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The development of autonomous legged/wheeled robots with the ability to navigate and
execute tasks in unstructured environments is a well-known research challenge. In this
work we introduce a methodology that permits a hybrid legged/wheeled platform to realize
terrain traversing functionalities that are adaptable, extendable and can be autonomously
selected and regulated based on the geometry of the perceived ground and associated
obstacles. The proposed methodology makes use of a set of terrain traversing primitive
behaviors that are used to perform driving, stepping on, down and over and can be
adapted, based on the ground and obstacle geometry and dimensions. The terrain
geometrical properties are first obtained by a perception module, which makes use of
point cloud data coming from the LiDAR sensor to segment the terrain in front of the robot,
identifying possible gaps or obstacles on the ground. Using these parameters the selection
and adaption of the most appropriate traversing behavior is made in an autonomous
manner. Traversing behaviors can be also serialized in a different order to synthesise more
complex terrain crossing plans over paths of diverse geometry. Furthermore, the proposed
methodology is easily extendable by incorporating additional primitive traversing behaviors
into the robot mobility framework and in such a way more complex terrain negotiation
capabilities can be eventually realized in an add-on fashion. The pipeline of the above
methodology was initially implemented and validated on a Gazebo simulation environment.
It was then ported and verified on the CENTAURO robot enabling the robot to successfully
negotiate terrains of diverse geometry and size using the terrain traversing primitives.

Keywords: hybrid wheeled-legged planning, legged robots, legged locomotion, robot control, field robotics,
perception, trajectory generation

1 INTRODUCTION

During the past 2 decades there was an increasing effort in developing robots for addressing
challenges in difficult and unstructured environments such as those resulted after physical or man-
made catastrophes like earthquakes, nuclear accidents and tsunami. These developments were
motivated from the fact that these disaster conditions are highly unsafe for the human emergency
responders. In fact, the aforementioned scenarios can put at the risk the health of a person with the
presence of radiations, toxic contamination or collapsing structures. To avoid negotiating the health
of the emergency responders working under these circumstances, extensive mission training/
preparation, attention and planning before entering in a hazardous area is needed to be carried
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out under the very restricted time constraints of the first response
procedures. Unfortunately, even in the case of good awareness of
the expected conditions in the critical space, the risks for the
operators still remains substantially significant when entering
such unstructured and unpredictable environments. For these
reasons the robotics community started to develop robotic
technologies that can demonstrate the ability of carrying out
tasks autonomously or semi-autonomously, keeping the human
operators safe.

In particular, to substitute effectively a human responder and
operate within a challenging environment in disaster response
applications, a robot has to be able to perform a variety of tasks
interacting with the entities of the environment, negotiating
cluttered ground with obstacles of different shape and
dimension, making a way to the final goal assigned.

This highlights the need for a mobile robot (wheeled, legged or
hybrid) to be capable of navigating across the environment,
identifying possible obstacles and terrain features and
negotiating them effectively using a variety of traversing skills
to reach the target location.

To achieve such autonomous functionalities, perception
driven reasoning about the environment features, geometries
and conditions, together with perception driven planning are
two of the most fundamental skills needed to be endowed in the
emerging robotic systems targeting to operate in such challenging
workspaces. Towards this direction, in this work we present an
obstacle crossing framework that allows to demonstrate terrain
negotiation skills that are adaptable, extendable and can be
selected and combined in an autonomous manner based on
the features and geometries of the terrain surface as identified
by the robot perception system. The main features and
contributions of our terrain crossing framework include:

• use of a set of terrain traversing template primitives that are
employed to perform driving, support polygon shaping,
stepping on, down and over terrain surfaces and obstacles,

• extraction of the terrain geometrical features and obstacles
through point cloud data processing and terrain
segmentation, identifying possible gaps or obstacles on
the ground and their geometrical parameters,

• autonomous selection and serialization of the most
appropriate traversing template primitives given the
geometrical parameters of the terrain features and
obstacle perceived in front of the robot,

• on the fly regulation of the parameters of the terrain
traversing template primitives based on the obstacle
dimensions,

• and finally a fully extendable architecture that permits to
incorporate additional primitive traversing behaviors into
the robot mobility framework and in such a way more rich
terrain negotiation capabilities can be eventually realized in
an add-on fashion.

In more details the robot is able to automatically acquire a
representation of the environment, extract the needed information
from the obstacles and plan a feasible path that allows it to reach the
desired target location regulating and concatenating the available

primitives. The human operator enters the loop exclusively to send
the target location that the robot has to reach.

The proposed mobility framework is implemented and
validated both in simulation and experimentally on the
CENTAURO hybrid mobility manipulation robot (Kashiri
et al., 2019) endowing the platform with the ability to plan
and mix wheeled and stepping actions in fully autonomous
manner effectively negotiating obstacles on the ground using
the selected, according to the plan, traversing template primitive
actions.

The paper is organized as follows: in Section 2 we will briefly
analyze some related works in terms of robots for disaster
scenarios. Section 3 presents the proposed autonomous
obstacle crossing framework. In Section 4 the experimental
results are shown and discussed. Finally in Section 5 we
outline the conclusion.

