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Breast cancer is a common malignant tumor in women, with a highest incidence and
mortality among all of the female malignant tumors. Notably, targeted therapy has
achieved impressive success in the treatment of breast cancer. As one class of the
anti-tumor targeted therapeutics, Cyclin-Dependent Kinases 4/6CDK4/6inhibitors have
shown good clinical activity in treating breast cancer. Nevertheless, despite the promising
clinical outcomes, intrinsic or acquired resistance to CDK4/6 inhibitors has limited the
benefits of this novel target therapy. In the present review, we provide an overview of the
currently known molecular mechanisms of resistance to CDK4/6 inhibitors, and discuss
the potential strategies to overcoming drug resistance improving the outcomes for breast
cancer patients treated with CDK4/6 inhibitors.

Keywords: breast cancer, CDK4/6 inhibitors, drug resistance, molecular mechanisms, combination administration
INTRODUCTION

Cyclin-dependent kinases (CDKs) are serine/threonine kinases that play key roles in regulating cell
cycle (1). CDK 4 and 6, two critical kinases among CDKs mediate the cellular transition from G0/G1
phase to S phase during cell cycle: dysregulation of CDK 4/6, result in uncontrolled cell division. The
main effect of CDK4/6 inhibitor is to bind with cyclin D specifically, block cell cycle transformation,
and stop cell cycle in G1 phase, thereby inhibiting tumor cell proliferation (2). Importantly, CDK4/6
inhibitors have showed great efficacy in treatment of breast cancer. Based on the PALOMA-1trail,
FDA approved palbociclib, the first CDK 4/6 inhibitor, in combination with letrozole as first-line
treatment for patients with ER-positive, HER2-negative advanced breast cancer (ABC) or metastatic
breast cancer (MBC) (3). At present, three selective CDK4/6 inhibitors (palbociclib, ribociclib, and
abemaciclib) have been approved by FDA (4, 5). These three CDK4/6 inhibitors are used in
combination with endocrine therapies or fulvestrant for patients with ER+ Her− metastatic breast
cancer. Clinical trials PALOMA-2, MONALEESA-2, and MONARCH-3 have showed that when
combined with aromatase inhibitors, CDK4/6 inhibitors could significantly prolong the
progression-free survival in postmenopausal women with HR-positive metastatic breast cancer
(6–8). Nevertheless, despite promising clinical outcomes, acquired or intrinsic resistance to CDK4/6
inhibitors often occurs, and this constitutes a major hindrance to successful treatment and limits the
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therapeutic benefits of those targeted therapeutics for patients
with this disease. Therefore, understanding the molecular
mechanisms and pathways involved in resistance to CDK4/6
inhibitors may help develop effective strategies to circumventing
drug resistance and selecting patient populations who can benefit
from this targeted therapy. Here, we review and discuss the
known molecular mechanisms and pathways that modulate the
cellular sensitivity or resistance to CDK4/6 inhibitors, and
provide our outlook on this subject (6–8).
POTENTIAL RESISTANCE MECHANISMS

Breast cancer cells can be intrinsically resistant to CDK4/6 or
develop acquired resistance to those agents. CDK4/6 can
phosphorylate retinoblastoma protein (Rb1), and the
phosphorylation leads to Rb1 functional inactivation, then Rb1
uncoupling from E2Fs transcription factors and release E2Fs.
CDK4/6 inhibitors exert their effects through breaking the
Frontiers in Oncology | www.frontiersin.org 2
CDK4/6-Rb-E2F pathway (9, 10). The tumor cells with loss of
Rb1 and lack of the major targets, intrinsic resistance to CDK4/6
inhibitors may occur (11, 12). The major obstacle to successful
treatment with CDK4/6 inhibitors is the acquired resistance that
frequently occurs in the patients who have received this therapy.
Tumor cells can acquire the ability to escape CDK4/6 action (13).
Understanding potential mechanisms of acquired resistance to
CDK4/6 inhibitors may help find effective ways to preventing or
overcoming drug resistance to this class of therapeutics (Figure 1).
DIRECT CELL CYCLE MECHANISMS

