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ABSTRACT Among enterococci, Enterococcus faecalis occurs ubiquitously, with the
highest incidence of human and animal infections. The high genetic plasticity of E.
faecalis complicates both molecular investigations and phylogenetic analyses. Whole-
genome sequencing (WGS) enables unraveling of epidemiological linkages and puta-
tive transmission events between humans, animals, and food. Core genome multilo-
cus sequence typing (cgMLST) aims to combine the discriminatory power of classical
multilocus sequence typing (MLST) with the extensive genetic data obtained by
WGS. By sequencing a representative collection of 146 E. faecalis strains isolated
from hospital outbreaks, food, animals, and colonization of healthy human individu-
als, we established a novel cgMLST scheme with 1,972 gene targets within the Ri-
dom SeqSphere* software. To test the E. faecalis cgMLST scheme and assess the
typing performance, different collections comprising environmental and bacteremia
isolates, as well as all publicly available genome sequences from the NCBI and SRA
databases, were analyzed. In more than 98.6% of the tested genomes, >95% good
cgMLST target genes were detected (mean, 99.2% target genes). Our genotyping re-
sults not only corroborate the known epidemiological background of the isolates
but exceed previous typing resolution. In conclusion, we have created a powerful
typing scheme, hence providing an international standardized nomenclature that is
suitable for surveillance approaches in various sectors, linking public health, veteri-
nary public health, and food safety in a true One Health fashion.

KEYWORDS Enterococcus faecalis, core genome MLST, molecular surveillance,
molecular typing, whole-genome sequencing

nterococcus faecalis is a ubiquitous environmental and opportunistic Gram-positive

bacterium that colonizes the gastrointestinal tract of humans and various animals
(1). E. faecalis is also used in commercial probiotic products and is an important
ingredient in food production, such as in fermented sausages or cheese from raw milk
(2-5). Among members of the genus Enterococcus, this species shows the highest
incidence for human and animal infections and, in addition, is discussed as a zoonotic
pathogen (5-7). E. faecalis has emerged as a major nosocomial pathogen worldwide,
causing bloodstream infections mainly in immunocompromised humans. Furthermore,
it is responsible for endocarditis and urinary tract infections acquired on an outpatient
basis, as well as for mastitis in dairy cattle (8-10). Due to their ability to survive even
harsh environmental conditions, enterococci pose an immense hygienic challenge to
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clinical settings (11-13). Most importantly, treatments of enterococcal infections are
limited to only a few therapeutic agents, since enterococci exhibit multiple intrinsic
resistances and are known to easily acquire additional resistance determinants (14, 15).
Hence, multidrug-resistant enterococci, especially vancomycin-resistant enterococci
(VRE), are a burden for hospitals worldwide (16, 17).

To validate epidemiological linkages and disclose possible transmission events
among humans, animals, food, and the environment, discriminatory high-resolution
typing is of the utmost importance. The high genetic plasticity of E. faecalis is the result
of wide exchanges of genetic material, which in turn complicate molecular investiga-
tions (18). In contrast to the second most important Enterococcus species in hospital
settings, Enterococcus faecium, for which hospital-adapted lineages have already been
identified, most E. faecalis genotypes do not show extended host or context specificity
(19). For instance, Buhnik-Rosenblau et al. demonstrated, on the basis of multilocus
sequence typing (MLST), that no specific genetic groups could be assigned to a
colonization- or infection-associated origin (5). Nevertheless, other studies have de-
scribed at least one hospital-associated E. faecalis lineage, to which sequence type 6
(ST6) belongs (20-23).

