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Abstract: Fracturing fluids are being increasingly used for viscosity development and proppant
transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive
in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby
maximizing fracture conductivity and minimizing residual damaging materials. In this study, the
efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs.
The parameters considered were the effect of the breaker on shear resistance performance and
sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking,
and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme
breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions.
In addition, mannanase II did not adversely affect the shear resistance performance and sand-
suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-
breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers
(e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size
of the residues generated were also significantly lower than those of the ammonium persulfate breaker.
Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of
temperatures (104–158 ◦F) and pH values (7–8.5) to recommend its best-use concentrations under
different fracturing conditions. The mannanase has potential for applications in low-permeability
oilfield development and to maximize long-term productivity from unconventional oilwells.

Keywords: hydraulic fracturing; gel breaking; enzyme breaker; mannanase

1. Introduction

Owing to global reductions in the number of recoverable conventional oil reservoirs,
by 2035, oil resources recovered from low-permeability reservoirs will account for ap-
proximately half of all newly developed oil production projects. Hydraulic fracturing
has proved to be one of the most economically competitive technologies that can be ap-
plied to improve productivity and maximize recovery in low-permeability reservoirs [1].
The principle underlying hydraulic fracturing involves the use of high-viscosity fluids to
generate high-conductivity fractures and transport proppants into the fractures. Subse-
quently, high-viscosity fluids should be rapidly converted into a low-viscosity fluid, which
should then flow back to the reservoir surface [2]. Therefore, in this study, an efficient
and useful enzyme breaker was selected and applied to complete the viscosity reduction
process after the fracturing operation to ensure easy flow-back and efficient clean-up of the
propped fractures.
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In general, the additives to hydraulic fracturing fluids are composed of a thickening
agent, a crosslinker, breakers, a proppant, a pH adjustment system, a fungicide, and a
clay stabilizer. The most important additives that influence hydraulic fracturing fluids
are the thickening agent and breaker. In particular, guar-based polymers are currently the
most reliable thickening agents for hydraulic fracturing [3]. Considering their satisfactory
viscosity and rheology, they can deliver higher proppant concentrations than their lower-
viscosity analogues. In addition, guar gum is also a relatively low-cost natural material with
a high affinity for water [4]. Guar-based polymers are high-molecular-weight biopolymers,
in which the main chain consists of mannose, with galactose as the side chains, such that the
ratio of mannose to galactose varies from 1.6:1 to 1.8:1 [5]. Previous studies have reported
that the polymer viscosity, which reflects its stability, exhibits a positive correlation with
molecular weight. In guar-based polymers, the β-1,4-glycosidic bond of the mannose
main chains is crucial to maintain polymer stability [6,7]. In addition, the α-1,6-glycosidic
bonds in the side chain can also experience degradation, thereby reducing the viscosity
of guar-based polymers, which is useful for viscosity reduction after fracturing [2]. This
feature of guar-based polymers can be used to select suitable breakers that ensure the
elimination or minimization of residual gel damage while optimizing well stimulation.

Ideally, to reduce the gel residue, an efficient and adaptive breaker should cleave
polymers into low-molecular-weight fragments. Breakers for crosslinked gels are usually
categorized as enzymes and oxidizers [8]. Oxidative breakers (e.g., peroxydisulfates, bro-
mates, and peroxides) are most commonly used for the clean-up treatment of residues [9].
However, when they are used in the process of polymer degradation, the process is random
and uncontrollable. This is usually because, after fracture formation, oxidizers degrade the
guar fluid and reduce the viscosity of the fracturing fluid by producing free radicals owing
to thermal decomposition [10–12]. Fuller [2,13] estimated that the efficacy of the oxidative
breaker is strongly dependent on its activity and concentration. In a lower temperature
reservoir, lower oxidant reactivities result in limited thermal decomposition, which may
lead to fracturing failure; therefore, the oxidant is difficult to use for the purpose of break-
ing the gel during the low-temperature hydraulic fracturing process [11]. Therefore, a
higher concentration breaker is required in medium-low temperature reservoirs, relative
to high-temperature reservoirs. Sarwar et al. [14–16] examined the amount of residue
remaining after the addition of oxidative breakers to the fracturing fluid over a wide range
of temperatures (68–212 ◦F). In particular, the filter cake formed as a result of the generation
of a substantial amount of residue can cause formation fracture blockage and a reduced oil
yield. In addition, these oxidizers are often strongly incompatible with many common frac-
turing additives, such as organic materials, and require special consideration during their
deployment and storage [17]. Although they are relatively common and readily available,
their low reactivity and uneven residue removal ability do not favor their application in
medium-temperature reservoirs.