2 RELATED WORK

One of the high level challenges that anymobile robot experiences
when it needs to operate within an unstructured environment, is
to be able to demonstrate effective navigation and mobility
performance that permits it to deal with the terrain
uncertainties and unknown setting of the unstructured
environment in general.

In order to achieve this, the robot needs to build a
representation of the environment and localize itself in it,
updating the map based on the new information coming from
the sensory system installed. This problem has been widely
addressed in the literature and different methods exist. In
Mastalli et al. (2020) and Fankhauser et al. (2018) are
proposed methods that work with a 2.5D elevation map,
implementing a locomotion framework for quadruped robots.
On the other side there are also solutions that use a point cloud to
represent the surrounding area and extract the needed
information through segmentation. The segmented elements
are used to understand the scene composition and then define
the desired behaviour as in Oßwald et al. (2011) where a
humanoid robot segments the horizontal planes of stairs for a
climbing task or more in general as in Wang et al. (2020) where a
point cloud representation is used for navigation.

In this work, we decided to use a method based on the
segmentation of planes in a point cloud in order be able to
segment the needed elements and extract the relevant
information more precisely. This would be harder to extract
from a 2.5D elevation map due also to the application of
smooth filters that degrade the accuracy. Moreover the point
cloud can be used for object detection in future developments.

Focusing now on the locomotion aspects, mobile robots can be
classified as wheeled, tracked, legged or hybrid. Wheeled and
tracked mobility has been widely explored in mobile robots for
diverse applications ranging from space exploration rovers
(Tunstel et al., 2005) to home cleaning platforms (Tribelhorn
and Dodds, 2007). Generally they have less problems of
equilibrium but they are limited to drive in flat or low
unevenness terrains mostly. To overcome this limitation and
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enable mobility over rough grounds, legged robots were
introduced. Their design generally includes two or more legs
enabling them to traverse the environment via stepping. Despite
the fact that stepping poses more equilibrium challenges, legged
platforms are able to move inside cluttered and degraded
environments, gaining the ability to negotiate different kind of
obstacles and ground challenges. Examples of legged robots
include several humanoid platforms (Radford et al., 2015;
Tsagarakis et al., 2017), but also quadruped like HyQ (Semini
et al., 2011), ANYmal (Fankhauser and Hutter, 2018) and the
Boston Dynamics’ SpotMini.1

Hybrid robots target to combine the benefits of both wheeled
and legged mobility. They are generally made by legs ending in
wheels permitting them to drive on flat surfaces, which is faster,
safer and better from an energy consumption point of view. At the
same time the legged articulation allows them to also perform
stepping and crossing of obstacles adapting completely to the
terrain nature and imposed challenges. This makes hybrid robots
potentially more effective combining the flexibility of legged
mobility with the efficiency of wheels when the terrain is
appropriate. Some examples of hybrid mobility robots include
Momaro (Schwarz et al., 2016b), CENTAURO (Kashiri et al.,
2016), and RoboSimian (Hebert et al., 2015) platforms. In
addition, it is worth considering the effort applied by the
ANYmal team with the transformation of their legged robot
into a hybrid one, attaching wheels to the legs and developing a
whole-body motion control and planning framework for hybrid
locomotion (Bjelonic et al., 2019; Bjelonic et al., 2020).

Another important aspect to take into account is the strategy
used to control a robot operating in an unstructured and remote
environment (Atkeson et al., 2016). The first approach that is
generally implemented, is through direct teleoperation where a
human operator manually controls the robot movements via a
number of interfaces (as in Hedayati et al., 2018; Bandala et al.,
2019). This approach may be easier to realize but it requires to
provide effective teleoperation interfaces, train the operators and
negotiate potential issues due to delays and degraded
communication. Moreover this approach poses a high
cognitive load on the human operator especially when he/she
has to deal with high complex, number of Degrees of Freedom
(DoFs) robots.

To assist the human operator and improve the efficiency in the
execution of the tasks, the work in Katyal et al. (2014) incorporate
to the teleoperation framework semi-autonomous capabilities
based on the task required. Similarly in Klamt et al. (2018)
and Klamt et al. (2020), semi-autonomous capabilities were
introduced to help the operator in complex tasks like grasping
an object. Despite the fact that a semi-autonomous behaviour
hides the complexity of some actions, there is still strong
dependency on the human operator. To bypass this, the
research effort started to concentrate on the development of
robots that can demonstrate even higher level of autonomy
(Wong et al., 2018), permitting the robots to accomplish tasks
without the need of continuous input from the operator. This

approach requires the implementation of robust autonomous
skills since the robot has to complete the desired tasks without
any or with minor human intervention. This can significantly
reduce the execution time of the mission requiring the human to
enter in the loop for high-level control or for monitoring the
execution of the tasks. Concerning the mobility control in
particular, the enhancement of autonomous navigation and
obstacle crossing skills can significantly increase the potential
of mobile robots operating in unstructured and remote
environments.