Classical MLST relies on PCR amplification and the sequencing of seven housekeep-
ing genes that are distributed over the bacterial chromosome (23, 24). Classical MLST
provides an international and expandable typing nomenclature, but the method
provides only a moderate typing resolution. Typing by macrorestriction analysis via
pulsed-field gel electrophoresis (PFGE) is limited in its discriminatory power, and it
sometimes displays discrepancies with whole-genome sequencing (WGS)-based inves-
tigations (25, 26). Since next-generation sequencing (NGS) enables high-throughput
analyses of entire bacterial genomes at an affordable cost, it has quickly become
indispensable for performing population and outbreak analyses. However, appropriate
bioinformatics tools are necessary as a prerequisite for handling and interpreting
sequence data (25, 27, 28). Core genome MLST (cgMLST) aims to combine the discrim-
inatory power of classical MLST with the extensive genetic data derived from WGS (29,
30). Exploiting hundreds of gene targets of the entire bacterial genome, thereby
providing maximum resolution for multiple research and surveillance analyses (31, 32),
is one of the greatest advantages of the cgMLST scheme. Implementing this scheme in
the SeqSphere™ software (Ridom GmbH, Minster, Germany) allows the definition and
curation of an international and standardized nomenclature, which has successfully
been developed for other meaningful pathogens, such as Staphylococcus aureus,
Listeria monocytogenes, and Enterococcus faecium (29, 33, 34).

In this study, we generated a powerful typing scheme for E. faecalis using the
SeqgSphere™ software, hence providing an international standardized nomenclature
that is suitable for surveillance approaches, outbreak investigations, and phylogenetic
analyses.

MATERIALS AND METHODS

Isolate collection. To define the scheme, a total of 146 E. faecalis isolates (Table S1) were selected
from the strain collection of the German National Reference Centre (NRC) for Staphylococci and
Enterococci. The collection comprises isolates from different sources (hospital associated, human colo-
nization, animal, and food) sent to the NRC over a period of 20 years. Hospital-associated strains were
isolated from blood (bacteremia or endocarditis), urine, and wounds. Isolates designated human colo-
nization strains were obtained from stool specimens or rectal swabs as part of patient screening. The
animal-associated strains were isolated from dairy cattle, pig, and poultry specimens that included
healthy animals, confirmed infections (mastitis), and food (meat). The selection of isolates also included
VRE of the most abundant vancomycin-resistant genotypes, vanA (n = 24) and vanB (n = 19). For
calibration of the novel cgMLST scheme, a subset of closely related E. faecalis strains was included. Of
these, 27 isolates that were assigned to 10 PFGE types were obtained from an intestinal colonization
screening (ICS) program of healthy, nonhospitalized families in Germany. Also, 23 isolates from 4 putative
hospital transmission (PHT) events and forming 4 PFGE types (>82% identity) were selected.

Furthermore, two additional isolate collections were compiled to test the newly defined cgMLST
scheme (Table S1). First, a collection of 14 E. faecalis isolates from blood cultures, representing all E.
faecalis blood culture isolates sent to the NRC in the years 2015 to 2017, was sequenced and analyzed.
Second, a total of 21 environmental samples, isolated from hospital wastewater and the follow-up
treatment stages, were analyzed.
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DNA extraction, whole-genome sequencing, and de novo assembly. Bacterial strains were
cultivated overnight in brain heart infusion broth at 37°C. DNA was extracted using a DNeasy blood and
tissue kit according to the protocol of the manufacturer (Qiagen, Hilden, Germany). The Qubit double-
stranded DNA (dsDNA) high-sensitivity (HS) assay kit (Invitrogen/Thermo Fisher Scientific, Karlsruhe,
Germany) was used for DNA quantification. A total of 1 ng of extracted DNA was employed for library
preparation using the Nextera XT DNA library prep kit according to the manufacturer’s instructions
(Illumina, San Diego, CA). Whole-genome sequencing was accomplished using short-read (2 X 300-bp)
paired-end sequencing provided by MiSeq (n =109) and HiSeq (n = 72) instruments (lllumina, San
Diego, CA) as described elsewhere (15). The resulting raw reads were assembled de novo using SPAdes
(v. 3.9.0, default parameters) (35), which is also integrated into the Linux version of the SeqSphere*
software (v. 5.0.0; Ridom GmbH, Minster, Germany). The assembled sequence data were used for
extraction of STs and further downstream analyses.