Loss of Drug Target Genes
RB1
The tumor suppressor Rb1 is a key checkpoint in the cell cycle
and a major target of CDK4/6 inhibitors. In both of preclinical
and clinical settings, Rb1 mutations were found (14). In the
tumor cell line with acquired resistance to palbociclib, it was
FIGURE 1 | The role of CDK4/6-cyclin D and CDK4/6 inhibitor. CDK4 and CDK6 play key roles in cell proliferation. Cyclin D is regulator of the CDK4 and CDK6
kinases. CDK4/6 and cyclin D together form active complexes, which phosphorylates Rb1 protein. Rb1 is an onco-suppressor which repress the transcription of
genes required for the cell cycle, limit the expression of transcription factor E2F target genes which are involved in cell cycle progression. Phosphorylated Rb1
releases E2F. Release from Rb1 allows for E2F-driven genes triggering the cell cycle progression. CDK4/6 inhibitors bind to the cyclin D specifically, thereby block
CDK4/6-mediated phosphorylation of Rb1. Non-phosphorylated Rb1 still binds to E2F in an inactive complex, which leading to cell cycle arrest in G0/G1 phase and
impossible to entry cell division, thereby inhibiting tumor cell proliferation (1, 9, 10, 13).
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demonstrated that resistance to CDK4/6 inhibitors was mediated
through Rb1 loss, and restoration of Rb1 expression rendered
tumor cells sensitivity to the CDK4/6 inhibitor (15). Chronic loss
of Rb1 was found to be a cause of resistance to CDK4/6 inhibitors
in breast cancer (16, 17). Using the breast cancer cell lines
sensitive or resistant to palbociclib, it was showed that the
complex change of Rb1 pathway was related to resistance to
CDK4/6 inhibitor, Rb1 deficient in function is an important
factor that contributes to palbociclib and abemaciclib resistance
in breast cancer patients (18, 19). In clinical settings, researchers
sequenced the somatic genomic mutations of three HR+ breast
cancer samples before and after drug resistance to CDK4/6
inhibitors occurred and found that Rb1 mutation, allele
substitution or exon deletion only existed in the blood samples
Frontiers in Oncology | www.frontiersin.org 3
after but not before drug resistance (20). Many researches
showed that Rb1 loss could activate bypass of cyclin D1-
CDK4/6-dependent pathway, leading to acquired resistance to
CDK4/6 inhibition (14). These observations suggest that despite
loss of Rb1, progression of the cell cycle continues via the
activation of other cell cycle machinery, and inhibition of the
bypass axis in combination with the CDK4/6 inhibitors may be
effective in overcoming resistance to these targeted therapies.
However, in the PALOMA-3 randomized phase III trial, the
circulating tumor DNA sequencing from patients showed that
Rb1 mutations occurred only in 6 of 127 (4.7%) patients (21).
Thus, further clinical evidence is needed to analyze the frequency
of Rb1 mutation in breast cancer patients receiving CDK 4/6
treatment (Figure 2, Table 1).
FIGURE 2 | Resistance to CDK4/6 inhibitors: Direct Cell Cycle Mechanism: 1. Loss of drug target genes: APC/CFZR1 promote the phosphorylation of Rb1 and
regulate cell transition from G1 to S. knockdown of Rb1 and FZR1 synergistically bypassed cell division arrest induced by the CDK4/6 inhibitor (14–23); 2. Increased
activity of the CDK4 and CDK6: amplification of CDK4/6 account for a decreased CDK4/6 targeted phosphorylation of Rb1 and a decreased sensitivity of breast
cancer cells to CDK4/6 inhibitor (2, 24–34); 3. Abnormal regulations of upstream and Downstream kinases: CCNE1/CDK2, CDK7, E2F, INK, PTEN, Smad-TGF-b
pathway which are involved in the progression of cell cycle, as shown in Figure 1, are responsible for resistance to CDK4/6 inhibitors (12, 15, 17, 26, 35–60);
4. Activation of alternate genes like HDACS, WEE1, MDM2, partly help the cancer cell escape from the drugs work (61–67).
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TABLE 1 | Mechanisms of acquired resistance to CDK4/6 inhibitors: Direct cell cycle mechanisms.

Resistance classify Resistance mechanism Detection Overcome

Loss of drug target genes
(14–23)

Loss of Rb1 1. Cell biology experiments 1. Restore Rb1 expression
2. Proteomics
3. Clinical trial 2. Bypass way

Loss of APC/CFZR1 1. Cell biology experiments 1. Restore FZR1 expression
Increased activity of the target
genes
(2, 24–34)

CDK4 amplification 1. Cell biology experiments 1. Knockdown of CDK4
2. Proteomics
3. Immunohistochemistry 2. Bypass way
4. Clinical trial

CDK6 amplification 1. Cell biology experiments 1. Knockdown of CDK6
2. Proteomics
3. Immunohistochemistry 2. Bypass way
4. Clinical trial

Abnormal regulations of upstream
and downstream kinases
(12, 15, 17, 26, 35–60)

Increased expression of CCNE1/CDK2 1. Cell biology experiments 1.CDK2 inhibitor
2. Proteomics
3. Immunohistochemistry 2. Bypass way
4. Chip-seq analysis