When taking about autonomous navigation, the majority of
the work is related to the field of autonomous vehicles as in
Abdulmajeed and Mansoor (2014) and Zhiwei et al. (2015),
where autonomous mobile platforms use one (or generally
more) LiDAR to discover and avoid obstacles. These robotic
platforms nowadays are widely used in warehouses or other
places but, despite the nice results achieved, wheeled robots
are limited for the objective we would like to achieve. Of
course, in the last years, a lot of effort was spent also on more
complex robotic systems. A simple approach was presented in
Rohmer et al. (2008), where the team proposed an Action Planner
based on an elevation map for lunar exploration with a hybrid
robot. Here the minimal path is extracted and then transitions
between driving and stepping mode are identified. In the
following years, more elaborated solutions have been proposed.

In Schwarz et al. (2016a) is presented a framework for semi-
autonomous locomotion and manipulation with the hybrid robot
Momaro, where the operator controlled the movements of the
robot, but here only driving and manipulation were considered.
This locomotion framework was then extended in Klamt and
Behnke (2017), incorporating the robot orientation and a
hierarchical step planner, employing an action set defined on
the basis of the kinematic capabilities of the robot, but also in this
case the framework was not fully autonomous. Similar results can
be observed with the wheeled-legged robot Pholus. In Sun et al.
(2020), a control framework is proposed for hybrid locomotion
built on a hierarchical structure based on: hybrid footstep
placement planning, Center of Mass trajectory optimization
and whole-body control. In particular, the foot placement
planning is executed considering a set of motion modalities
defined: driving, walking or, more generally, hybrid modes.
This was tested with simple objects, without showing fully
autonomous capabilities, in fact they plan to introduce
reinforcement learning to determine the motion modes to be
used. Few months later, in Haddeler et al. (2020), the team
proposed also a motion planning framework for boundary
exploration with the possibility to switch between driving and
stepping based on the needs. In these experiment the team used a
pre-computed map, without evaluating the new data online, due
to hardware-limitations. In this work we tackle the problem of
autonomous obstacle crossing using the hybrid mobility
CENTAURO robot (Kashiri et al., 2016). We introduced a
hybrid mobility planner driven by the robot perception, which
enables CENTAURO to cross and avoid obstacles on the ground
in a complete autonomous fashion starting from an emptymap of
the environment that is built at run-time. The proposed hybrid
mobility planner leverages on a number of terrain traversing1https://www.bostondynamics.com/spot
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primitives that can be modulated, combined and serialized to
generate hybrid mobility plans that can then be autonomously
executed by CENTAURO. The operator is required to provide the
final destination pose to reach and to supervise the execution,
which is then autonomously planned and executed. The details of
the proposed hybrid mobility planner are introduced in the next
sections.

3 OBSTACLE CROSSING FRAMEWORK

An overview of the proposed autonomous obstacle crossing
framework is introduced in (Figure 1) showing the core
components of the framework and their interaction. The
overall framework is composed by two core components. The
first is dedicated to the terrain feature extraction and implements
all the operations related to the perception data collection and
processing, follow up by the terrain segmentation and feature
extraction modules. The second component of the framework is
responsible for the obstacle crossing planning and execution. It is
composed by the planning module, which makes use of a set of
traversing template primitives to plan and synthesize the
traversing strategy. The selected traversing primitives are then
adapted based on the properties of the terrain/obstacle features.
Finally, the synthesized terrain traversing plan is executed by the
whole body control module running on the CENTAURO
platform.

3.1 Perception Component
In this work a general representation of the environment is
obtained using a rotating laser scanner sensor installed on the
head of the CENTAURO platform. Starting from the point cloud
data produced by the laser scanner sensor the goal of this
component is to use these points to infer some kind of
knowledge about the terrain features or obstacles that the
robot will have to deal and interact with while performing the

autonomous terrain traversing functionality. For this
implementation we used the Point Cloud Library (Rusu and
Cousins, 2011), which is a large scale, open source library for
point cloud processing. An overview of the terrain feature
extraction pipeline is introduced in Figure 2).

In the following we are going to present the perception
pipeline defined even though it does not contain novel ideas,
but it is useful to understand better which kind of information we
extract from the scene. The pipeline process starts with an initial
scanning phase which involves the execution of rotating actions
with the laser scanner to obtain different scans of the
environment around the robot. These scans are collected and
merged by the octomap ROS node (Hornung et al., 2013), which
allows to perform a probabilistic registration of the point clouds,
obtaining in the end the map of the environment. Since the size of
the map increases with the time passing, a filtering node is used to
remove possible noise and keep only a portion of the space in
front of the robot. This allows to reduce the number of points
considered and so the computational time needed for further
processing. The order of the filters applied took inspiration from
Palnick (2014). In particular we used the following filters:

• VoxelGrid Downsampling: With this filter the entire 3D
space is subdivided into voxels of the same dimension,
where the voxel is the 3D equivalent of a grid cell. The
points in each voxels are approximated with their centroid.
This filtering technique allows to obtain a more
homogeneous density in the point cloud. It is particularly
useful with LiDARs since they provide an irregular density;
much higher in the proximity of the sensor with respect to
far areas;

• Statistical Outlier Removal: This filter considers, for each
point, a small neighborhood to evaluate mean and standard
deviation based on the distances between the points. If these
values are outside a specified range, the point is considered
as an outlier and so trimmed off the cloud. This filter is

FIGURE 1 | The proposed autonomous obstacle crossing framework composed by two core components, the Perception component and the Crossing Planning
component.
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particularly useful for errors due to lights and reflection
because they generally provide sparse outliers;

• PassThrough Filter: By using this filter we are able to keep or
remove portion of a cloud based on the position along the
three axis. We used this filter to consider only the points in
front of the robot, trimming all the others.