Single nucleotide polymorphism-based mapping. For comparative purposes and validation of the
cgMLST scheme, the sequence data obtained were also used for a single-nucleotide polymorphism (SNP)
mapping approach. To this end, raw reads were trimmed using Trimmomatic (v. 0.32; default parameters
with sliding window set to 4:15) (36), and resulting paired-end reads were aligned to the reference
sequence of E. faecalis strain OG1RF (GenBank accession no. NC_017316) using BWA-SW (v. 0.7.13-r1126;
default parameters) (37). Subsequent variant calling was performed using VarScan (v. 2.3; default
parameters) (38). E. faecalis is highly recombinogenic; therefore, SNPs located within a distance of 300 bp
or less to each other were excluded using SNPfilter (v. 3.2.3; exclusion distance [d] = 300) (39). Maximum
likelihood phylogenetic trees were calculated on the basis of retained SNPs using PhyML with a general
time reversible (GTR) nucleotide model (v. 3.0; bootstrap, 1,000 permutations) (40). Phylogenetic trees
were visualized by applying iTOL (v. 4.2.3; https://itol.embl.de/) (41).

Target scheme definition. The finished and publicly available genome of E. faecalis OG1RF (version
1, GenBank accession no. NC_017316.1) was selected as the “seed genome” for the cgMLST scheme
definition. Using the cgMLST Target Definer tool (v. 1.5 with default parameters) of the Ridom
SeqSphere™ v. 4.0.9 software, a rapid local ad hoc cgMLST scheme was defined that contained all genes
of the reference genome that were not homologous, did not contain internal stop codons, and did not
overlap other genes. All other 11 publicly accessible and finished E. faecalis genome sequences (as of 12
May 2017) (Table S1), together with the 146-shotgun genome collection of this study (see above), were
selected as query genomes to generate a cgMLST task template applicable to E. faecalis strains of various
origins. Only targets from the ad hoc scheme that were present in =95% of all query genomes were
accepted as cgMLST targets. This parameter was chosen due to the genetic plasticity and the diverse
population structure of E. faecalis and to ensure a typing scheme suitable for isolates of various origins.
The resulting compilation of target genes (Data Set S1) was defined as the core genome genes and used
for the subsequent typing scheme.

Evaluation of the cgMLST target gene set. All publicly available genome sequences from the NCBI
and NCBI Sequence Read Archive (SRA) databases (as of 30 August 2017) were used to evaluate the
cgMLST scheme. In total, 526 NCBI genomes were downloaded and analyzed in SeqSphere*. To ensure
a defined and quality-controlled data set for the evaluation process, a thorough manual filtering process
was performed. First, all genomes used to create the cgMLST task template were removed from the
evaluation data set (n =514 after filtering). Next, all data sets sequenced with lon Torrent or 454
technology were excluded because of their increased tendency to contain homopolymer errors
(n = 502). Afterwards, and in order to ensure sufficient quality of the sequence data used, all data records
for which no MLST could be assigned by SeqSphere™ were filtered out (n = 488). Finally, the data sets
were searched for duplicates, since prominent or culture collection strains are often overrepresented and
could thus induce a bias in the evaluation data set (n = 481). Genome sequences from the SRA were
automatically filtered with SeqSphere™ by (i) lllumina data, (ii) SRA replicate filtering (technical replicates
of one SRA sample were identified and the biggest data set kept), and (iii) strain name filtering, to detect
strains submitted more than once, e.g., by different submitters (the largest data set was selected). After
filtering, 984 of 2,093 genome sequences met these criteria. One single-genome sequence was unavail-
able, so a total of 983 SRA sequences were finally downloaded for scheme evaluation. All data sets were
assembled with SPAdes (v. 3.9.0 implemented in SeqSphere™ with default settings [“-careful” option
turned off]) and analyzed with SeqSphere*. Most of the manually processed filter criteria used for the
NCBI data were implemented in the SRA download and automatically processed. Therefore, only SRA
data duplicates of the seed and query genomes (n = 978), as well as low-quality data, i.e., data sets to
which no MLST could be assigned, had to be removed by manual filtering, leaving 849 data sets of the
NCBI-SRA collection. A final manual filtering step omitted 330 genome data duplicates derived from
merging the SRA and NCBI sequences (NCBI data were kept while SRA data were removed). Finally, 1,000
data sets were retained for cgMLST evaluation.

cgMLST-based analysis. The environmental strains, NRC and NCBI strains, and all isolates used to
define the novel cgMLST were analyzed using the cgMLST scheme to validate the applicability of the
scheme and review the collection for its representativeness of the E. faecalis population structure. The
software defined individual allelic profiles at the strain level. These profiles were used to construct
minimum spanning trees (MST) in SeqSphere* for the entire strain collection by pairwise ignoring
missing values. Furthermore, phylogenetic trees were calculated using the neighbor-joining algorithm
with default parameters implemented in the Ridom SeqSphere* software. Trees were visualized using
iTOL (v. 4.2.3) (41).

