HER3-expressing 
tumor cells, only very low levels of released cytokines 
were observed. Growing evidence suggests that cyto-
toxic activity is uncoupled from released cytokines, 
supported by the definition of two activation thresh-
olds and the expendability of cytokine release for target 
cell lysis.46 While a low number of TCR:peptide-MHC 
complexes is sufficient to trigger T-cell-mediated target 
cell killing, a high number of complexes is necessary 
for cytokine secretion. One explanation could be the 
separated but intertwined signaling pathways of the 
TCR differentially regulating release of cytokines and 
lytic effector molecules.47–49 Thus, it has been shown 
that T-cells maintain their cytolytic activity despite a 
lack of cytokine release in response to treatment with 
bispecific T-cell engagers.50

Table 3  T-cell mediated killing of tumor cells by scDb/scFv-Fc and scDb/Fab-Fc variants

LIM1215
20,000 HER3/cell

MCF-7
18,000 HER3/cell

SKBR-3
14,000 HER3/cell

FaDu
3000 HER3/cell

scDb/scFv-Fc (1-2)+1 41±34 3±1 3±2 –

scDb/Fab-Fc (1-2)+1 1544±1079 233±89 43±32 –

scDb/scFv-Fc (1-1)+2 – 688±600 107±80 –

scDb/Fab-Fc (1-1)+2 – 2414±1789 24±22 –

scDb/scFv-Fc (2-1)+1 65±30 9±6 4±4 –

scDb/Fab-Fc (2-1)+1 238±165 61±45 24±29 –

EC50 (pM), mean±SD, n=3.
scDb, single-chain diabody.
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Moreover, anti-CD3 antibodies have been identified, 
which, when deployed in a bispecific T-cell-engaging 
molecule, efficiently kill tumor cells accompanied by 
minimal cytokine release.47 High apparent affinity toward 
the TAA and a low apparent affinity toward CD3 are not 
only beneficial for reducing cytokine release but are also 
important in driving antibody distribution toward the 
tumor and not to the T-cell compartments, such as bone 
marrow and lymph nodes.51 Avidity-mediated specificity 
gain through bivalent binding to HER3 combined with 
monovalent CD3-binding and improved pharmacoki-
netic properties due to the introduced Fc part presum-
ably should thus result in beneficial safety properties of 
HER3-targeting T-cell engagers.

Non-clinical safety and tolerability of CD3 bispecific 
antibodies can be evaluated using studies in pharma-
cological relevant species, that is, cynomolgus monkey, 
which might require to substitute the CD3 binding site 
with that from a cynomolgous CD3-reactive antibody. 
Possible side effects include cytokine release syndrome 
(CRS) and neurotoxicity even at low doses.52 Therefore, 
safety and tolerability are rather determined based on the 
anticipated biological effect not adverse effects.53–55

Our results are in accordance with recent findings for 
an Fc-less trivalent, bispecific scDb-scFv fusion protein 
directed against HER3 and CD3 that, compared with a 
bivalent bispecific scDb, mediated a strongly increased 
cytotoxicity toward medium HER3-expressing target cells, 
which correlated with increased target cell binding, while 
cytokine release was unaffected.27 Thus, cytotoxicity medi-
ated by the best (1-2)+1 scDb/scFv-Fc molecule was only 
reduced 3-fold to 13-fold to that of the scDb-scFv fusion 
protein described in the previous study, for example, with 
an EC50 value of 3 nM for the (1-2)+1 scDb/scFv-Fc and 1 nM 
for scDb-scFv for MCF-7 and 3 nM vs 41 nM for LIM1215, 
respectively.27 Of note, only medium HER3-expressing cells 
were lysed by the (1-2)+1 scDb/scFv-Fc molecule, while 
low HER3-expressing cells remained basically unaffected. 
This reduction in T-cell-mediated killing by the scDb/
scFv-Fc and scDb/Fab-Fc molecules might be caused by 
the presence of the Fc-region affecting formation of a tight 
immunological synapse. In another study, the 2+1 stoichi-
ometry in a T-cell-dependent bispecific antibody targeting 
HER2 and CD3 has been shown to increase tumor selec-
tivity by efficiently targeting HER2-positive target cells, 
while sparing low HER2-expressing cells.22 Accordingly, 
the bivalent binding mode of a carcinoembryonic antigen 
(CEA)-specific T-cell-engaging bispecific antibody (TCB) 
translated into selective killing of high CEA-expressing 
cancer cells while sparing normal epithelial cells resulting 
in a wide safety window.20 Moreover, a correlation between 
valency and retention time at the tumor was described 
for a (scFv’)2 further showing that valency directly affects 
tumor localization.56 Hence, increased avidity can result in 
increased selectivity, thus allowing to discriminate between 
target cells expressing low and medium or high target anti-
gens and consequently may lower the risk of on-target off-
tumor adverse events.19 43

