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Abstract: MQTT is one of the most popular application-layer protocols used in the scope of the
Internet-of-Things (IoT) and Industrial-Internet-of-Things (IIoT), given its suitability for resource-
constrained embedded systems. However, MQTT Quality-of-Service policies do not support time-
liness requirements, which is common in IIoT. The literature reports several research works that
address this limitation, but they are limited in scope (e.g., improvements in the broker’s internal op-
eration, control of the publisher’s data rate, and path optimizations). Conversely, this paper presents
a comprehensive architectural approach, proposing a set of extensions to the MQTT protocol that
allow applications to explicitly specify real-time requirements and instantiate corresponding network
reservations to enforce the desired temporal behavior. Such reservations are enforced via Software
Defined Networking, specifically the OpenFlow protocol, but other protocols that allow bandwidth
reservations, e.g., TSN, can also be used. This paper presents the proposed system architecture
together with extensive emulation and implementation results that validate the feasibility of the
approach, showing that time-sensitive MQTT traffic can be effectively segregated and prioritized to
meet application-defined real-time requirements. Using several combinations of network topologies
and load levels and comparing to the absence of the proposed real-time mechanisms, both average
and worst-case latencies of the time-sensitive traffic decreased to approximately half, while for the
normal traffic, they increased by approximately 10%.

Keywords: MQTT; IoT; IIoT; real-time communication; SDN; OpenFlow

1. Introduction

Steady technology advancements continuously foster the Internet-of-Things (IoT), en-
abling a massive and unprecedented integration of digital devices without requiring explicit
human interaction. The popularity of the IoT has expanded to a vast range of application
domains, from smart grids [1] to industrial automation [2,3], medical systems [4], wearable
devices [5], agriculture [6] and many others. This large diversity of application domains
necessarily brings along an increase in requirements heterogeneity. Notably, Industrial
IoT (IIoT), which is one of the pillars of Industry 4.0, brings along stringent requirements
on real-time (RT) performance and reliability [7], needing an adequate computing and
communication infrastructure.

Concerning communications, the Message Queuing Telemetry Transport protocol
(MQTT) [8] is one of the most popular application-layer protocols used in the IoT, with a
growing presence in the IIoT, too. Its popularity stems from its simplicity, low footprint, scal-
ability, and effective publisher-subscriber messaging model, which fits resource-constrained
devices. MQTT is normally used over TCP/IP networks, building on ordered and lossless
bi-directional channels. One significant limitation of MQTT is that its Quality-of-Service
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(QoS) policies address exclusively message delivery, missing real-time requirements en-
tirely. This limitation has been addressed by the scientific community, but the approaches
available in the literature are of limited scope, focusing on the timing behavior of the broker,
controlling the load submitted to the network, or on network path optimizations. Con-
versely, this paper proposes a new architectural approach together with a set of extensions
to the MQTT protocol that allow applications to state their real-time requirements and
translate those requirements to network reservations. The reservations are enforced using
Software Defined Networking (SDN), particularly the OpenFlow protocol, but any network
protocol supporting dynamic bandwidth reservations (e.g., IEEE 802.1 TSN) can potentially
be used.

The remainder of this paper is organized as follows. Section 2 provides background
on MQTT and SDN. Section 3 overviews the state-of-the-art, with a focus on improvements
of MQTT real-time performance and use of SDN for supporting real-time services, high-
lighting the novelty of the approach herein presented. Section 4 introduces the proposed
MQTT real-time extensions (RT-MQTT), followed by an extensive performance evaluation
via emulation in Section 5. Section 6 presents an implementation of RT-MQTT on COTS
hardware, showing its practicality. Finally, Section 7 presents the main conclusions and
identifies lines for future work.

2. Background

This section briefly overviews MQTT and SDN, emphasizing the features that are
more relevant to this paper. A short discussion about security aspects and their implications
is also provided.

2.1. MQTT

MQTT [9] is a lightweight publisher/subscriber application-layer protocol suitable for
low-bandwidth environments composed of resource-constrained end-nodes. The MQTT
architecture comprises a broker and a potentially large number of end nodes designated
as clients. The broker mediates all communications; thus, clients interact only with the
broker. Clients can be data sources (publishers), data consumers (subscribers), or both. Data
addressing is carried out via the concept of topics. Topics are coded in MQTT messages
and are structured hierarchically, following an organization that resembles folders and
files in a file system. Clients that want to receive updates on a given topic first have to
register as subscribers of such a topic. Thus, when a client publishes a message, the broker
receives it, identifies the corresponding topic, identifies the list of subscribers and forwards
the publisher message to each one of them. As the broker mediates, all communications,
publisher, and subscriber clients are decoupled both in space and time. This functionality,
combined with the protocol simplicity, scalability, and low footprint, are among the chief
reasons behind the popularity of MQTT.