Determination of cluster distance. To determine allelic distances between closely related isolates,
the calibration subsets of isolates obtained from the ICS program (n = 27) and from PHT events (n = 23)
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were used. Detailed knowledge about the epidemiological background of these subsets further strength-
ened the selection chosen for calibration. The threshold for cluster distance determination was set based
on the results of the cgMLST-based MST using the allelic differences between highly identical isolates
compared with allelic differences from or between nonrelated isolates. For validation purposes, the
threshold derived was compared with results of the SNP-based mapping analyses.

Comparison of phylogenetic trees. The resulting phylogenetic trees from the SNP- and cgMLST-
based approaches to the collection of 146 isolates were used to compare the concordance of the two
methods. The phylogenies were checked for similarities and differences regarding isolate clustering. In
addition, using normalized absolute differences of patristic distances of isolate pairs obtained by the
respective phylogenetic analyses, an isolate-by-isolate comparison was performed. It was necessary to
multiply the difference values by 1 X 109, followed by taking the logarithm (basis = 2), to generate
distance values suitable for comparing the two approaches. These calculations resulted in values that
were used as a measure of the grade of concordance, which then was visualized by heat maps using iTOL
(v. 4.2.3) (41). In doing so, the logarithm compressed the data distribution. To mitigate this effect in the
visualization, the median of the values was calculated and used as the mean value of the color scale.

FastTree analyses with available sequence types. A maximum-likelihood phylogenetic tree was
generated by FastTree 2 (v. 2.1.7, Jukes-Cantor+CAT model) using aligned concatenated sequence data
of 852 MLST sequence types (as of 25 January 2018) obtained from PubMLST (www.pubmlst.org) (42, 43).
The resulting phylogenetic tree was visualized by applying iTOL (v. 4.2.3) (41).

Accession number(s). Raw reads of all sequenced E. faecalis isolates of this study (n = 181) were
submitted to the Sequence Read Archive database of the National Center for Biotechnology Information
and are available under accession no. SRP156712.

RESULTS

Diversity and suitability of the strain collection for scheme definition. MLST
analyses revealed 41 different STs present in the strain collection of 146 isolates, 7 of
which were new STs submitted to the PubMLST database (42). Considering the diverse
origin of the isolates (hospital associated, human colonization, animal, and food) and
the sampling period of more than 20 years, the collection provided a deep insight into
the population of E. faecalis.

To visualize the genetic relation between isolates of the collection, a phylogenetic
tree based on MLST genes was calculated using the Ridom SeqSphere™ software (Fig.
1). The MLST tree was annotated with available metadata of all isolates, in particular, ST,
origin, vancomycin resistance, and year of isolation. In due consideration of the
importance of the human- and clinical-associated lineage ST6, which also included
most of the VRE, this genotype was more frequently represented in the collection
(n =47, ~32%).

To gain an insight into the representativeness of the strain collection in the context
of all available STs, a maximum-likelihood phylogenetic tree based on sequences of 852
STs was calculated using FastTree 2 (Fig. 2). The resulting tree showed clustering of
available sequence types, with each single leaf representing one ST. As can be seen in
Fig. 2, the selected strains were distributed over the entire tree and covered almost
every branch, indicating that the strain collection reflects an extensive and diverse
selection of the E. faecalis ST-based population structure (Fig. 2B). Only an outlier group
of five different STs was not represented in the isolate collection used to define the
cgMLST scheme (Fig. 2A).

Development and evaluation of the E. faecalis cgMLST scheme. Based on the E.
faecalis strain OG1RF reference genome (2,636 genes with coding DNA sequences), a
preliminary reference task template was generated that retained a total of 2,385 target
genes after thorough filtering. Using all 11 finished genome sequences from NCBI (as
of 15 January 2017) and the 146 genome sequences of our strain collection as
penetration query genomes, a cgMLST scheme of 1,972 target genes was defined,
covering 67.9% of the seed genome (Data set S1). All finally assigned cgMLST targets
were present in =95% of all query genomes.