CDK7 overexpression 1. Cell biology experiments CDK7 inhibitor
2. Proteomics
3. Immunohistochemistry

E2F overexpression 1. Cell biology experiments 1. E2F inhibitor
2. Proteomics 2. Inhibition regulate gene or protein

downstream of E2F3. Biopsies mRNA gene expression
p16INK4A (p16) overexpression 1. Cell biology experiments 1. Restore p16 expression

2. Proteomics 2. p16 methylation
Loss of PTEN 1. Cell biology experiments 1. Restore PTEN expression

2. Proteomics
3. Biopsy

Smad-TGF-b pathway dysregulation 1. Cell biology experiments 1. Activate smad3
2. TGF-b inhibitor

2. Proteomics 3. Inhibition of EMT
Activation of alternate genes
(61–67)

WEE1 overexpression 1. Cell biology experiments WEE1 inhibitor
2. Proteomics

MDM2 overexpression 1. Cell biology experiments MDM2 inhibitors
2. Proteomics

CDK, Cyclin-dependent kinases; Rb1, Retinoblastoma protein1; APC/C, anaphase promoting complex/cyclosome; PTEN, Phosphatase and tensin homolog; TGF-b, transforming growth
factor b; WEE1, serine/threonine kinases gene; MDM2, Mouse double minute 2 homolog.
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APC/CFZR1

Similar to Rb1, the ubiquitin ligase anaphase promoting
complex/cyclosome (APC/C) play an important role in cell
cycle regulation. APC/C and pRb interact via the co-activator
of APC/CFZR1, providing an alternative pathway to regulate
transition from G1 to S by pRb through a post-translational
mechanism (22). FZR1 is a candidate CDK4/6-cyclin D substrate
and as an important determinant in response to CDK4/6
inhibitors. It was found that the loss of FZR1 resulted in
uncontrolled cell cycle progression from G1 to S phase. In
human breast cancer cell lines, simultaneous knockdown of Rb
and FZR1 synergistically bypassed cell division arrest induced by
the CDK4/6 inhibitor PD-0332991 (23). The precise mechanism
of resistance to CDK4/6 inhibitors associated with the loss of
FZR1 remains unclear. It is likely that loss of FZR1 corresponds
with the loss of Rb; however, this possibility remains to be further
investigated (Figure 2, Table 1).

Increased Activity of the Target Genes
CDK4
CDK4 is an important component of the cyclind-CDK4/6-Rb1
pathway, and was observed in 25% luminal B and 14% Luminal
A breast cancers (24). In addition, aberrant expression of CDK4
Frontiers in Oncology | www.frontiersin.org 4
activates the cyclind-CDK4/6-Rb1 pathway and results in drug
resistance (25). It has been demonstrated that CDK4 was elevated
in palbociclib resistant cell lines (26). Also, amplification of CDK4
has been reported in melanoma, glioma, rhabdomyosarcoma, and
lung cancer and confers resistance to CDK4/6 inhibitors in these
malignancies (27–30). The researchers found that increasing
phosphorylation of p27 could inhibit CDK4 and regulate the
cyclin D/CDK4/p27 complex activity, which could make breast
cancer cells more resistant to palbociclib (2, 31), above study
suggesting a potential strategy to prevent adaptation to CDK4/6
inhibitors (Figure 2, Table 1).

CDK6
The functions of CDK6 are both kinase-dependent and non-
kinase-dependent (32). After a prolonged exposure to CDK4/6
inhibitor LY2835219, a significant amplification of CDK6 was
found in several breast cancer cell lines, and this may account for
a decreased CDK4/6 targeted phosphorylation of Rb1 and a
decreased sensitivity of breast cancer cells to CDK4/6 inhibitor
(32). Further experiments confirmed that forced overexpression
of CDK6 indeed mediated drug resistance. Overexpression of
CDK6 not only mediates resistance to CDK4/6 inhibitors, but
also leads to decreased expression of estrogen and progesterone
May 2021 | Volume 11 | Article 651541
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receptors. These studies also suggest that the efficacy of CDK4/6
inhibitors in breast cancer cells is modulated by ER. Therefore,
CDK6 amplification can decrease the tumor cell sensitivity to
both ER antagonists and CDK4/6 inhibitors. Knockdown of
CDK6 can restore sensitivity, while enforced overexpression of
CDK6 can confer resistance to CDK4/6 inhibitors