MQTT provides three QoS levels, all associated with message delivery. QoS 0 (send
once) is the lowest QoS level and messages are sent without acknowledgment, thus without
delivery guarantees beyond those provided by the underlying TCP protocol. QoS 1 (deliver
at least once) guarantees that a message is delivered at least once to its receiver, either
broker or subscriber, but there can be duplicates due to retransmissions. QoS 2 (deliver
exactly once) provides the highest QoS level, guaranteeing that each message is received
exactly once by its receiver. The complexity and latency of these QoS levels naturally grow
from QoS 0, the simplest and fastest, to QoS 2, which is the most resource-demanding and
slowest one, using a four-part handshake between senders and the receivers. The QoS level
of each link (publisher-broker and broker-subscriber) is set independently.

The latest version of MQTT (MQTT V5.0 [9]) introduces the so-called User Properties,
which are particularly relevant for this work. User Properties are an extension mechanism
that consists of an array of UTF-8 key/value pairs, allowing the addition of user-defined
information to MQTT messages conveyed in the corresponding message property field.
Hence, metadata associated with arbitrary user properties can be exchanged between
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publisher, broker, and subscriber. This is the mechanism used in this work to allow nodes
to specify the real-time requirements of topics.

2.2. SDN

SDN is a network management paradigm that decouples network control from packet
forwarding functionality [10], aiming at enabling a programmatic, dynamic, flexible, ef-
ficient, and simple to manage network configuration. The SDN architecture defines two
layers, the so-called data plane, where SDN switches carry out packet forwarding, and the
control plane, where a logically centralized controller manages the network. The controller
has access to all switches via suitable management ports, thus having full knowledge of the
network state, including the number and characteristics of devices, topology, and resource
utilization. This information can be made available to applications that can both adjust
to the network and modify the network configuration, e.g., requesting the controller to
configure forwarding rules in the switches to attain the desired handling of data packets.
The controller interface with the switches is called Southbound, while the interface with
the applications is known as Northbound.

The OpenFlow (OF) protocol [11], standardized by the Open Networking Foundation
(ONF), is the de facto SDN Southbound interface standard protocol for communication
between OF controllers and OF switches. OF controllers can dynamically configure and
manage a set of OF switches, instructing them on how to handle data packets. OF switches
comprise one or more flow tables that contain a set of prioritized flow rules. In turn, flow
rules have filters that allow identifying packets and actions that are applied to those packets,
such as modifying a packet, forwarding it to a specific port, or dropping it. Thus, when a
packet arrives at an OF switch, it is matched against the flow rules, and if a match is found,
the corresponding actions are applied. If there is no match, a default action is applied, e.g.,
forwarding the packet to the controller, sending it to a group table, or dropping it. Group
tables contain a subset of instructions similar to those of flow tables, with similar functions.

2.3. Network Security: Need and Issues

Factory automation commonly includes processes (e.g., cell control and synchroniza-
tion) that exhibit latency and latency jitter constraints. Supporting these processes in a
distributed fashion typically requires real-time protocols based on cabled physical media,
particularly when the requirements are tight (e.g., in the ms range). Integrating these
distributed real-time processes in broader scopes, e.g., production lines or aggregates of
cells raises the need for security mechanisms given the additional threat surface. However,
the overhead imposed by these mechanisms can conflict with the timeliness requirements.
Given that the risk of security threats originating physically inside the factory premises
is relatively low, security mechanisms are commonly discarded in inner segments of the
system while relying on strong security protection in boundary routers or gateways.

Nevertheless, the current trend towards ubiquitous access and full integration of
industrial networks with the Internet turns security mechanisms fundamental, even if at
the expense of some degradation in timeliness and predictability, if that can be tolerated.
For this reason, application-layer messaging systems (e.g., MQTT and AMQP) frequently
embody security protocols, being SSL/TLS the state of practice in secure communication. In
any case, real-time add-ons or adaptations of such application-layer messaging frequently
include a node in the middle, e.g., a network manager or controller as in SDN, that requires
clear-text access to the traffic payload for control purposes. This feature, frequently called
Man-in-the-Middle, is not transparently compatible with SSL/TLS. The literature reports
several mechanisms to sort out this apparent incompatibility. Having a node in the middle
of connections with end-to-end security is similar to Network Monitoring Systems on
the Internet, which frequently require access to the clear-text payload, e.g., deep packet
inspection, beyond packets metadata [12].

The work we present in this paper was devised by targeting inner segments in indus-
trial networks and dispensing security mechanisms. However, its architecture belongs to
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the class of systems using a node in the middle. Thus, security mechanisms can be adopted
using appropriate techniques, as referred to in the previous paragraph. The specific adapta-
tions depend on multiple dimensions that must be considered, from overhead to latency,
manageability, transparency, security degradation, etc. This topic will be addressed in
future work.