For evaluation purposes, 1,000 genome sequences from the NCBI and SRA data-
bases (as of 30 August 2017) were downloaded, thoroughly filtered, and finally ana-
lyzed using the E. faecalis cgMLST scheme. At least 95% good cgMLST target genes
were found in more than 98.6% of the genome sequences (mean, 99.2% good target
genes). In addition, the 146 query genome sequences of the isolate collection were also
used to analyze the performance of the newly defined cgMLST scheme. Query genome
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population of E. faecalis and was generated using FastTree 2. (A) A radial overview and (B) a circular presentation of the main part of the tree are shown. STs
represented in the strain collection for scheme definition are color coded in red. Blue color codes represent all STs available for this study. Visualization was
realized using iTOL.

analysis resulted in a mean of 99.6% good targets detected (ranging from 96.4% to
100%) (Table S1; “% good cgMLST targets” column).

To determine cluster distances, a subset of 50 isolates with detailed epidemiological
data (ICS, PHT) was used. The ICS isolates belonged to 10 distinct groups determined
by PFGE analyses and comprised 9 different STs (Fig. S1). Relatedness was further
supported by the results from the SNP-based analysis, as these groups exhibit 0 to 1
SNP differences (Data Set S2). The isolates from PHT also belonged to four distinct PFGE
groups, comprised three different STs, and demonstrated a close relationship based on
SNP analyses (0 to 7 SNP differences; Data Set S2). Analysis of the 50 calibration isolates
using the novel E. faecalis cgMLST scheme confirmed the close relationship of those
strains (Fig. S2A). Based on these results, and considering highly related and nonrelated
members of the strain collection, we defined a difference of seven alleles as the
threshold for distinct clusters.

Concordance of the cgMLST scheme with SNP-based phylogenetic analyses. To
evaluate the newly defined cgMLST scheme, the results obtained were compared with
an SNP-based mapping approach. A total of 2,200 SNP positions (recombinatoric events
excluded by distance-based filtering) were considered for tree calculation. The resulting
maximum likelihood phylogenetic tree had 147 tips (including reference genome) with
292 nodes, and it demonstrated that the isolates differed from each other by 0 to 213
SNPs (Fig. S3A; Data Set S2). The cgMLST-based phylogenetic tree consisted of 146 tips
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and 291 nodes, roughly indicating comparable outcomes (Fig. S3B). Both methods for
phylogenetic tree calculation showed concordant clustering according to ST grouping
and that of isolate clusters (>2 isolates) comprising several STs (Fig. S3).

For visualization and as a measure of concordance, a heat map was created, which
was calculated based on the normalized absolute patristic distances for each particular
isolate obtained by the two different approaches (Fig. S4). The heat map comparison
showed a good concordance for closely related strains, such as the ST6 subpopulation,
and for the groups of the ICS program (Fig. S4, visualized by blue boxes). The more
distantly related isolates performed differently with the two approaches (Fig. S4,
visualized by orange boxes).

Application of the novel cgMLST scheme to describe the E. faecalis population
structure. The cgMLST scheme was also tested to investigate the relatedness of strains
putatively involved in hospital outbreak events and to obtain further insights into E.
faecalis population structure. Over 95% good cgMLST target genes were found in all
isolate sequences of the entire strain collection, including those that were not used to
define the cgMLST scheme (mean, 99.7% good target genes). The allocation of complex
types (CTs) showed that the collection was composed of 97 different CTs (Fig. 3). To
further visualize the results, an MST was calculated (Fig. S2). The isolates that were
chosen for CT calibration were clearly represented by distinct clusters in the MST
analysis (Fig. S2A). Due to the epidemiological data and previous PFGE analyses, PHT
group 1 was identified, and indeed showed a maximum difference of six alleles in the
cgMLST analysis. The isolates belonged to ST25 and CT722. The NCBI isolate E. faecalis
LD33, which is also ST25 but exhibits CT237, was unequivocally separated from PHT
group 1 by 490 alleles. Furthermore, isolates belonging to PHT groups 2 and 3
displayed identical CTs within each cluster and thus also proved suitable for complex
calibration (0- to 2-allele difference). In contrast, PHT group 4 comprises eight ST6
isolates that were also demonstrated to be closely related in previous PFGE analyses
(>85% identity; Fig. S1) and in SNP-based examination (0 to 11 SNPs; Data Set S2) but
yielded four different CTs (0 to 15-allele difference; Fig. S2B).