A decrease in ER/PR expression was observed in the tumor
specimens from patients receiving treatment of CDK4/6
inhibitor and showing insensitivity to CDK4/6 inhibitors (33).
The non-kinase dependent function of CD6 lies in its
transcriptional regulation function. In the STAT3 and Cyclin
D pathways, CDK6 could up-regulate the transcription of P16
and the expression of VEGF-A that can promote angiogenesis,
contributing to the progression and drug resistance of breast
cancer (32, 34) (Figure 2, Table 1).
Abnormal Regulations of Upstream and
Downstream Kinases
CCNE1/CDK2
The cyclin E (encoded by CCNE1 gene)-CDK2 complexes play a
key role in the cell cycle from G1 to S phase. Cyclin E-CDK2 can
phosphorylate Rb1, release E2F, and promote entry into the S
phase (35, 36). In an analysis of global gene expressions,
increased expression of CDK2 was found in the palbociclib-
resistant breast cancer cell lines. Also it was suggested that loss of
p21 and p27, which has an inhibitory effect function on CDK2,
may represent a mechanism leading to bypass of palbociclib (17).
It has been reported that when combined CDK2 and CDK4
inhibitors, resistance to palbociclib was no longer obvious,
suggesting that cyclin E-CDK2 complexes protein might
mediate resistance to CDK4/6 inhibitors (37). Hopefully, next
generation CDK inhibitors can target CDK2 to prevent or
conquer drug resistance (Figure 2, Table 1).

CDK7
CDK7, one of the major cell cycle regulators, acts as a CDK-
activating kinase (CAK) by maintaining CDK1 and CDK2
activity. CDK7 promotes the cell transition from G2 phase to
M phase (38). It has been demonstrated that CDK7
overexpression occurred in the estrogen receptor-positive,
palbociclib-resistant breast cancer cells (26), suggesting that
CDK7 is involved in cellular resistance to CDK4/6 inhibitors.
The CDK7 selective inhibitor, THZ1, can significantly inhibit
the proliferation of triple negative breast cancer cells at the
nmol/L concentration (39, 40). Also, the sensitivity of breast
cancer cells to CDK7 inhibitors appears to be associated with
the loss of ER and Rb1 CN expression (26). Thus, CDK7
inhibitors may play an important role in both of the targeted
therapy and cellular resistance to CDK4/6 inhibitors (Figure 2,
Table 1).

E2F
The CDK-Rb-E2F pathway plays a critical role in the control of
cell cycle in breast cancer. At the early stage of G1, E2F binds to
Rb1 protein and forms a functional complex. Phosphorylation of
Rb1 protein by CDK activates E2F. Activation of E2F can
Frontiers in Oncology | www.frontiersin.org 5
promote the transition of cells from G1 phase to S phase. It
has been reported that in the CDK4/6 inhibitor-resistant cell
lines, the CDK-Rb-E2F pathway reactivate (41). Researchers
found that in tumor biopsies resistant to palbociclib, CCND3,
CCNE1, and CDKN2D are persistently elevated before
palbociclib used, all three genes are known E2F1 transcription
targets, suggesting persistent E2F activity in resistant tumors
(42). It was also revealed that E2F1 was up-regulated in patients
with tumor lymph node metastasis and advanced stage (43) and
patients with increased E2F expression was associated with lower
overall survival (OS), relapse-free survival (RFS), distant
metastasis-free survival (DMFS) (44). Therefore, E2F might be
exploited as a therapeutic target both for suppressing drug
resistance to CDK4/6 inhibitors and biomarkers and
therapeutic targets for breast cancer in breast cancer.

INK
CDK4/6 activity is regulated by the INK4 family proteins
(p16INK4A, p15INK4B, p18INK4C, and p19INK4D), can
inhibit the expression of CDK4 and lead to cell cycle arrest in
the G1/S phase, thus considered as a natural tumor inhibitor
(45). The P16 (p16INK4A) protein, encoded by the
CDKN2Aink4a gene, play an important role of the INK4 family.
It has been reported that CDK4/6 inhibitors can inhibit cancer
cell cycle progression because of P16 gene deletion (46). Cancer
cells with P16 methylation are more sensitive to palbociclib than
those control (47, 48). It has been found that overexpression of
p16 and loss of Rb1 often occur simultaneously. When p16
overexpression is accompanied by Rb1 deficiency, CDK4/6
inhibitors are inactive due to the Rb1 deficiency. With the
presence of Rb1, overexpression of p16 (be consistent) leads to
a decrease of CDK4 and resistance to CDK4/6 inhibitors (12).
Further studies are needed to delineate the precise mechanistic
association between Rb1 loss and P16 overexpression, which may
help design novel therapeutic strategies to overcoming the
acquired resistance to CDK4/6 inhibitors (Figure 2, Table 1).