3. Related Work

This section overviews the most relevant contributions found in the literature regard-
ing MQTT real-time performance and the use of SDN for supporting real-time services.

3.1. On the Timeliness of MQTT

Tachibana et al. [13] propose a priority control mechanism for heterogeneous remote
monitoring IoT systems based on MQTT. In their architecture, a Priority Broker controls
the communication link utilization according to application requirements. Communication
comprises three phases, namely registration, prioritized data exchange, and release. In
the registration phase, end nodes register their profiles in an application server, together
with associated QoS requirements. In the second phase, the Priority Broker collects this
information and controls the end nodes sending time and rate using explicit authorization.
The release phase closes the application connection, releasing the resources used. The paper
reports relevant latency reductions and an increase in the successful sending ratio, which
are proportional to the messages’ priority.

p-MQTT [14] aims at providing timely and reliable delivery of emergency events in
IoT applications. To this end, p-MQTT provides prioritization for emergency events in
the MQTT broker, which comprises three components: classification, virtual queues, and
priority control. Published messages are inspected by the classification component and
are placed, according to the message type field, in one of the prioritized virtual queues
(Normal, Critical, and Urgent). The queues are then processed by the priority control
component according to their relative importance. Kim et al. [15] follow a similar approach,
proposing a prioritization system that employs a two-bit priority field placed on the fixed
MQTT message header, providing four priority levels, ranging from no priority to urgent.
The broker checks the priority field of each message, processing it accordingly. Both papers
report a significant reduction in message latency, again proportional to the message priority.

Several other papers in the literature mention the use of MQTT in real-time applica-
tions, e.g., [16–19]. However, these works focus on platform or software aspects only, not
supporting the explicit specification of real-time communication requirements nor exerting
network control, thus limiting the attainable real-time performance.

3.2. Real-Time Traffic Support Using SDN

The scientific literature includes several works that aim at supporting real-time com-
munications with Software-Defined Networking, particularly using the OpenFlow South-
bound protocol. For example, the work in [20] proposes an OF controller, named OpenQoS,
that supports multimedia delivery with bounded end-to-end latency. This framework
differentiates between regular data and multimedia traffic using suitable filters applied to
packet headers. Regular data packets are handled by standard routing mechanisms, namely
shortest path routing, while multimedia traffic routing is set as a Constrained Shortest
Path problem, solved to minimize a cost function while satisfying a given maximum delay.
This QoS-oriented routing scheme is recomputed whenever there is a topology change.
HiQoS [21] is another framework that uses multi-path routing but goes one step further
by also using the queuing mechanisms of SDN switches to provide different bandwidth
guarantees through each selected path.

Tomovic et al. [22] follow an approach similar to the Integrated Services (IntServ) Inter-
net QoS model, offering hard QoS guarantees using bandwidth reservation and admission
control. Flows can be best-effort or QoS-guaranteed. The controller performs constrained
shortest path routing for QoS-guaranteed flows, reserving bandwidth along their path if a
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feasible one is found, otherwise rejecting the flow. Papers [23,24] propose a QoS framework
that uses two queues to segregate high-priority from best-effort traffic, reserving bandwidth
for the high-priority one. Kumar et al. [25] introduce an SDN-based framework to reduce
the latency of real-time flows used in safety-critical and delay-sensitive applications. This
framework segregates flows in different queues and implements bandwidth reservations to
provide stable and bounded end-to-end delays. Jochen et al. [26] also present an SDN-based
framework that provides end-to-end real-time communication services. Flows are allocated
to different priority queues in each hop, optimizing the resource usage while satisfying
delay and bandwidth constraints.

Celenlioglu et al. [27] present a routing and resource management model for SDN-
based intra-domain networks focusing on scalability. They assume a set of logical paths
between each ingress and egress switch, forming a virtual network. The controller man-
ages these virtual networks online, using the edge switches and the pre-defined paths.
Whenever a new flow arrives, the controller assigns the new flow to one of the virtual
paths. Park et al. [28] also addresses scalability, aiming at reducing delay and bandwidth
utilization in massive IoT MQTT-based applications, but missing real-time guarantees. The
proposed framework establishes bidirectional SDN multicast trees between publishers
and subscribers, bypassing the broker, thus avoiding a corresponding potential bottle-
neck. PrioSDN-Resource Manager [29] is a resource management framework relying on
admission control for virtualized SDN-based networks combining SDN and Network Vir-
tualization (NV), namely slices, to reduce the network management complexity under the
varying workload and flow priorities. PrioSDN-RM allocates resources using a priority-
based run-time bandwidth distribution mechanism. Whenever a new flow is generated
by an end-node, the controller uses a priority-based admission control (PAC) module to
calculate and allocate enough bandwidth for the flows of the slice.

All these approaches report significant improvements crucial to industrial applications,
including latency reduction, higher determinism, and efficient bandwidth use, confirming
that SDN can be effectively used in the industrial domain.