Once that all the filters have been applied, the resulting output
cloud is used to perform a horizontal plane segmentation,
allowing us to obtain more information about the scene
composition. In fact, the resulting planes can be used to
identify possible gaps in the ground by looking at the distance
between the planar regions found.

In parallel to the segmentation, the filtered cloud is also used to
find obstacles. In particular, we firstly process the cloud with the
purpose of keeping only the highest points for each x-y position,
considering a discretization on the x-y plane with a resolution
equals to the one of the sensor (3 cm). We then perform a
Conditional Euclidean Clustering Extraction to split the
resulting cloud into separated ones, based on the euclidean
distance and the high of the points. On each of these clusters
we fit a plane with a model-based segmentation algorithm. At this
point we have the top surfaces of the objects and, to reduce the
errors in the estimated yaw of the bounding box, we project all the

points of the segmented plane on the x-y plane. This allows us to
remove possible uncertainties due to double walls or remained
outliers. Finally, we use the library function to obtain the oriented
bounding box of the object perceived. In doing this we assumed to
work with rectangular shapes for simplicity. Focusing more on
the horizontal plane segmentation instead, we can summarize the
pipeline and see the final and partial results in Figure 3.

At the beginning we estimate the normal vector for each
point in the cloud. The normal estimation is obtained through
a library function that computes the eigenvectors and
estimates the normal. This library function is also provided
for a GPU execution taking advantage of parallel computing,
increasing the speed of the elaboration. Since CENTAURO is
equipped with a GPU, we decided to use it for the normal
estimation. The resulting data are used to filter the points
based on the normal orientation, keeping only those points
whose normal vector is at least inclined of 45 degrees with
respect to the horizontal plane. We did not consider a more
restrictive interval because the normal estimation is not
perfect, especially with double walls, and otherwise, we
could remove interesting points, affecting the accuracy of
the overall procedure. At this point we can perform the
actual segmentation, firstly computing the euclidean
clustering, splitting the filtered point cloud into distinct

FIGURE 2 | Overview of the pipeline of the perception component.

FIGURE 3 | Cloud processing for horizontal plane segmentation. From the point cloud we perform normal estimation, normal filtering based on the orientation,
euclidean clustering and model-based segmentation.
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ones, then, on each of these clusters we applied the model-
based segmentation to extract the horizontal planes.

3.2 Crossing Planning Component
Once the terrain feature extraction module has been
implemented, we leverage on the information extracted from
the environment to autonomously overcome the perceived
obstacles with the CENTAURO robot. The goal of this
component is therefore to plan the trajectory that the end
effectors (wheels) have to follow to cross the terrain features/
obstacle that the robot is facing.

For the entire task we assumed to work in quasi-static
assumptions to simplify the problem, maintaining the stability
during the overall task keeping the Center of Mass inside the
support polygon, which is defined by the wheels in contact with
the ground during the stepping manoeuvre.

We decided to define a planning strategy based on a set of
terrain traversing template primitives. In this implementation we
considered the following primitives:

• StepOn: Performing a stepping action with one of the legs
from a lower to a higher terrain height.

• StepDown: Performing a stepping action with one of the legs
from a higher to a lower terrain height.

• StepOver: Performing a stepping action with one of the legs
ensuring a height clearance over a certain obstacle height.

• Drive: Performing wheeled locomotion using the wheel end-
effectors of the CENTAURO legs.

• Reshape: Performing a change in the shape of the support
polygon by a rolling movement of the wheels.

The above template primitives have been parameterized with
regards to the initial and final poses of the stepping/driving
actions, the clearance height of the stepping actions as well as
their executing velocity allowing to adapt to them accordingly to
the needs of derived terrain traversing plan. A visual
representation of the primitives and their adaptation
parameters can be seen in Figure 4. In particular, the
implemented primitives are autonomously executed in a
sequential manner, based on the terrain features extracted, in
order to build the terrain traversing plan that is sent to the
controller of the robot. The composition of the terrain
traversing plan based on the above mentioned primitives is
the result of an offline planning that is performed in such a way
that, at run-time, the traversing primitives can adapt their
parameters (length of the stepping, the clearance height, etc.)
based on the dimension of the object that the robot is
approaching. In more details, the trajectory defined by each
of the above primitives is not fixed in advance, but parametrized
by a set of parameters that are regulated in an autonomous
manner online to alter the form of the trajectory of the primitive
and adapt it according to the properties of the perceived

FIGURE 4 |Graphical representation of the template primitives and their parameters. On the right side we can see the list of all the parameters that are considered in
the definition of the primitive. In more details, for the stepping actions, the parameters allows to change at run-time the trajectory of the end effector based on the
perceived obstacle.
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obstacles e.g., in order to avoid collisions with the obstacles. As
an example, having the position of the object and its dimensions
e.g., its height, the parameters are automatically selected to allow
the robot to approach the object without touching and lifting the
wheel at a suitable height to create the necessary clearance based
on the elevation of the object. The depth dimension instead is
used to define how much the wheel needs to be moved in order
for the leg of the robot to reach the other side of the obstacle or
its top surface, based on the selected primitive. In this work
rectangular shaped objects are assumed and the primitives are
modulated to negotiate this kind of terrain/obstacle shapes with
the leg trajectory.