The calibration collection also included 27 isolates sampled as part of an ICS
program of healthy families in Germany (Fig. S2A). Previous PFGE analyses revealed
that these isolates belonged to 10 distinct groups, with each screened family
creating a distinct group (data not shown). The cgMLST analyses (>99.6% good
target genes) generated results concordant with PFGE typing. The ICS groups
generated no separate cluster of commensal isolates within the population, and
instead these isolates were widely distributed over the MST (Fig. S2). Altogether, the
ICS groups were suitable for calibration, as they differed by at most two alleles from
each other within one group, but by over 29 alleles in relation to unrelated isolates
harboring identical STs.

In addition, a selection of isolates that were not used to define the cgMLST scheme
was analyzed. These isolates included 14 clinical isolates and also 21 environmental
samples of E. faecalis. With a mean of 99.4% good target genes, all environmental
isolates were successfully analyzed. Six isolates belonged to ST6 and were obtained
directly from clinical sewage. Concordantly, those isolates clustered together with ST6
isolates of the strain collection in MST analyses (Fig. S2B). Nevertheless, they constituted
a distinct cluster when considering the corresponding distance matrix (>27-allele
difference from other ST6 isolates) and exhibited CT744. The other environmental
isolates were distributed over the tree, harbored unique CTs, and showed no distinct
clustering depending on the sampling site (Fig. S2A).

The 14 clinical isolates that were obtained from blood culture and sent to the NRC
in the years 2015 to 2017 yielded 11 different STs and only unique CTs (mean, 99.4%
good target genes). Four isolates were assigned to ST6 and also clustered within the
ST6 group, but in contrast to the sewage, ST6 isolates did not separate into a distinct
clade (Fig. S2B).
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FIG 3 Isolate collection for establishing the E. faecalis cgMLST scheme (n = 146). The phylogenetic tree is based on cgMLST analyses and was calculated with
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41 different STs and 97 different CTs. Visualization was realized using iTOL.

DISCUSSION

In this study, we developed and evaluated a robust typing scheme for analyzing E.
faecalis, an opportunistic pathogen of various origins. The scheme was implemented in
the Ridom SeqSphere™ software suite to generate highly concordant and comparable
results and to provide a standardized nomenclature for the scientific community.

The E. faecalis strain OGTRF was used as the seed genome to define the cgMLST
targets. Based on previous investigations of comparative genomics, the OG1RF strain
represents a rather conserved E. faecalis genome due to the lack of mobile genetic
elements (44). In contrast, and thus less suitably for a cgMLST definition, the fully
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sequenced E. faecalis strain V583 was demonstrated to contain up to 25% mobile
genetic elements within its genome (18).

The novel cgMLST scheme proved to be a powerful tool for analyzing E. faecalis
isolates, including those of various sampling backgrounds, such as hospital-associated
strains and strains obtained from general screenings in outpatient settings (coloniza-
tion), but also for strains from animals, food, and the environment. Furthermore, the
results of the evaluation with genome sequences from the NCBI and SRA databases
highlight the robustness of the selected target genes and thus the suitability of the
scheme to investigate the relatedness of E. faecalis isolates based on core genome data.

The results have also provided a detailed overview that enhances our current and
common understanding of the E. faecalis population structure. When the classical MLST
scheme for E. faecalis was published, the first insights into the population structure of
this opportunistic pathogen became available (23). The authors described correlating
results obtained by MLST and PFGE, but they also mentioned slight deviations between
the two typing methods and additionally noted the influence of mobile genetic
elements and high rates of recombination events. In accordance with the results of the
cgMLST analyses in the present study, a dispersion of single genotypes over various
origins and sampling sites was reported. However, a few lineages (e.g., ST6) showed
adaptation to the hospital environment, which is especially known for E. faecium clinical
isolates (21, 45-47).