3.3. Novelty of the Proposal

The state-of-the-art review reveals a clear interest in improving the real-time perfor-
mance of MQTT as well as the capacity of SDN to support real-time communications.
Table 1 summarizes the main features of the related works analyzed in Section 3. This table
also shows, however, that there is no integrated solution that allows to specify real-time
requirements at the application layer and translate them into robust and effective network
reservations able to guarantee traffic segregation and prioritization. On the one hand,
works that have roots in MQTT are in many cases restricted to the internal operation of
the broker using prioritized traffic handling [14,15]. When some kind of network control is
exerted, it is restricted to the load submitted by publishers [13]. In this case, non-MQTT
traffic can compromise the temporal behavior of the time-sensitive one. On the other hand,
there are several relevant contributions regarding the use of SDN to support real-time com-
munications [20–27], including approaches such as path optimization, flow prioritization,
and bandwidth reservations. Despite providing robust solutions to protect time-sensitive
traffic, these approaches lack integration with MQTT, thus preventing MQTT applications
from interacting with the network layer to carry out the resource reservations necessary to
meet their requirements.

Two recent contributions deserve a special remark. Park et al. [28] propose the DM-
MQTT protocol, which is the only work that compares directly to RT-MQTT in the sense
that it integrates MQTT and SDN. However, the focus of this work is on reducing band-
width utilization in large-scale IoT deployments by providing a multicast mechanism that
bypasses the MQTT broker. Traffic prioritization, admission control, and real-time guaran-
tees are not addressed in this approach. It should be noted that the focus of RT-MQTT is
not in such large-scale deployments but instead in more restricted setups, e.g., the ones
found in factory or process automation domains, where the coexistence of heterogeneous
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traffic types is common, some of which with strict timeliness requirements, and where
MQTT is gaining momentum. On the other hand, Fontes et al. [30] propose real-time
extensions to MQTT-SN, a derivative of the MQTT protocol tailored to sensor networks.
Despite supporting real-time requirements through network reservations, this work builds
on specific MQTT-SN mechanisms that are not available in MQTT V5.0.

Table 1. State-of-the-art characteristics summary.

Bib. Prioritized Network-level Admission Broker SW Integ.management of TS
Reference Traffic Reservations Control Prioritization Traffic (MQTT and Network)

[13] Y N Y E Y
[14,15] Y N Y Y Y
[16–19] N N N E N

[20–26,29] Y Y Y NA N
[27] Y Y Y NA N
[28] N Y N E Y

RT-MQTT Y Y Y(FW) E Y
Y: Yes; N: No; E: Can be extended to allow; NA: Not Applicable; FW: Future Work.

Therefore, to the best of our knowledge, the framework proposed in this paper im-
proves the state-of-the-art in two main aspects:

• The use of MQTT v5.0 User Properties to specify real-time requirements for time-
sensitive traffic, preserving full compatibility with standard MQTT devices and soft-
ware components;

• The development of a resource management framework, which interfaces MQTT with
the underlying networking infrastructure, that transparently creates and manages
real-time communication channels according to the application requirements.

4. MQTT Real-Time Extensions

As referred before, the objective of this work is to allow the specification of real-
time communication requirements for time-sensitive (TS) MQTT flows while preserving
compatibility with the MQTT standard. This is achieved by resorting to the User Properties,
available in MQTT V5.0 specification [9] to convey the real-time requirements of a given TS
topic. This information is decoded by a Network Manager that then reserves appropriate
communication channels for such flows. In this paper, we adopt SDN/Openflow to develop
such a Network Manager and enforce network reservations, but potentially any other
networking technology able to provide bandwidth reservations and traffic prioritization
could be used, e.g., IEEE TSN [31] or HaRTES [32].

4.1. System Architecture

Figure 1 shows the proposed Real-Time MQTT (RT-MQTT) system architecture, includ-
ing a set of OpenFlow switches (OF-Switches) connected to a central OpenFlow controller
(OF-Controller), (I)IoT devices as MQTT clients, and an MQTT broker. Additionally, the
system also includes a Real-Time Network Manager (RT-NM), which is logically placed
between MQTT clients and the broker. The real-time requirements of all TS flows are kept in
the OF-DataBase (OF-DB). Currently, the OF-Controller is based on the RYU framework [33]
and the OF-Switches are instantiations of the Open vSwitch soft switch.

The RT-NM inspects all MQTT messages directed to the broker. When such messages
convey real-time reservations, coded in the User Properties field, it registers the correspond-
ing attributes, processes them, and updates the OF-DB in the OF-Controller. In turn, the
OF-Controller updates the flow tables of the OF-Switches, creating real-time channels that
match the specified real-time requirements.
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OF-DB 

OF-Controller 

 

RT-NM 

(I)IoT Devices

 OF-Switch

MQTT
Broker 

Figure 1. High-level RT-MQTT system architecture.