To overcome these drawbacks, enzyme breakers, which offer the possibility of ef-
ficient and controllable degradation while achieving complete gel breakage, have been
introduced [18]. In general, the enzymes used are proteins, consisting of amino acid chains,
which can degrade polysaccharide polymers via the hydrolysis of the connective bonds;
each enzyme degrades a certain chemical bond in the polymer backbone. As biocatalysts
for polymer-breaking reactions, enzyme breakers offer significant advantages over tradi-
tional oxidative breakers [13]. First, enzyme breakers only hydrolyze the polymers in the
hydraulic fracturing fluids, thereby avoiding the occurrence of undesirable reactions that
affect the wellbore, formation, or fracturing equipment [17]. Second, they can effectively
“break” guar polymers into monosaccharides or oligosaccharides, leading to a significant re-
duction in the amount of residue generated [19]. Third, the gel-breaking reaction performed
using enzyme breakers is mild and controllable, guaranteeing a sufficient supporting force
at the initial stage of fracturing construction to enable crack formation and deliver the
proppant [20,21]. However, the stability (spatial structure) of enzyme breakers is strongly
affected by environmental factors, such as temperature and pH [22]. In general, as the
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temperature and pH increase, there is an increase in the tendency of the three-dimensional
conformation of the enzyme to change from the folded active state to the unfolded inactive
state [23]. Therefore, a new breaker is required to break the traditional pH and temperature
limits, which can operate under alkaline and medium-temperature reservoir conditions, as
well as playing an important role in the field of hydraulic fracturing.

Considering the specificity of enzymes in targeting polymer links and their stabilities
with respect to different environmental conditions, previous studies have investigated sev-
eral high-performance hydrolase breakers that can specifically degrade the glycosidic bonds
of guar-based polymers, such as mannanase, cellulase, galactosidase, and amylase [24–28].
However, the existing literature does not include reports on enzyme breakers with higher
gel-breaking efficiency in medium-temperature and alkaline reservoirs. Therefore, our
research was conducted under simulated medium and low temperatures and alkaline
reservoir conditions, to identify the enzyme breaker with the optimum gel-breaking effect
under this condition.

Mannanase is a type of enzyme that specifically decomposes β-1,4-glycosidic bonds.
Thus far, it has been widely applied in the feed, medicine, and food industries. Although
mannanase had not been widely applied in hydraulic fracturing, some progress has been
made since its introduction. When compared with other breakers, mannanase can degrade
polymers more thoroughly and generates reduced gel residue. Moreover, some authors
reported that a certain type of mannanase exhibits higher activity for high temperatures
and a wide pH range [29–31]. These properties make it a superior enzyme breaker that
can be an excellent alternative to the use of harsh treatments in alkaline and medium-
temperature formations. However, the effectiveness of this enzyme has not been verified
in the site experiments of fracturing operations, and the best-use concentration of the
enzyme breaker under different conditions has not been determined. The best amount
of breaker can not only achieve the goal of low damage and low cost for the fracturing
fluid system, but also achieve the effect of increasing the flowback rate and increasing
production of low-permeability reservoirs. Therefore, in this study, the indoor evaluation
of the gel-breaking effect and applicability of mannanase and other enzyme breakers was
carried out by simulating the reservoir conditions (158 ◦F, pH = 8.5) of the Xinjiang Shengli
Oilfield [32–34]. In addition, the best-use concentration of the optimal enzyme breaker has
been determined under other broader conditions.

2. Materials and Methods
2.1. Materials

This study was conducted in 2019 at the Laboratory of Biobased Material & Green
Papermaking, Qilu University of Technology, China. The ammonium persulfate breaker
(APS), thickening agent, clay stabilizer, fungicide, and other chemical additives were
provided by the SinoPEC Shengli Oil Field Ltd. Co. (Dongying, China). A series of enzyme
breakers was provided by the Shandong Longda Bio-Products Co., Ltd. (Linyi, China). The
crosslinker and pH adjustment system were purchased from the Damao Chemical Reagent
Factory (Tianjin, China). The basic components of the fracturing fluid used in this study
are listed below.