The 14 isolates from blood cultures that were received by the NRC between 2015
and 2017 are represented by 11 different sequence types and 14 different complex
types. This again supports the hypothesis that there is no distinct lineage responsible
for human infections. Nonetheless, four of the isolates belonged to ST6, which suggests
that at least some STs might primarily be human associated (21, 23). These results are
in accordance with ST6, which is detected with a high prevalence in hospitalized
patients (23, 48), as a human-associated lineage. Tedim et al. attributed the high
prevalence of ST6 (and other highly abundant STs) to their high potential for adapta-
tion (45). To create a robust scheme for E. faecalis outbreak analysis, we therefore
included a high number (n = 47; 32%) of ST6 isolates in our strain collection used for
scheme definition. The ST6 isolates incorporated into this study were collected over
18 years and originated exclusively from humans, including from the most common
clinical presentations, such as bacteremia and endocarditis. In total, the ST6 strains
analyzed comprised 57 isolates that yielded 34 different complex types. As was
anticipated prior to setting up the cgMLST scheme, subdifferentiation was able to
reveal multiple CTs within a certain ST, and thus might be suitable for tracing or
excluding transmission events.

One considerable advantage of cgMLST, especially for genotyping purposes, is
the focus on alleles instead of SNPs. While a missing gene or homologous recom-
bination events can result in numerous SNPs, only entire allele changes are taken
into account by cgMLST analyses (31, 49). In addition, the threshold of CT definition
mitigates possible typing variations caused by these events. Indeed, cgMLST pro-
vides a robust and expandable database for allelic profiles, and it has already been
applied for outbreak analyses of various pathogenic bacteria, such as Enterococcus
faecium, Staphylococcus aureus, Listeria monocytogenes, and Clostridium difficile (29,
33, 34, 50).

Besides cgMLST, which is superior in its resolution compared to classical typing
methods, reference-based bioinformatics approaches are widely used for more detailed
analysis of strain relatedness and for phylogenetic purposes (51). Such approaches
provide results in high resolution for investigating closely related individuals, as in
outbreaks mostly restricted to a local setting (e.g., one ward, one hospital, or one
country) (52). In contrast, phylogenetic investigations on a “global” scale or long-term
studies often lack a reference suitable for the entire set of strains to be analyzed (53).
Although programs such as refRank will select for the best reference for a given data
set, it is always a trade-off with respect to the genomic variety of the strain collection
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(39). In addition, SNP-based approaches must be adjusted for recombination events,
which would otherwise impact phylogenetic interpretations (49, 54).

Assessing the phylogenetic trees of the two approaches, the phylogenies seemed to
be conformable and reproducible, as described before for comparative analyses of L.
monocytogenes (55). Also, our mathematical approach to comparing the concordance
of patristic distances obtained by SNP-based and cgMLST analyses demonstrated that
a high concordance could be reached for closely related isolates. Isolates without a
close relationship showed less concordant results. Taking into consideration that the
SNP-based phylogenetic approach also includes intergenic regions, while cgMLST does
not, the low concordance observed for distantly related isolates is expected.

We also analyzed and inversely examined the concordance of the cgMLST and
SNP-based approaches using our strain collection. For instance, isolates of one of the
putative hospital transmission groups (PHT group 2) were proven to be closely related
both by SNP-based mapping and by cgMLST data. Analyses of the PHT group 2 and 3
strains, which originated from the same hospital and ward, were isolated 6 months
apart and harbored different STs and CTs, a finding that was also supported by the
SNP-based approach (7 SNPs). For isolates of PHT group 4, the cgMLST analyses showed
that these strains belonged to three different CTs, revealing that this group was not
built by the spread of a single clone. These findings again indicate the general
applicability of cgMLST. Furthermore, it highlights the need to select a suitable refer-
ence genome for downstream analyses of variant-calling investigations in order to
produce reliable results, by applying the most reasonable method for data evaluation
at a given time and for a certain strain collection.

In conclusion, we successfully defined a cgMLST scheme for E. faecalis. Our analyses
showed that cgMLST was suitable for analyzing closely related strains from putative
hospital transmission events, as well as for analyzing and portraying the general
population structure of this important opportunistic pathogen.
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