4.2. Reservation Mechanism

As specified by the OpenFlow protocol, the OF-Controller is connected to all OF-
Switches and holds a global view of the network. More specifically, the OF-Controller
can collect detailed topological information, identifying all OF-Switches, ports, and links
between them. In addition, OF-Switches are configured to send to the OF-Controller packets
that do not match any installed flow rule via the so-called PacketIn messages. When the OF-
Controller receives one of these messages, it checks the header fields of the corresponding
incoming packet, getting information such as the source and destination IP address and
the switch port at which it was originally received. Therefore the OF-Controller keeps a
holistic network view that is then used for routing purposes.

The routing scheme adopted in this work is based on the Depth-First Search algo-
rithm [34], with the link cost set as a weighted function of transmission delay and maximum
available bandwidth of each possible path between source and destination nodes. The
routing procedure is out of the scope of this paper and further details can be found in [35].

In general, it is not possible to find exclusive paths for each TS MQTT flow; therefore,
these packets may share links with non-TS MQTT flows and other generic data sources.
Consequently, without specific mechanisms, the potentially non-deterministic nature of
other data sources would compromise the timeliness of TS MQTT flows. To address
this problem, MQTT clients (both publishers and subscribers) associated with each time-
sensitive flow communicate the corresponding real-time requirements via the MQTT User
Properties field. RT-MQTT adopts the following subset of attributes, commonly used in
real-time systems:

FTS
i =

{
Pi, Ti, Di, Bi, Ci

}
(1)

where:

i: flow identifier;
Pi: flow priority;
Ti: period or minimum inter-arrival time between two successive publish messages (by

the publisher);
Di: deadline, defined as the maximum allowed amount of time between the transmission

(publisher to broker) and the reception (broker to subscriber) of a message;
Bi: maximum link bandwidth use;
Ci: maximum message payload size;

The RT-NM module intercepts all messages exchanged between the MQTT Broker
and clients, extracting, when present, the real-time requirements associated with each flow
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(FTS
i ), which are then stored in a system’s real-time requirements table (SRT) that resides

on the OF-DB. This table also holds the addresses of publishers and subscribers, which are
obtained by the RT-NM module from the standard MQTT messages exchanged between the
broker and clients during the connection set-up phase. More formally, the SRT is defined
as follows:

SRT =
{

Pai, {Sai,k}, FTS
i

}
(2)

where:

i : flow identifier;

Pai : address of publisher node;

{Sai,k} : set of k subscriber nodes addresses;

The information contained in the SRT, in conjunction with the topology information
obtained by the OF-Controller, is then used to configure the real-time channels of all
links in the path between the publisher and the Broker and between the Broker and the
subscriber(s).

Note that this basic architecture can be complemented, if necessary, with control
services. For example, changing the real-time attributes of a given flow can be restricted to
a subset of (trusted) nodes, ignoring requests that originated elsewhere. Similarly, allocating
resources to each flow can be constrained to (pre)defined bounds. These topics are out of
the scope of this paper and will be addressed in future work.

The message format used in RT-MQTT follows the MQTT V5.0 message structure, in
which the User Properties field is placed in the Variable Header and conveys the relevant
real-time attributes, as illustrated in Figure 2.

Field 
Length 0 1 2 3 4 5 6 7 Field 

Header 

2 Bytes Fixed Length Header Fixed

n Bytes

User Property (UTF-8 String Pair)

Variable

n Bytes Variable Length Message Payload Payload

Priority Deadline 
(milliseconds)

Period 
(milliseconds)

Bandwidth Range
(bits per second) Payload size

2 Bytes 4 Bytes 2 Bytes 4 Bytes 4 Bytes

Figure 2. Structure of real-time attributes specification in RT-MQTT.

The core functionality of the real-time extensions is handled by the RT-NM. This
module intercepts all messages from the MQTT clients to the broker, thus gathering the
real-time attributes of time-sensitive traffic. As illustrated in Figure 3, when the RT-NM
receives an MQTT client message, it inspects its content to determine the presence of a
real-time reservation request, and, if one is found, the relevant real-time information is
extracted and inserted into the OF-DB.

EndNew Packet ? MQTT & User
Properties?

No

Extract
Real-Time
Attributes

No

Yes
Start Insert to

OF-DB
Update  

OF-Controller
Yes

New Packet ? MQTT & User
Properties?

Extract
Real-Time
Attributes

Figure 3. RT-NM operation flow diagram.

The interface between the RT-NM and the OF-DB is carried out using the OVSDB
management protocol (OVSDB-MP) [36], as sketched in Figure 4.
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ovs-vswitchdKernel Module OF-DB

OpenFlow

netLink

OVSDB-MP

OVSDB-MP

OF-Controller RT-NM

Figure 4. Network configuration process.