PTEN
PTEN a tumor suppressor gene, is one of the frequently mutated
genes in human cancers (49). The increased expression of PTEN
leads to the inactivation of CDK, which enables the Rb1 keep
dephosphorylating, while binding to transcription factor E2F,
which ultimately inhibits cell proliferation. these ways may
influence the effect of CDK4/6 inhibitors (49). Researchers
analyzed serial biopsies from breast cancer patients treated
with the combination of ribociclib and letrozole and found
that ablation of PTEN was sufficient to promote resistance to
CDK4/6 inhibition (50). The increased AKT expression could
reduce PTEN expression and render breast cancer cells resistant
to CDK4/6 inhibitors (51). In breast cancer cells, loss of PTEN
also conferred resistance to alpelisib. Moreover, loss of PTEN
expression can cause dual resistance to CDK4/6 inhibitors and
PI3K inhibitors (52) (Figure 2, Table 1).

Smad-TGF-b Pathway
Smad–transforming growth factor b (TGF-b) pathway
contributes to G1 arrest in breast cancer cells (53). TGF-b
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signaling is transduced through Smad2 and Smad3 and forms a
complex with Smad4 to regulate target gene expression relevant
to cell growth and differentiation (54, 55). Smad3, which has
antiproliferative effects, has a key role in TGF-b signaling
cascade. Smad3 can regulate cell cycle arrest, and has been
shown to be correlated with resistance to CDK4/6 inhibitors
(53). Mechanistically, cyclin E-CDK2 and cyclin D1-CDK4/6
complexes can suppress Smad3 through its phosphorylation,
and the suppression of Smad3 releases the Rb1-E2F blockade
and restore cell cycle arrest in breast cancer cells (53, 56). TGF-
b can phosphorylate and activate Smad2 and Smad3 and form a
complex with Smad4, and this contributes to the induction and
progression of EMT. EMT can promote invasion and metastasis
of cancer cells and increase drug resistance (57). Consistently,
inhibition of the CDK2-mediated phosphorylation of Smad3
reduces TNBC cell migration and invasion through changes in
EMT-related signaling factors (58). According to these findings,
resistance of tumor cells to CDK4/6 inhibitors may result from
suppression of Smad3 that is associated with the activated
cyclin E-CDK2 axis and EMT (15, 36, 59, 60). Thus, the
Smad-TGF-b pathway might be considered as a potential
therapeutic target for overcome drug resistance to CDK4/6
inhibitors (Figure 2, Table 1).

Activation of Alternate Genes Are Involved
in the Progression of Cell Cycle
WEE1
WEE1 is a protein tyrosine kinase that phosphorylates CDK1
and CDK2 and causes their inhibition (61). WEE1 inhibits
CDK1 to maintain the cell in an inactive state and prevent
mitosis. WEE1 also inhibits CDK2 to delay the replication
process and allow time for DNA repair. Both of these events
occur in breast cancer cells (61, 62). Inhibiting the expression of
WEE1 can sensitize the drug resistant cancer cells to CDK4/6
inhibitors, probably because that inhibiting WEE1 can increase
the expression of CD4 (63). In the ribociclib-resistant cancer
cells, a down-regulation of the G2/M checkpoint was observed
(64). Drug resistant cancer cells exhibited collateral sensitivity to
the Wee-1 inhibitor, adavosertib (AZD1775). Combined
treatment with ribociclib and adavosertib can elicit
significantly stronger antiproliferative effect on drug resistant
tumor cells cells than ribociclib alone (64) (Figure 2, Table 1).

MDM2
Mouse double minute 2 homolog (MDM2) is a negative
regulatory protein of tumor suppressor p53 and can inhibit
cellular senescence. MDM2 binds to p53 protein and inhibits
the function of this tumor suppressor (65). Overexpression of
MDM2 drives breast oncogenesis and blocks apoptosis of breast
cancer cells, resulting in resistance of tumor cells to CDK4/6
inhibitors. Therefore, the use of MDM2 inhibitors may reverse
cellular resistance to CDK4/6 inhibitors, and this has been in
human liposarcoma (66). Indeed, the MDM2 inhibitor,
CGM097, in combination with a CDK4/6 inhibitor palbociclib
and fulvestrant has shown promising therapeutic benefits in
reversing the tumor resistance to CDK4/6 inhibitors and to
endocrine therapy (67) (Figure 2, Table 1).
Frontiers in Oncology | www.frontiersin.org 6
INDIRECT CELL CYCLE MECHANISMS