Thickening agent: A guar gum blend was used as the thickening agent in all of the
experiments in this study. The blend consisted of a high viscosity, chemically modified
polysaccharide that disperses readily and subsequently self-hydrates to yield a viscous solution.

Crosslinker (0.35% w/w): Sodium borate was used as a source of borate ions to
crosslink the guar gum polymer. The borate ions generated 1:10 complexes with the
guar chains.

pH adjustment system: Sodium hydroxide (0.1 M) and hydrochloric acid (0.1 M) were
used as the pH adjust system, which was used to maintain optimal pH conditions for the
reaction between the thickening agent and crosslinker.

Additives: The clay stabilizer (0.2% w/w), fungicide (0.2% w/w), and other chemical
additives were added as per their actual use in hydraulic fracturing treatments in the field.
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Breakers: Mannanase I (CAS: 37288-54-3), mannanase II (CAS: 37288-54-3), amylase
(CAS: 9000-92-4), cellulase (CAS: 9012-54-8), pectinase (CAS: 9032-75-1), xylanase (CAS:
9025-57-4), galactosidase (CAS: 9031-11-2), glucanase (CAS: 9025-70-1), and ammonium
peroxydisulfate (CAS: 7727-54-0) were the breakers used in the experiments.

2.2. Methods
2.2.1. Effect of Breaker on Shear Resistance Performance and Sand-Suspending
Performance of the Fracturing Fluid

In general, guar concentrations in the range of 0.12–0.96% w/w are used for hydraulic
fracturing operations [35]. However, a polymer loading of 0.4% w/w is more suitable
for common oilfield fracturing conditions. Therefore, in our experiments, a guar gum
gel concentration of 0.4% w/w was used. First, a sufficient amount of the guar gum was
used to prepare a 500-mL 0.4% w/w solution. The solution was stirred at 600 rpm for
5 min, additionally, the polymer was allowed to hydrate for 4 h at 200 rpm. Second, 1-mL
concentrations of 0.2% w/w clay stabilizer, fungicide, and other fracture additives were
separately added to 50-mL of 0.35% w/w borax solution. Thereafter, the borax solution
and guar polymer were mixed for crosslinking, and the polymer was adjusted to a pH
of 8.5. Third, once set up 8 groups of parallel experiments, the enzyme breakers were
added separately to 500-mL the cross-linking solution (0.1 g enzyme breaker per liter of
solution). The enzyme breakers included mannanase I, mannanase II, amylase, cellulase,
pectinase, xylanase, galactosidase, and glucanase [36–38]. Finally, the mixed solution was
stirred continuously at a rate of 170 s−1 and at 158 ◦F [39]. The viscosity of the fracturing
fluids was measured at 20 min intervals using a rotational viscometer to study the effect of
different enzyme breakers on the temperature and shear resistance of the fracturing fluid.

Proppant sedimentation experiments were performed with gravel suspended in 0.4%
w/w polymer solution according to a ratio of 3:7 at 158 ◦F. This experiment evaluates the
sand suspending performance of the fracturing fluid with the addition of different enzyme
breakers [40,41].

2.2.2. Gel-Breaking Efficiency of Breakers

Based on the temperature and shear resistances of the fracturing fluids, as well as the
sand-suspending performance after the addition of the different enzyme breaker [39], the
relatively suitable mannanase I, mannanase II, and galactosidase breakers were selected
for further experiments. First, the gels were prepared as per the procedure outlined in
the previous section [42]. Once set up 3 groups of parallel experiments to conduct the
assay, mannanase I, mannanase II, and galactosidase were added separately to a 500-mL
mixture of fracturing fluid (0.02 g enzyme breaker per liter) [43,44]. Finally, the change in
the viscosity of the guar polymer was measured using a rotary viscometer to study the
gel-breaking efficiencies of the different enzymes. The optimal gel breaker based on the
breaking efficiency/performance under simulated the reservoir conditions (158 ◦F, pH = 8.5)
of the Xinjiang Shengli Oilfield was selected. We simultaneously conducted comparative
experiments to determine the breaking efficiency of the ammonium persulfate breaker.