Whenever the OF-DB is updated, the ovs-vswitchd daemon, which manages and con-
trols the Open vSwitch switches, retrieves the real-time information. Then, in cooperation
with the OF-Controller, it analyzes the set of registered real-time attributes to update the
OF-Switch flow tables and set up the data paths. The ovs-vswitchd daemon also commu-
nicates with the kernel module of the corresponding node over netLink, a Linux kernel
interface, to execute the associated actions corresponding to each received packet.

The real-time information can be modified at any time by MQTT clients, which can reg-
ister or update real-time attributes of any given topic in the OF-DB. These attributes can be
set initially, during the connection phase, using the CONNECT message, or added/updated
later on, e.g., when a client publishes data via a PUBLISH message. In the same way, sub-
scribers can specify real-time requirements when connecting or when subscribing to a topic
using a SUBSCRIBE message. Figure 5 shows the sequence diagram for connecting, pub-
lishing, and subscribing. Note the RT-NM receives the messages, validates their attributes,
and performs the corresponding network configuration, while the broker eventually sends
an acknowledgment back to the client. A technical description of RT-MQTT services is
publicly available (https://new-rt-mqtt-extension-api.readthedocs.io/en/latest/, accessed
on 31 January 2022).

MQTT Client RT-NM MQTT Broker

CONNECT

CONNECT

RT-NM Operation

PUBLISH/SUBSCRIBE

CONNACK

PUBACK/SUBACK

PUBLISH/SUBSCRIBE

RT-NM Operation

Figure 5. Message set up sequence diagram.

5. RT-MQTT Performance Assessment

The RT-MQTT protocol was instantiated on the Mininet emulation framework to vali-
date its feasibility and assess its performance in multiple scenarios of different complexity.

5.1. Emulation Setup

We used the Mininet virtual network emulator, version 2.3.0d6 http://mininet.org/,
accessed on 31 January 2022, together with Eclipse Mosquitto [37] (v2.0.10) and Eclipse
Paho MQTT library to create MQTT clients and brokers. Mininet is executed on a laptop
computer featuring a 4.9 GHz Intel Core i7 processor and 16 GB of RAM.

In the emulation experiments, the QoS of all MQTT messages is set to 1 (deliver at
least once). This QoS level favors reliability over timeliness given its positive acknowledge

https://new-rt-mqtt-extension-api.readthedocs.io/en/latest/
http://mininet.org/
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and retry mechanism, and it was used since fault-tolerance is important for many IIoT
applications. However, this is not expected to have a significant impact on cabled Ethernet
networks, as we are currently using, given their low error rate.

To enforce traffic segregation and prioritization, we allocate a specific queue to each
time-sensitive topic (Queues 1, 2, . . .), with a higher queue number meaning higher priority.
To flatten the impact of the topic size, we randomize the respective message length between
20 B and 2000 B in each experiment run. The queues are created by the RT-NM following
User Properties sent by time-sensitive clients. The remaining bandwidth in each link is
allocated to Queue 0 that receives the normal (non-time-sensitive) traffic. We generate
time-sensitive and normal traffic in equal proportion.

The operational environment included heterogeneous data exchanges mimicking the
diversity of industrial scenarios created with the Distributed Internet Traffic Generator (D-
ITG) http://traffic.comics.unina.it/software/ITG/, (accessed on 31 January 2022) for TCP
packets, vsftpd to transfer files using the File Transfer Protocol (FTP)) https://linuxconfig.
org/how-to-setup-and-use-ftp-server-in-ubuntu-linux, (accessed on 31 January 2022) and
VLC media player to generate audio/video streams. The bandwidth used by these traffic
sources was limited to 10 Mbit/s, 32 kbit/s, and 800 kbit/s for D-ITG, VLC, and vsftpd,
respectively. These are all non-real-time sources, thus assigned to Queue 0.

The experiments consider three network topologies with different levels of complexity,
named Simple, Medium, and Hard (Figure 6). These topologies comprise 2, 5, and 10 OF-
Switches, respectively, with all links having 100 Mbit/s capacity. For each topology we
generate three different load levels, labeled A, B, and C, consisting of 4, 10, and 14 MQTT
publishers, each publishing data to one time-sensitive topic. In all topologies and load
cases, we have multiple flow sharing links, either in the broker, in the subscribers, or
in the inter-switch links along the flows paths. Publications by MQTT clients are not
synchronized, following a 20 ms nominal period plus or minus a random uniform value
within [0 0.4] ms, thus generating varying interference patterns. Table 2 summarizes the
more relevant parameters of the emulation experiments.