We chose to use a primitive-based hybrid planning because,
compared to sampling-based methods, it is generally faster and
easier to extend. In fact, we can easily remove or consider
different set of defined actions, connecting them properly to
achieve the result.

For the driving part we integrated in our module the ROS
Navigation stack (Marder-Eppstein et al., 2010), which allows to
perform 2D navigation decomposing the planning part into
global and local. The global planner, implemented as an A*
algorithm (Hart et al., 1968), allows to find the shortest path
between the initial and ending point, taking into account the 2D
occupancy grid and the inflation radius for the objects. This map
allows to understand which are the areas traversable via driving.
An example of the occupancymap is shown in Figure 2where the
black areas represent the obstacles, the gray the inflation radius
from the obstacles and the white indicates the clear areas. The

local planner instead is based on the DynamicWindow Approach
(Fox et al., 1997), DWA, and tries to follow, as much as possible,
the global plan, considering also the footprint of the robot to
avoid collisions. The parameters of the planner have been tuned
with several tests to allow correct execution of the path by our
robot, considering a footprint that is slightly bigger than the
actual to enhance robustness against uncertainty. The input taken
by the navigation stack is the occupancy grid, provided by the
octomap node, which provides information about the elements in
the map, which are higher than the ground, since this considers a
2D motion only.

The stepping part instead, as mentioned above, is achieved
combining the available terrain traversing primitives with a finite
state machine that selects the most appropriate primitive based
on the terrain features extracted. In more details, the
implemented reasoning is presented in Figure 5, where we
arrive to the final target considering one obstacle at a time.

First of all, we acquire from the human operator the
destination location goal on the ground that the robot shall
reach. The information provided from the terrain feature
extraction component is used to identify the closest obstacle to
overcome on the way to the destination goal. The dimensional
and geometrical properties of the object are evaluated to
understand if the obstacle can be overcome or not by a
driving primitive given the size of the CENTAURO wheel and
its resulted capacity in overcoming obstacles up to certain height
(within the range of 5 cm). Based on this assessment the stepping
or the driving primitives are employed to negotiate the obstacle.

FIGURE 5 | Primitive-based Reasoning. For each obstacle that the robot faces, we check if we can drive around it. If this is not possible the hybrid planner is used to
derive appropriate traversing actions using the StepOn, StepDown and StepOver primitives.
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This is iterated for each obstacle, until we arrive to the desired
destination location in the space.

In more details, the reasoning applied to decide the traversing
behaviour is based on a simplified kinematic of the robot’s leg and on
several tests performed in simulation with obstacles of different
dimensions. In particular, based on the leg design, the maximum
elevation that we can reach is around 32 cm, except for thin obstacles
since the wheel has to travel for a shorter distance. The stepping on
procedures take into account mainly just the height of the obstacle,
since the end point is based only on the edge. For the stepping over,
instead, we need to cross with one action the entire obstacle, for this
reason we cannot perform this action with objects that have a
combination of height and depth over a certain threshold.

In particular, for the stepping part, we start acquiring the
information of the closest obstacle that is in front of the robot
from the perception module. The planner, considering the terrain
features, plans the sequential order of the primitives that has to be
applied to deal with the obstacle and then it performs a regulation of
the primitive parameters (stepping distance, clearance height, new
foothold height) to adapt them to the geometrical and dimensional
properties of the object to cross. At this point, the resulting references
for the foot trajectories are sent to the robot controller to be executed
by the robot. Following the execution of the sequence of primitives
associated with the traverse of the obstacle, the planner continues
with the generation of the next sequence of primitives to be executed
based on the updated information provided by the perception
module, concerning the follow up obstacle challenge to
encounter. For the execution of the stepping primitives by each
leg and in order to maximize the distance of the CoM from the
borders of the support polygon, when the robot is standing on the
three legs to execute the stepping action a primitive motion
(Reshape) that performs a regulation of the support polygon
shape is executed. In particular, at the beginning of each stepping
action, the opposite wheel, with respect to the one that we are going
to lift, is moved in order to align to the pelvis position so that the
triangular support polygon is modulated to increase the distance of

the CoM from that support polygon borderlines. The result of this
can be seen in Figure 6.

Once that we increased the stability of the robot, we can lift the
wheel of a quantity that is based on the height of the object. Then,
if we are going to step over the object we move the wheel in such a
way to arrive on the other side of the obstacle, otherwise we move
to the beginning of the obstacle plus a threshold, in order to avoid
to place the foot on the edge. Finally we lift down the wheel and
move back the opposite wheel, we moved for stability, to its
original position.

4 RESULTS AND DISCUSSION

4.1 System Overview
The evaluation of the proposed terrain traversing framework was
performed on the CENTAURO robot (Figure 7) which is a
centaur-like robot with four articulated legs and a humanoid
upper body. From a locomotion point of view CENTAURO was
designed to be hybrid. This was chosen to overcome the limits of
wheeled and tracked robots, that can drive only on flat terrains. In
fact, CENTAURO has four 5 DoFs legs, ending in 360o actuated
steerable wheels. At the same time its anthropomorphic upper
body endows the robot with enhanced manipulation capabilities
making CENTAURO an excellent mobile manipulation platform
that can be used to address in a range of applications.