2.2.3. Reservoir Damage by the Breaker after the Fracturing Operation

Crosslinked guar samples were prepared. The samples were adjusted to a pH of 8.5
and either ammonium persulfate or mannanase II breakers were added to conduct the
gel-breaking experiments at 158 ◦F and other wider temperature range. The samples were
left overnight at the breaking temperature to facilitate maximum breakage. The next day,
to estimate the amount of unbroken polymer and residue generated after breakage, these
samples were subjected to a residue-after-break procedure [45]. The contents were cen-
trifuged at 3000 rpm for 30 min and filtered. To calculate the amount of residue recovered,
the gel residue was weighed using weighing paper. Subsequently, the weighting paper
and the residue were dried for another 12 h and reweighed to ensure moisture removal.



Molecules 2021, 26, 3133 5 of 13

To further examine the molecular size of the guar polymer after it is “completely
broken”. The changes in the molecular size of the guar polymer before and after the
gel-breaking under simulated the reservoir conditions (158 ◦F, pH = 8.5) was analyzed by
the laser particle size analyzer [46].

2.2.4. Best-Use Concentrations of Mannanase II under Different Environmental Conditions

In a typical experiment, viscometric assays of guar polymer solutions were performed
within a temperature range of 104–158 ◦F and pH values (7–8.5) conditions with the use
of a rotational viscometer, thereby further evaluating the gel-breaking performance of
mannanase II and optimal dosage under different conditions [36]. The gels were pre-
pared as per the procedure outlined in Section 2.2.1. The temperature was adjusted by
means of water-bath heating while the alkalinity was adjusted by adding the pH regulator.
Finally, a rotational viscometer was used to measure the apparent viscosity of the fractur-
ing fluid sample under different temperature and pH conditions to determine optimal
enzyme dosage.

2.2.5. Statistical Analysis

Statistical analyses were performed using SPSS v26.0 (IBM, Chicago, IL, USA). One-
way ANOVA was performed followed by Duncan test [47], where p < 0.05 was consid-
ered significant.

3. Results and Discussion
3.1. Effect of Breaker on Shear Resistance Performance and Sand-Suspending Performance of the
Fracturing Fluid

Considering that the breaker and other fracturing additives are simultaneously in-
jected into the well in the fracturing operating process, the fracturing fluid requires a
high viscosity to effectively transfer pressure and carry the proppants. Therefore, after
adding the enzyme breaker during the fracturing operation, we must consider the effects
of the temperature, shear resistance, and suspended sand performance on the fracturing
fluids [23].

In this study, eight candidate enzymes were selected, their temperature and shear
resistance performance with respect to the guar polymers were investigated by analyzing
the change in the viscosity of the solution at a shear rate of 170 s−1 and at 158 ◦F for the
addition of each breaker. As shown in Figure 1, all curves first decrease with the shear time
and then tend to maintain a plateau when the temperature remains at 158 ◦F. In Figure 1a,
0.1 g/L concentrations of xylanase and glucanase were unable to maintain a continuous
downward trend for the fracturing fluid viscosity. In contrast, the same concentrations
of mannanase I, mannanase II, amylase, cellulase, galactosidase, and alkaline pectinase
directly caused the fracturing fluid to liquefy, such that the fracturing fluid was unable to
complete the task of generating high-conductivity fractures and transporting the proppant
into the fractures. Therefore, to reduce the speed of degradation, lower concentrations
of these preferred breakers were considered. However, based on related literature and
previous experiment judgment, low-concentration cellulase, amylase and pectinase alone
cannot completely reduce the viscosity of guar gum polymer [1,5,18]. Comprehensive
consideration of cost and degradation speed, lower concentrations of mannanase I, man-
nanase II, and galactosidase breakers were used. Figure 1b shows that lower-concentration
enzymes, particularly mannanase II, can still reduce the viscosity of the guar polymers.
Moreover, after shearing for 60 min at 158 ◦F, the viscosity of the fracturing fluids is greater
than 50 mPa·s, satisfying the application requirements for the fracturing fluid [13].
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performance of the fracturing fluid after the addition of the preferred enzymes at low concentrations.