Bypass Pathways of the Cell Cycle
mTOR Pathway
Abnormal activation of mammalian target of rapamycin
(mTOR) pathway is an important target for development of
anti-cancer drug, the most common mechanism of mTOR
activation in breast cancer is via phosphoinositide 3-kinase
(PI3K)/protein kinase B (AKT) signaling, PI3K/AKT/mTOR
pathway is closely associated with cellular resistance to CDK4/
6 inhibitors (15, 68–70). It was reported that mTOR signaling is
dysregulated in breast cancer patients following abemaciclib
treatment (70) and PI3K/mTOR pathway has been shown to
be upregulated in response to chronic exposure to CDK4/6
inhibitors (71). Also, pre-treatment with mTOR inhibitors was
shown to prevent or delay the resistance to CDK4/6 inhibitors
(72). In a kinome-wide siRNA screen, it was found that the AKT
pathway is highly activated in the ribociclib resistant breast
cancer cells (73). Combination of PI3K and CDK 4/6
inhibitors could reduce cell viability and overcome intrinsic
and adaptive resistance leading to tumor regressions (74).
Further studies demonstrated that ribociclib in combination
with an AKT inhibitor or PI3K inhibitor has a significantly
stronger inhibitory effect on the growth of transplanted tumor in
mouse models, as compared with ribociclib alone, supporting the
role of PI3K signaling pathway in mediating resistance to the
CDK4/6 inhibitor (73). Thus, coinhibition of the PI3K/mTOR
and CDK4/6 pathways may prevent induction of drug resistance.
Furthermore, it has been showed in a preclinical model that a
PI3K inhibitor combined with a CDK4/6 inhibitor has a
significant stronger inhibitory effect on proliferation of breast
cancer cells than the single drug (41). Taken together, the PI3K/
AKT/mTOR inhibitors may represent a class of sensitizers in
CDK4/6-targeted therapy (Figure 3, Table 2).

AP-1
High expression of AP-1 can lead to resistance to CDK4/6
inhibitors. AP-1 family consists of C-FOS, C-Jun, ATF, and
MAF, and is involved in the regulation of a variety of genes,
including cyclinD (75). The high expression of C-Jun is common
in breast cancer and affects the expression of ER (76). It was
found in breast cancer cells that are resistant to palbociclib which
the transcriptions of AP-1 and C-FOS were increased, and AP-1
blockade in combination with palbociclib could effectively
inhibit cell proliferation and reduce pRb and CDK2 levels as
compared to single agent treatment (77). These observations
suggest that co-treatment with Ap-1 specific inhibitors and
CDK4/6 inhibitors may elicit anti-tumor synergistic effects.
AP-1 and c-FOS inhibitors have entered Phase II clinical trial
(T-5224) (78) (Figure 3, Table 2).

FGFR
The fibroblast growth factor receptor (FGFR) is growth factor
receptor tyrosine kinases (79). Development of normal
mammary gland requires active transcription of FGFR
mediated proto-protein kinase and FGFR is closely associated
with the development and progression of breast cancer (80, 81).
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Based on the combination of letrozole with ribociclib, the clinical
trial MONALESA-2 observed that FGFR1 amplification was
related to a lower PFS (79). It was also demonstrated that
FGFR1 expression was increased in breast cancer MCF-7 cells
treated with fulvestrant and palbociclib (82), and lucitanib, an
anti-FGFR drug, can decrease drug resistance. As FGFR1 can
stimulate the proliferation capacity of cancer cells, inhibiting
both FGFR/FGF and the CDK4/6 pathways might be an effective
approach to preventing or circumventing resistance to a single
agent (Figure 3, Table 2).

ER and PR
ER and PR are the major factors that mediate cyclinD-CDK4/6
activity in estrogen receptor-positive (ER+) and progesterone
receptor-positive (PR+) breast cancer cells (13). Effect of ER on
resistance to CDK4/6 inhibitors involves both cell cycle and non-
cell cycle mechanisms. In a preliminary clinical study, it was
found that the expressions of ER/PR were lost in the palbociclib
resistant tumor samples and down-regulated in the palbociclib
resistant breast cancer cells (16, 26). Chip-seq analysis uncovered
that ER was deficient in binding to ESR1 and FOXA1, but
enriched in binding to SP1 and AP2, and these were
Frontiers in Oncology | www.frontiersin.org 7
accompanied by decreased expression of regulatory genes such
as PDZK1 and TFF1.These data indicate that drug-resistant cells
are genetically altered by chromosome remodeling. In other
pathways discussed above, high expression of AP-1 leads to
overexpression of C-Jun, which inhibits ER activity and
modulates the efficacy of CDK4/6 inhibitors (76). Similarly,
CDK4/6 blockade can lead to up-regulation of EGFR/ERBB
and down-regulation of ER signaling pathway, and this
negative feedback regulation can impact the efficacy of CDK4/6
inhibitors (26) (Figure 3, Table 2).