Analyzing its sensory system, CENTAURO is equipped with a
Velodyne Puck 16 sensor (LiDAR), which is a continuously 3D
rotating laser scanner that provides range measurements. This
sensor allows to obtain a 3D representation of the environment as
a point cloud and is mostly used in this work. In addition to the
Velodyne, the robot is equipped with an Intel Realsense T265
camera2 that assists in the localization of the robot within its

FIGURE 6 | (A) Initial configuration, in which the wheels (green dots) are
all in contact with the ground and the support polygon is a rectangle. (B) The
result of lifting one wheel (red dot) without moving the others. Here the CoM
(blue dot) is on the edge of the polygon. (C) The selected approach,
where we move a wheel in order to obtain a more suitable support polygon
with borderlines further than the location of the CoM.

FIGURE 7 | The CENTAURO hybrid legged/wheeled robotic platform
with indications of its mobility system, perception and on board computational
components.

2https://www.intelrealsense.com/tracking-camera-t265/
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environment. This device has an IMU and two greyscale fish-eye
lenses that are used to estimate the pose of the sensor. We used
this data to correct the position of the robot, being able to localize
it, while building the map.

The onboard software and control architecture of the robot
employs the following main elements: XBotCore (Muratore et al.,
2017), OpenSoT (Hoffman et al., 2017) and CartesIO (Laurenzi
et al., 2019).

The first one is an open-source, light-weight platform for
robotics system that was designed to be both a RT robot control
framework and a software middleware. It provides a simple and
easy-to-use middleware API for both RT and non-RT control
frameworks. OpenSoT is an open-source software library
developed to address whole body motion generation and
control of redundant robots. It includes high-level interfaces to
the state-of-the-art algorithms used for kinematic and dynamic
modelling, quadratic programming optimization, cost functions
and constraints specification. Finally CartesIO extends OpenSOT
with additional layers that permit the user to define in an intuitive
manner based on a set of tasks a Cartesian controller without the
need of writing code. To achieve this, the team designed an auto-
generated interface to send commands to the Cartesian
controllers using ROS (Quigley et al., 2009).

In terms of onboard computational resources, CENTAURO is
equipped with three different PCs. We used the EmbeddedPC to
run XBotCore, the ControlPC for the Cartesian Controller and
finally the VisionPC for the architecture proposed in this
manuscript.

The first set of experiments targeted to test and evaluate the
perception module. In particular we assessed the accuracy of the
obstacle detection running several tests with different rectangular
objects.

We compared the actual position and dimensions of the
obstacle with the estimated ones. For the height of the
obstacle we obtained generally more accurate results, since we
consider an average of the z values of all the points of the top
surface, otherwise, keeping just the highest one may result in an
outlier. In this way we obtained an error that is less than 2 cm.
The other two dimensions of the obstacle are extracted from the

bounding box and resulted in errors smaller than 4–5 cm, while
the error of the center of the object was within the 1 cm. The
achieved accuracy results are considered reasonable given the
3 cm resolution of the sensor used, therefore the expected error
was 6 cm, 3 cm per each side. Further improvement of this
accuracy would require the use of a more accurate sensor. In
Figure 8 we can see the point cloud obtained in the real case
scenario, with the oriented bounding box estimated from it and
the measures considered for the evaluation. In Table 1 are
specified the quantitative results of the perception module,
evaluating the errors of both depth and height estimation
obtained in simulation environment and also on the real
robot. These measurements were extracted from the Obstacle
Segmentation module running at 10 Hz considering objects of
different dimensions, in more details: height from 0.07 to 0.35 cm
and width from 0.10 to 1.60 cm. Moreover we considered also
objects at different distance and orientation with respect to the
actual robot position.

4.2 Scenarios Considered
To run and validate the primitives and the autonomous hybrid
navigation planner, we then executed trials considering different
obstacles, at the beginning separately, then sequentially to build a

FIGURE 8 |Comparison of the real world scenario and the perceived one. The error in both dimensions and distance between wheels and object is smaller than the
sensor resolution, 3 cm.

TABLE 1 | Statistical results of the estimate of the obstacle dimensions in both
simulation and on the real robot. The data were extracted considering
rectangular obstacles of different dimensions, placed at different distance and
orientation with respect to the robot.

Simulation results Real robot results

Min. Depth Error 0.007 m 0.007 m
Max. Depth Error 0.053 m 0.045 m
Avg. Depth Error 0.026 m 0.026 m
Std. Dev. Depth 0.0302 m 0.0297 m
Min. Height Error 0.001 m 0.004 m
Min. Height Error 0.010 m 0.020 m
Avg. Height Error 0.005 m 0.006 m
Std. Dev. Height 0.0051 m 0.0062 m
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FIGURE 9 | Difference in the stepping on approach after stepping on with the front wheels: (A) Front wheels are much closer to the end of the object rather than the
rear wheels with the beginning of the obstacle. The robot steps on with the front wheels (I) and drive until the front wheels reach the end of the obstacle (II). At this point the
robot will step down with the front wheels before considering the stepping on with the rear ones. (B) The opposite case, in which the robot has to step on with the front
wheels (III) and drive until the rear wheels will be close to the object (IV). At this point the robot will step on also with the rear wheels.