Fracturing fluids should have high viscosity to carry the proppant in the initial phase;
otherwise, low viscosities significantly affect the effectiveness of fracturing [11]. The
temperature and shear resistance of the fracturing fluid after adding the preferred enzymes
was confirmed. Even if the viscosity of the fracturing fluid after the addition of the
mannanase I, mannanase II, and galactosidase declines more rapidly, a high viscosity
can be maintained at 158 ◦F. Therefore, based on our judgment, the fluid also has good
sand suspending performance. The proppant sedimentation experiments were performed
with 550–830 µm gravel suspended in a guar polymer solution at 158 ◦F to evaluate
the sand suspending performance of the fracturing fluids. Figure 2 lists the state of the
suspended sand in the fracturing fluid after adding the preferred enzymes at 158 ◦F over
time. Based on Figure 2, the sand-suspended fracturing fluid after adding mannanase II
was still able to carry sand for more than 120 min, which can be ascribed to the excellent
viscoelasticity of the fracturing fluid at 158 ◦F. In comparison, the previous literature also
pointed out that the fracturing fluid added with ammonium persulfate breaker may also
lose its sand-carrying capacity within 60 min due to excessive degradation [40]. Therefore,
these enzymes should have major implications for hydraulic fracturing, such as for further
gel-breaking performance research.
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3.2. Gel-Breaking Efficiency of Breakers

When the fracturing fluid completes the task of carrying the proppant to support
new fractures, its viscosity must drop rapidly and turn it into a fluid with strong flowa-
bility, facilitating its flow-back to the surface [37,38]. Therefore, we must investigate the
gel-breaking efficiency of the breaker. Figure 3 shows the results for the rheology study
of the fracturing fluid corresponding to different breakers at 158 ◦F and a pH of 8.5. The
effectiveness of the enzyme breakers can be indirectly measured via viscosity experiments.
These results indicate that mannanase II offers significant advantages over other single
hydrolases. For a given concentration of all the breakers, mannanase II effectively induced
the breakage of the crosslinked polymer, whereas the other enzyme breakers were not
as effective. Mannanase II is the key enzyme in the hydrolysis of mannan and randomly
degrades the β-1,4-glycosidic linked backbone of mannan [48,49]. The mannanase II is pro-
duced by a strain of Bacillus amylose isolated from the konjac field, and after purification,
the enzyme shows maximum activity at pH 7.0 and 104 ◦F with guar gum as substrate and
perform high stability at a range of pH 5–9. In, addition, the alkali stability of mannanase
II is better, which is slightly higher than the reported enzyme [31,48]. Russell showed that
the surface of the protein has a strong protective effect on the catalytic region of the core,
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and that the alkaline stability of the enzyme is not determined by the electrostatic force
of the active center of the enzyme, but by the interaction of multiple factors [50,51]. The
stronger alkali stability of mannanase II may be that its surface protects the core catalytic
region better, and it is a long process to explain the alkaliphilicity of the enzyme.
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simulated reservoir conditions.

Previous studies have shown that oxidative gel breakers can effectively break gels
in high-temperature reservoirs, but when they are below the activation temperature, the
efficiency of breaking gel will be greatly reduced [10,12,13]. Compared with the ammonium
persulfate breaker, an oxidative breaker, mannanase II was highly reactive, such that the
overall process afforded a greater reduction in the viscosity. Overall, under simulated
Xinjiang Shengli Oilfield reservoir conditions (158 ◦F, pH = 8.5), mannanase II showed
superior performance and in smaller amounts compared with other common breakers.

3.3. Reservoir Damage by the Breaker after the Fracturing Operation

The effectiveness of the breaker can not only be characterized by viscosity of fracturing
fluid, but also by the residual amount and particle size of polymer. The residual amount
of polymer includes unbroken polymer and residues generated after the gel is broken.
The presence of residue can cause flow reduction via the plugging of the formed fracture.
Thus, a decrease in the amount of the residue corresponds to both decreased formation
damage and increased production. In summary, the amount of residue is an important
factor to consider in hydraulic fracturing. To evaluate the amount of residue generated
by the breakers, residue-after-break experiments were conducted at 158 ◦F and other
wider temperature range (Figure 4). The amount of residue generated by adding smaller
concentrations of mannanase II was also <600 mg/L, which conforms to the criterion for
evaluating the performance of water-based fracturing fluids [28,47]. Moreover, we observed
that upon adding higher oxidizer concentrations (0.1 g/L) at the higher temperature of
158 ◦F, the mannanase II breaker still produced less residue than ammonium persulfate
(Figure 4).
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Figure 4. Residue-after-break results following the addition of different breakers under different
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Figure 4 also demonstrates that, for a given amount of enzyme breaker, a higher
temperature resulted in the generation of a greater amount of residue. In contrast, for a
given amount of ammonium persulfate, a higher temperature resulted in the generation
of a smaller amount of residue. This difference can be attributed to the different effects of
temperature on the breakers [13,24,28].