Although the used HER3 antibody (3–43) is cross-
reactive for murine HER3, the CD3 antibody moiety in 
the trivalent bispecific molecules derived from UCHT1 
does not bind to the murine CD3. Therefore, different 
strategies could be pursued to evaluate in vivo efficacy 
of bispecific T-cell-engaging antibodies. Immunodefi-
cient mice engrafted with human tumors57 and human 
immune cells58 are a widely used model to study efficacy of 
T-cell-retargeting antibodies.20 59–61 In addition to human 
tumor cell lines, fresh biopsy tissue can be engrafted 
into immunodeficient mice.62 Inoculating human 
PBMCs into a immunodeficient mouse leads to vigorous 
response of the human B-cells and T-cells to murine 
tissue antigen, causing potentially fatal graft versus host 
disease (GVHD) and severely limits the ability of the 
human immune cells in their response to exogenous 
antigen.63 64 To eliminate the risk of GVHD and to better 
recapitulate human disease, xenograft models reconsti-
tuted with a human hematopoietic system through the 
engraftment of human cord blood CD34+ hematopoietic 
stem cells have been developed.65 However, this mouse 
model is hampered by the maturation of human T-cells 
in the murine thymus with murine MHC and the lack 
of human costimulatory molecules.66 67 Compared with 
cross-species xenograft models, syngeneic mouse models 
can offer a more natural tumor environment since mice 
possess an intact immune system. Additionally, synge-
neic models enable the possibility of linger and repeated 
dosing regimens. However, the use of syngeneic mouse 
models requires the development of surrogate mole-
cules accurately representing their human analog.68 
Additionally, murine tumor cells have to be manipulated 
to express the human antigen bearing the risk of poor 
engraftment efficacy.

Redirecting T-cells to tumor cells has been reported to be 
associated with a number of challenges probably limiting 
or reducing the target cell killing potency, especially in 
the context of solid tumors. Particularly, disadvantages 
are associated with the recruitment of naive, exhausted 
or regulatory T-cells,69 70 while the tissue-resident memory 
T-cell phenotype (CD8+CD69+CD103+) has been shown 
to express high levels of cytotoxic molecules and is asso-
ciated with a good clinical outcome in cancer.71 Central 
memory T-cells have been shown to mostly traffic to 
secondary lymphoid tissue and exhibit a high proliferative 
capacity,72 whereas T-cells of the effector memory subtype 
preferentially localize in non-lymphoid tissue and demon-
strated a rapid development of effector functions.73 Xu et 
al74 demonstrated that the frequency of a T-memory stem 
cell phenotype in the bulk population of CAR-T-cells posi-
tively correlates with their subsequent in vivo expansion. 
In line with this, treatment with the trivalent, bispecific 
antibodies used in this study mainly led to the prolifer-
ation of central memory (CD45RA−CCR7+) and effector 
memory (CD45RA−CCR7−) CD8+ T-cells. Additionally, the 
CD8+ T-cell population shifted toward effector or effector 
memory T-cells, whereas only low proliferation of naive 
CD8+ T-cells was observed.
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The current study demonstrates that the format, 
geometry and orientation of binding sites influence the 
potency of bispecific antibodies for T-cell retargeting. For 
the effective formation of immune synapses resulting in 
T-cell-mediated tumor cell lysis, the scDb/scFv-Fc format 
with small interdomain spacing in the (1-2)+1 and (2-1)+1 
configuration showed efficient killing of medium HER3-
expressing cancer cells while sparing target cells with low 
HER3 expression with an additional preferable safety 
profile due to low cytokine secretion.
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