FIGURE 10 | Sequence of the stepping over strategy applied in simulation environment with an Obstacle-A. (A)We approached the obstacle, stopping at a safety
distance from it, (B) step over with the left front wheel, (C) step over with the right front wheel, (D) drive, stopping with the rear wheels close to the object, (E) step over
with the left rear wheel, (F) step over with the right rear wheel, completing the task. In the bottom you can see the motion modalities considered in the framework. Dark
blue color indicates that the corresponding wheel is in contact with the ground; the orange line instead is the Z value of the wheel, while the dashed white one shows
the terrain level. (I) Driving on flat surface, (II) Traversing Over an obstacle modality making use of sequential stepping over primitives on the individual legs, (III) Traversing
modality for a small depth obstacle making use of stepping on and stepping down primitives executed by the four legs, (IV) Traversing modality for a large depth
obstacle making use of stepping on and stepping down primitives executed by the four legs.
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more complex and challenging environment. In more details we
considered the following four obstacle sizes:

• Obstacle-A: Rectangle of 0.20 × 1 × 0.15: Step over;
• Obstacle-B: Rectangle of 0.40 × 1 × 0.15: Step on;
• Obstacle-C: Rectangle of 1.50 × 0.8 × 0.15: Step on;
• Obstacle-D: Rectangle of 0.15 × 0.45 × 0.19: Drive around.

The selected obstacles allowed us to verify all possible
crossing approaches achieved through the combination of
the motion primitives defined. The first obstacle requests a
stepping over primitive, the second and the third allow to test
two different behaviours of the stepping on procedure, while
the last obstacle involves navigation to drive around the object.

In particular, in the second case we have to cross the obstacle
stepping on with the front wheels and then stepping down,
arriving in a configuration in which the obstacle is between the
front and the rear wheels. While in the other case we have to
step on the obstacle with all the wheels in order to cross it, as
visualized in Figure 9. The choice is based on the dimension of
the obstacle and so the distance between the front wheels and
the end of the object on which they are and between the rear
wheels and the beginning of the obstacle that they still have to
approach.

Before executing a trial with the real CENTAURO robot a trial
was first executed in Gazebo simulation environment to verify the
correct operation. The top images of Figure 10 introduce a
sequence showing the stepping over approach of an Obstacle-

FIGURE 11 | Scenarios considered in simulation to check the robustness of the implemented framework. The colored line represents the trajectory followed by the
pelvis during the overall task and it is mapped as follows: green for driving, blue for stepping over, orange for stepping on and purple for stepping down.
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A. While the bottom images describe the motion modalities that
are considered inside the planner for the experiments carried out.

Furthermore, in simulation environment we performed
additional tests to evaluate the robustness of our approach in
a number of different obstacle configurations. In particular, we
considered eight scenarios with a different arrangement of
obstacles, as it can be seen in Figure 11. For each of these
scenarios we run 5 trials changing the initial position of the
robot along the x and y axis in a neighborhood of 0.7 m from the
zero position (the actual position of the robot in the image). In all
the trials performed the proposed method generates a correct and
effective plan to cross the obstacles by combining the available
primitives. As an example, considering the scenarios F and H, the
plan starts selecting the driving primitive to avoid the obstacle on
the side of the corridor, then the step over is used to overcome the
small obstacle that blocks the path and finally driving again to
reach the target location assigned. In the scenario B instead the
plan begins with stepping on and stepping down for the front
wheels, then the same primitives are selected for the rear ones. At
this point the robot avoids the obstacle via driving arriving in
front of the last obstacle that is crossed using the stepping over
primitive.

Once the trials were verified in simulation, equivalent trials
were carried out on the real CENTAURO robot considering, also
at this stage, we started with one obstacle at a time. In all the
scenarios that were executed with the real robot, the estimation
error on the dimensions of the obstacle was lower that 3 cm, per
each side, while the robot successfully overcome the provided
obstacles without negotiating its balance while performing the
crossing primitives. During the experiments the robot operated
without a gantry system while being tethered for power and
communication. These tests permitted us to validate the template

primitives and the trajectories specified for the feet. A stepping
action executed by the robot during this trial can be seen in
Figure 12.

Up to now, we checked the correctness of the execution on
single obstacles. The next experiment targeted to evaluate the
proposed method while the robot has to traverse a series of
different obstacles arranged one after the other and separated by
approximately 1.8 m from each other. At the beginning of the
experiment, we acquire a preliminary view of the environment
with the LiDAR, building the map and the occupancy grid. Then,
after having crossed each obstacle, we reset the perception and
rotate the robot to acquire more information for the size and
position of the next obstacle.