Other Mechanisms
EMT
Epithelial-mesenchymal transformation (EMT) is a biological
process in which epithelial cells lose their polarity obtain the
ability to invade and migrate. EMT has important roles in tumor
cell metastasis, tumor stem cell formation, drug resistance, and
other malignant phenotypes. A number of EMT-related
signaling pathways are involved in drug resistance in cancer
cells (83–85). The gene set enrichment analysis (GSEA) revealed
enrichment of pathways that regulate EMT and cancer stem cells
(IL-6/Stat3, IL-2/STAT-5, Notch, Wnt) in the cells resistant to
FIGURE 3 | Resistance to CDK4/6 inhibitors: Indirect Cell Cycle Mechanism Bypass pathways of the cell cycle: mTOR activation is via phosphoinositide PI3K/AKT
signaling. The PI3K/AKT/mTOR pathway regulate cell signal transduction, have extensive links with other bypasses, for example EMT and TGF-b pathway (15, 41,
68–74). High expression of AP-1 (75–78), FGFR amplification (79–82), loss of ER or PR (13, 16, 26, 72) expression drives cells to escape CDK4/6 inhibition and act
as bypass pathways for the progression of the cell. Other mechanisms include EMT (10, 83–87), immune mechanisms (88–91) and autophagy directly or indirectly
influence drug resistance shown in the figure (10, 92–96).
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TABLE 2 | Mechanisms of acquired resistance to CDK4/6 inhibitors: Indirect cell cycle mechanisms.

Resistance classify Resistance mechanism Detection Overcome

Bypass pathways of the cell cycle
(13, 15, 16, 26, 41, 68–82)

mTOR pathway 1. Clinical trial 1. mTOR inhibitor
2. Cell biology experiments 2. AKT inhibitor
3. Immunohistochemistry 3. PI3K inhibitor
4. Animal model

High expression of AP-1 1. Clinical trial 1. AP-1 inhibitor
2. Cell biology experiments
3. Immunohistochemistry

FGFR amplification 1. Clinical trial 1. Anti-FGFR drug
2. Cell biology experiments
3. Immunohistochemistry

Loss of ER or PR expression. 1. Preliminary clinical study 1. ER regulator/blocker
2. Chip-seq analysis 2. Bypass way
3. Cell biology experiments

Other mechanisms
(10, 83–96)

EMT 1. Gene set enrichment analysis (GSEA) 1. Inhibition of EMT
2. Proteomics
3. Immunohistochemistry 2. Bypass way
4. Cell biology experiments

Immune mechanisms 1. Proteomics 1. Immune checkpoint inhibitors
2. Experimental animal models
3. Cell biology experiments 2. Immunotherapy

Autophagy 1. Proteomics 1. Autophagy inhibitor
2. Immunohistochemistry 2. Autophagy proteins

PI3K, phosphatidylinositide 3-kinases; AKT, protein kinase B;mTOR, mammalian target of rapamycin; AP-1, Activator protein 1; ER, estrogen receptor;
PR, progesterone receptor; FGFR, fibroblast growth factor; EMT, Epithelial-mesenchymal transformation; receptor.
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palbociclib (10). Indeed, anti-CDK4/6 therapy can induce EMT
and enhance cell invasion through activating TGF-b signaling
(60, 86). It was suggested that EMT is an important determinant
of success/failure of targeted therapies by interfering with the
compensatory changes such as deregulation of CDK2 activity
(87). Low cyclin D1 (CCND1) expression displays increased
expression of EMTmarkers, increased migration of breast cancer
cells and drug resistance (86) (Figure 3, Table 2).

Immune Mechanisms
CDK4/6 inhibitors not only induce tumor cell cycle arrest, but
also promote anti-tumor immunity (88–90). In murine models
of breast carcinoma, it was found that CDK4/6 inhibitors can
activate tumor expression of endogenous retroviral elements that
enhance tumor antigen presentation. CDK4/6 inhibitors also
suppress the proliferation of suppressive regulatory T cells
(Tregs) and enhance the cytotoxic T cell-mediated killing of
tumor cells. It was also found that CDK4/6 inhibitors could
promote anti-tumor immunity by phosphorylating NFAT4, a
transcription factor of T cells, thereby increasing IL-2 levels (91).
CDK4/6 inhibitors reduced the proliferation of T cells, but
increased tumor infiltration and activation of effector T cells.
In addition, CDK4/6 inhibition can augment the response to PD-
1 blockade in multiple in vivo murine syngeneic tumor models
(91). These studies provide a rationale for combining CDK4/6
inhibitors with immunotherapy to more effectively killing tumor
cells and preventing drug resistance (Figure 3, Table 2).