Simple Medium Hard

Figure 6. Network topologies used in the experiments.

http://traffic.comics.unina.it/software/ITG/
https://linuxconfig.org/how-to-setup-and-use-ftp-server-in-ubuntu-linux
https://linuxconfig.org/how-to-setup-and-use-ftp-server-in-ubuntu-linux
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Table 2. Emulation set-up parameters

Parameters Value
QoS level 1

Keep alive period 60 s
Traffic monitoring frequency 0.2 Hz

Publishing frequency 50 Hz
MQTT payload size 20 to 2000 Bytes

Time-sensitive publishing period 20±[0, 0.4] ms
Maximum number of publications per publisher per test 1000

The Simple topology includes the OF-controller (c0), two switches (s1 and s2), 13
MQTT publishers (h1 to h13), 2 MQTT subscribers (h14 and h15), the MQTT broker and
the RT-NM (both in h16). Node h1 publishes in a topic without subscribers, just to increase
the load in the broker uplink. All other topics are subscribed by one subscriber, only, either
h14 or h15. The non-MQTT traffic includes D-ITG data from h4 to h12, VLC streams from
h6 to h15 and vsftpd data from h7 to h16.

The Medium topology includes five OF-switches (s1 to s5) connected to the OF-
controller. In this topology the MQTT subscribers are hosted in nodes h21 and h22, the
MQTT broker and RT-NM are hosted in h23, and the remaining nodes host MQTT publishers.
D-ITG sends data from h4 to h14, VLC from h6 to h19 and vsftpd from h7 to h24. h1 is
similar to the previous case.

The Hard topology includes ten OF-switches (s1 to s10). Subscribers are now hosted
in h36 and h46, the MQTT broker and RT-NM are hosted in h48, and the remaining nodes
host MQTT publishers. D-ITG transmits data from h4 to h16, VLC from h6 to h34 and vsftpd
from h7 to h49. h1 is also similar to the previous cases.

5.2. Experimental Results

We focus the experiments on the latency, defined as the time that each publication
takes to travel from a publisher to the corresponding subscriber, measured at the net-
work interface, thus including messages transmission times and software stack overheads
(Figure 7).

MQTT PUB RT-NM MQTT Broker

PUBACK

MQTT SUB

Time

L = Tp -Tr

Tp
Start

PUBLISH (''topic a'')

PUBACK Tr
End

PUBLISH (''topic a'')

PUBLISH (''topic a'')

Figure 7. Latency measurement (L) in the RT-MQTT experiments.

The experiments tested all combinations of topology {Simple, Medium, Hard} and
load levels {A, B, C}. Each combination was executed 200 times, with the location of each
publisher (switch and port) randomly generated in each run.

Figures 8–10 show the latency distribution with box plots that were obtained for nor-
mal (NO) and time-sensitive (TS) MQTT flows, with and without the real-time extensions,
for each topology and all load-levels. As there is no differentiation among the NO flows,
their latency values are aggregated in a single column. Concerning the TS flows, for the sake
of clarity, we show just the ones with the highest, median, and lowest priority, except for
load level A, which has two TS publishers, only, both shown in the figures. The horizontal
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axis identifies publishers, labeled as h#/P# for host h# with priority P#. {h(NO)} and P0
stand for the aggregation of NO MQTT flows.

Figure 8. Latency of time-sensitive vs. normal MQTT flows with and without real-time extensions
for the Simple topology and load levels A, B, and C.

Figure 9. Latency of time-sensitive vs. normal MQTT flows with and without real-time extensions
for the Medium topology and load levels A, B, and C.
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Figure 10. Latency of time-sensitive vs. normal MQTT flows with and without real-time extensions
for the Hard topology and load levels A, B, and C.

Without the RT extensions in place, TS MQTT flows are handled by the network with-
out any differentiation with respect to NO MQTT streams and the remaining background
traffic. Therefore, we expect to see latency figures with similar patterns. This behavior is
clearly observable in Figures 8–10, which exhibit similar latency variations with the load
level and the complexity of the topology, i.e., the number of hops crossed.

When the RT extensions are applied, we expect to observe the effects of segregation
between TS and the remaining traffic, as well as the impact of the prioritization among
distinct TS streams. Once again, these expectations are clearly confirmed in Figures 8–10. In
all scenarios, we observe a latency reduction of about one-half on the TS flows compared to
the NO flows when the real-time extensions are in place. This reduction is slightly stronger
for higher load levels in all topologies, as expected, too. Among the TS flows, we can also
observe the consistency of the latency variation with the priority differentiation. On the
other hand, the latency of the NO flows increases slightly, around 10%, when compared to
the absence of the real-time mechanisms.

Table 3 shows the average and maximum latency values for the TS and NO flows
represented in Figures 8–10, to quantify the impact of the real-time extensions. One
interesting observation is the reduced impact of the load level and topology complexity on
the TS flows’ latency when compared to the NO flows. For example, varying the load level
from A to C in the Simple topology causes the Avg(Max) latency of h5/P20 (intermediate
priority) to grow from 10(13) ms to 12(16) ms while for h(NO)/P0 the variation is from
16(23) ms to 31(38) ms. This difference is even more pronounced in the Hard topology.
Considering the highest priority TS flow h9/P30, the latency varies from 13(19) ms to
16(21) ms as opposed to 24(31) ms to 45(54) ms for h(NO)/P0.