Figure 13 introduces the overall scenario, in simulation and in
the real world, where the first obstacle can be crossed by driving
around, using the ROS navigation stack. At this point, the robot
arrives in front of the second obstacle facing it. After the
extraction of the features from the perception module, the
planner selects autonomously the step on strategy and starts
approaching the object. Using the perception system the desired
distance from the object is evaluated and used to regulate the
robot motion until the robot arrives in the right pose/distance in
front of the obstacle. The planner uses the desired stepping
primitive, adjusting the parameters based on the dimension of
the obstacle. A similar approach is followed for the last obstacle,
that since has dimensions under a certain width threshold, it can
be traversed via a stepping over primitive. Figures 14A,B present
the position of the wheels during the two stepping tasks and the
desired reference that they should follow. We can see that not all
the wheels starts to lift at the same distance, this is related to a not
perfect alignment of the robot in front of the obstacle. Despite
this, thanks to the tuning of the thresholds and parameters on the

FIGURE 12 | Sequence of the stepping on strategy applied on the real robot with an Obstacle-B. (A) The robot is close to the obstacle, (B) step on with the front
wheel, (C) step on with the front wheels, (D) step down with the front wheels, (E) step on with rear wheels, (F) robot completed the task, crossing the obstacle.
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real robot, the algorithm is robust enough to allow the correct
execution of the task even with an error in the alignment. In
Figure 14B we can also notice that the elevation reached by the
wheels during stepping on and stepping down is different. This is
due to the fact that for the stepping on we may have at maximum
3 cm of error in the estimation (the resolution of the sensor used).
For this reason we decided to increase slightly the maximum
elevation reached to 7 cm over the estimated height to improve
the safety. For the stepping down instead we do not have this

problem, as we only need to lift the wheel from the surface of the
obstacle and we can use a smaller clearance.

The overall experiment was carried out in 9 min on the real
robot and in less than 7.5 min in simulation. This difference was
due to some limitations we encountered using the real sensors. In
fact, the Realsense T265 camera sometimes disconnected and the
Velodyne sensor had to remain fixed, forcing us to rotate the
robot instead of the LiDAR to acquire a representation of the
environment.

FIGURE 13 | Final experiment in simulation and in real world case. The top depicts the scenario considered with the pelvis trajectory shown in green. The side views
demonstrate the stepping actions, where the orange dashed line shows the trajectory followed by the wheel during the lifted execution while the blue one shows the
trajectory followed using the driving primitive. The first obstacle is avoided driving around, the second one stepping on and down, finally the last one is crossed
stepping over.
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In terms of performances, the time used for the planning is in
the order of 1 ms, since it works as a state machine so, once the
obstacle dimensions are extracted, the algorithm decides
immediately the most suitable crossing behaviour. The
workflow is quite straight-forward and the adjustment of the
primitives requires a negligible amount of time. On the real
robotic platform we made tests with single obstacles, being
able to complete the task 2 times over 3 (for the stepping
obstacles), 3 times over 3 with the driving and avoidance. For
what concerns the full experiment, the one with all the three
obstacles in a row, we made only one test and it was successful.

In addition, to further demonstrate the adaption of the
template motion primitives, we present in Figure 14C the
trajectory followed by the wheels of the robot while
performing a stepping over task with an obstacle of 7 cm
height. As we can see, the automatic adjustments of the
parameters allows the wheels to lift of a quantity that depends
on the obstacle height.

Finally we made an additional experiment to show the
adaption of the planner in case of a primitive removal. In
more details, we considered the same scenario of the step over
task, with an Obstacle-A, but we disabled the step over primitive.
In this way the planner has to use the remained primitives (drive,

reshape, step on, step down) to find a different plan to accomplish
the task.

In the resulting planned trajectories, as shown in Figure14D,
the robot crosses the obstacle using stepping on and stepping
down primitives on their edge limits since the length of the top
surface of the obstacle is very similar to the diameter of the
wheels. For this reason there is no driving part between the
stepping on and stepping down, differently from what we saw in
Figure14B.

With these tests we were able to validate our terrain
traversing template primitives and their automatically
online adjustment based on the obstacle considered, being
able to demonstrate also the autonomous capabilities of the
CENTAURO robot with a hybrid primitive based planner
driven by the perception. The robot was able to identify the
location and the size of the obstacles, one after the other,
negotiating different strategies to cross them, arriving in an
autonomous manner, to the target location assigned. In the
real case scenario we had few limitations related to the 3D
LiDAR that forced us to re-acquire the environment before
approaching every obstacle, but this can be easily automated in
order to have the operator only for monitoring and providing
the high level goal.

FIGURE 14 | Z position of the wheels during (A) stepping over, (B) stepping on, (C) stepping over 7 cm height obstacle and (D) crossing a small obstacle without
stepping over primitive.
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5 CONCLUSION

In this work we introduced an autonomous hybrid locomotion
planner based on predefined set of motion primitives. The
proposed planner was validated on the legged-wheeled robot
CENTAURO enabling the robot to execute autonomously
traversing actions on obstacles identified by the robot
perception system. The planner autonomously selects the
suitable crossing action from a set of motion primitives based
on the dimensions of the obstacle to negotiate. The proposed
method allowed us to start exploiting the autonomy of the
CENTAURO robot thanks to the introduction of the
perception in the overall pipeline. We are currently working
on extending the architecture with terrain traversability features
that abstract from the shapes of the objects and improve the
planning part by introducing new actions and higher level of
reasoning. This will extend the capabilities of CENTAURO
permitting the robot to adapt autonomously to more irregular
shape obstacles and real-case terrain geometries and features.
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