Autophagy
Autophagy is a cellular process that eliminates the damaged or
aged cells and is the key machinery for bulk degradation of
superfluous or aberrant cytoplasmic components. Autophagy is a
Frontiers in Oncology | www.frontiersin.org 8
double-edged sword in drug sensitivity/drug resistance (92–94).
Autophagy could elevate the maintenance of cancer stem cells
which may enhance drug resistance, while autophagy may help
tumor cells to clear the drug-induced damage which decreasing
the impact of chemotherapy and enhances therapeutic response
(95, 96). It was demonstrated that CDK4/6 inhibition induces
ROS mediated senescence and autophagy, blockade of autophagy
significantly improves the efficacy of CDK4/6 inhibition (10). It
was reported that high expression of autophagy proteins like
LC3B can be utilized to combat resistance to cell-cycle-targeted
therapies, such as CDK4/6 inhibitors (94). More research is
needed to clarify the relationship between the CDK4/6
inhibitor and autophagy, this will provide a better prospect for
the clinical application (Figure 3, Table 2).

Summary and Perspectives
CDK4/6 inhibitors are an effective therapeutic option for patients.
A number of clinical trials have demonstrated the effectiveness and
benefits of CDK4/6 inhibitors in improving the progression-free
survival (PFS) of patients with ER-positive, HER2-negative
advanced breast cancer (ABC) or metastatic breast cancer
(MBC) when combined with endocrine therapy. The approval
of palbociclib was based on the results from the PALOMA-1/
TRIO-18, PALOMA-2, and PALOMA-3 trials. In the PALOMA-1
trail, combined therapy of letrozole with palbociclib significantly
improved PFS as compared with single-agent letrozole. The
PALOMA-2 trial confirmed the clinical activity of combination
of palbociclib with letrozole. In PALOMA-3 trial, combined
treatment of palbociclib with fulvestrant has shown benefits in
patients with HR-positive, HER2-negative ABC or MBC. Thus,
FDA approved the combined use of palbociclib with fulvestran
based on this trial (3, 6, 21, 97). Abemaciclib was approved based
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on the results ofMONARCH 1,MONARCH2, andMONARCH3,
and combination of abemaciclib with fulvestrant has been
approved for treatment of patients with HR-positive, HER2-
negative ABC or MBC. MONARCH 3 trial showed that
abemaciclib plus anastrozole or letrozole produced a
significantly longer median PFS than the placebo plus
anastrozole or letrozole. FDA has approved the combined
therapy of abemaciclib in with an aromatase inhibitor as first-
line treatment for postmenopausal women with HR-positive,
HER2-negative ABC (8, 98, 99). In addition, ribociclib in
combination with letrozole was approved as the first-line
treatment for postmenopausal women with HR-positive and
HER2-negative ABC or MBC, and the combination of ribociclib
with fulvestrant was approved for the treatment of
postmenopausal women with HR-positive and HER2-negative
ABC, based on the outcomes from clinical trials. MONALEESA-
7 trial compared patience received ovarian function suppression
and endocrine therapy plus ribociclib or not, in the ribociclib
group, the PFS and overall survival (OS) was significantly long
than placebo group (100–102). The recent study SOLAR-1,
indicated that when alpelisib was combined with fulvestrant to
treat the patients with PIK3CA-mutated, HR+, HER2- ABC
patients, the PFS was increased from 5.7 to 11.2 months, a
statistically significant prolongation (103). In China, the CDK4/6
inhibitors have been introduced into the first-line treatment for
patients with advanced estrogenic receptor positive breast cancer.
While this new targeted therapy has benefited numerous patients
with advanced breast cancer, drug resistance to CDK4/6 inhibitors
remain to be a major impediment to successful treatment of
the disease. Novel approaches to preventing or overcoming the
Frontiers in Oncology | www.frontiersin.org 9
resistance to CDK4/6 inhibitors would certainly increase the value
and benefits of these agents to breast cancer patients. However, to
reach this goal, we need to have a better understanding of the
multiplicity and complexity of the molecular mechanisms
involved in resistance to CDK4/6 inhibitors. Also, despite
enormous advances in this targeted therapy in treating breast
cancer, its clinical efficacy and benefits are limited by the patient
populations that do not benefit from this remedy, and this might
be associated with a variety of factors such as tumor heterogeneity
and target alterations. Identification and development of
predictive and reliable biomarkers for the response to CD4/6
inhibitors shall significantly improve the outcome and value of the
CD4/6-targeted therapy through better selecting appropriate
patients for specific therapeutic regimens, thus are urgently
needed. With a better understanding of the molecular
mechanism behind resistance to CDK4/6 inhibitors, we could
anticipate that patients can better benefit from novel therapeutic
strategies that prevent and circumvent drug resistance and
reinforce the efficacy of this targeted therapy.
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