Compared with the oxidative breaker, the mannanase II induces more exhaustive
and homogeneous breakage under the reservoir conditions [11,19]. To further verify this
result, the experiment for the change in the molecular size of the guar during the gel-
breaking process was carried out via a laser particle size analyzer at alkaline (pH = 8.5)
and medium temperature (158 ◦F) conditions. Based on Figure 5, the molecular diameter
of the fracturing fluid without the breaker is concentrated around 197.99 µm, while the
molecular diameter after gel breaking with the mannanase II breaker is 42.7922 µm. The
molecular diameter after gel breaking with a higher concentration of ammonium persulfate
in the control group was 71.3062 µm. The experiment results showed that, compared with
the use of ammonium persulfate breaker, there is a significant reduction in the size of the
fracturing fluid after adding the enzyme breaker. Guar polymer molecules with this size
can easily flow through the porous medium and improve reservoir conductivity [24].

Therefore, these results further confirm that mannanase II yields a better degrada-
tion performance than oxidative breakers. In addition, with its environmental benefits
and cleaning ability, it can enhance both governmental and public trust in the hydraulic
fracturing process.
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3.4. Best-Use Concentrations of Mannanase II under Different Environmental Conditions

The mannanase II breaker exhibited a dose–response effect. When the concentration
of the enzyme breaker was too high, the fracturing fluid lost its shear resistance; how-
ever, when it was low, gel breaking was not complete [38,43]. The use of an appropriate
amount of enzyme can ensure both environmental and economic benefits. Previous residue
experiments have proven that enzyme breaker activity is affected by temperature. To es-
tablish guidelines for optimal mannanase II concentrations under different environmental
conditions, histograms corresponding to the minimum enzyme amount required for gel
breakage under different pH and temperature conditions were plotted (Figure 6). The
results obtained demonstrate that any reduction in the gel viscosity depends on the breaker
concentration, as well as on the temperature and pH of the fracturing fluid [6,22]. Thus,
different concentrations of mannanase II at different temperatures and pH values showed
different breakage results. Mannanase II exhibits highly efficient gel-breaking performance
over a wide range of temperatures (104–158 ◦F) in both alkaline and neutral environments.
Moreover, a temperature of 140 ◦F was identified as the critical point for the change in the
activity of this breaker. The amount of enzyme required to break the gel increase signifi-
cantly with an increase in the temperature. In addition, the enzymes showed higher activity
in neutral environments [45,46]; therefore, the amount of mannanase II breaker required to
break the gel in neutral environments was less than that required in alkaline environments.
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4. Conclusions

In this study, we analyzed the feasibility of using the mannanase II enzyme in breaking
borate-crosslinked guar gum gel under simulated the reservoir conditions (158 ◦F, pH = 8.5)
of the Xinjiang Shengli Oilfield. The results obtained showed that, compared with other gel
breakers, mannanase II exhibits superior gel-breaking performance. The residue measure-
ment experiments showed that mannanase II provides a cleaner and more homogeneous
polymer breakage than other breakers. Using a small quantity of mannanase II, it was
possible to realize rapid gel-breaking while a much larger concentration of other enzymes
was required to achieve similar results. The residue measurement experiments showed
that mannanase II provides a cleaner and more homogeneous polymer breakage than other
breakers. Experiments on the factors influencing the breaking performance also indirectly
showed that mannanase II retains its activity over a wide range of application temperatures
(104–158 ◦F) and pH values (7–8.5) in hydraulic fracturing. Overall, mannanase II was
found to be a highly efficient, economical, and environmentally friendly breaker. There-
fore, during oil production in low-permeability oil fields with medium temperatures and
alkaline conditions, the advantages of mannanase II are unmatched by other gel breakers.
Mannanase II is characterized by a better gel-breaking effect under low and medium tem-
perature and neutral conditions. In future studies, we will conduct field experiments in
low-permeability oil reservoirs to further demonstrate the excellent performance of this
enzyme breaker. In addition, we speculate that this breaker has significant potential for
applications in low-permeability oilfield development.
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