Table 4 reports the Confidence Intervals (CIs) expressed by their Upper Bound (UB)
and Lower Bound (LB) for a confidence level of 99% for the multiple combinations of
topologies and load levels. The CI bounds, as expected, also increase with both growing
load level (left to right) and growing network complexity (top to bottom). For the same
configuration (topology and load level), higher priority levels have lower CI bounds,
following the overall latency trends. Finally, the CI width, i.e., the difference between the
upper and lower bounds (UB-LB), is significantly larger for the NO traffic when compared
with the TS traffic. This is also expected as the NO traffic is subject to higher interference
levels, both mutual interference and caused by the TS traffic, resulting in higher dispersion.
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Table 3. Average/Maximum latency of TS and NO MQTT flows with real-time extensions.

Latency (ms)
per Load-Level (A, B, C)

Avg Max
Topology Publisher A B C A B C

Simple

h(NO)/P0 16 24 31 23 30 38
h2/P10 × 13 15 × 20 21
h5/P20 10 11 12 13 15 16
h9/P30 8 10 11 11 12 13

Medium

h(NO)/P0 20 25 35 24 32 42
h2/P10 × 15 16 × 20 21
h5/P20 11 12 13 16 18 19
h9/P30 10 11 12 15 16 18

Hard

h(NO)/P0 24 36 45 31 45 54
h2/P10 × 18 20 × 22 24
h5/P20 15 16 17 19 21 22
h9/P30 13 14 16 19 20 21

Table 4. Confidence Intervals (99% confidence) for TS and NO MQTT flows: emulation.

Latency Confidence Interval
Bounds (ms) per Load-Level (A, B, C)

A B C
Topology Publisher LB UB LB UB LB UB

Simple

h(NO)/P0 15.2 18.3 22.3 25.1 30.5 32.7
h2/P10 × × 12.5 14.0 14.3 16.0
h5/P20 9.5 11.0 10.0 11.5 11.7 13.0
h9/P30 7.5 8.5 9.5 10.8 10.7 11.3

Medium

h(NO)/P0 17.4 21.0 23.0 25.7 33.4 36.2
h2/P10 × × 14.0 15.6 15.0 16.7
h5/P20 10.7 11.4 11.6 12.3 12.5 13.2
h9/P30 9.1 10.4 10.2 11.1 11.0 13.0

Hard

h(NO)/P0 23.0 25.3 34.7 37.8 44.2 46.3
h2/P10 × × 17.6 18.4 19.7 20.3
h5/P20 14.1 15.6 15.4 16.3 15.4 17.6
h9/P30 12.0 13.5 13.6 14.4 15.8 17.1

6. RT-MQTT Hardware Implementation

To further validate the practicality of RT-MQTT and confirm the emulation results pre-
sented before, we implemented a prototype on Commercial Off The Shelf (COTS) hardware,
replicating the Simple topology with load levels A, B, and C, which we describe next.

6.1. Implementation Setup

The hardware structure of the physical RT-MQTT set-up is shown in Figure 11. It
comprises two Edge-Core AS4610-54P bare-metal switches that integrate Open vSwitch
with OpenFlow support and one laptop computer equipped with a 4.9 GHz Intel Core(TM)
I7 processor and 16 GB of RAM to run the SDN controller and a management console.
Moreover, the MQTT Broker and eight MQTT clients are executed on one tower computer
equipped with a 3.40 GHz Intel(R) Core(TM) i7-4770 processor, 8 GB of RAM and 10
individual Ethernet interfaces, 2 of which in the motherboard (Intel I210 Gigabit Network
Connection) and 8 available via expansion cards (Intel Ethernet Server Adapter I350-T4).
Finally, 8 Raspberry Pi 4 Model B are used to run additional MQTT clients. The software
infrastructure is equivalent to the one used in emulation, i.e., the SDN controller is the
RYU OF-Controller, Eclipse Mosquitto is used as the MQTT broker, and MQTT clients
(Publishers and Subscribers) are based on the Eclipse Paho MQTT library.
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One difference in the hardware implementation with respect to the emulation experi-
ments is the absence of a global clock to carry out the latency measurements. To keep nodes
synchronized, it was used the Network Time Protocol (NTP) [38]. A Raspberry Pi node,
running the NTP Master exclusively and plugged into a dedicated port in the same switch
as all other Raspberry Pi nodes, was added to the set-up. The synchronization period is
set to a relatively short value (30 s) to minimize the impact of clock drift. Network delay
jitter is minimized by assigning the highest priority to NTP transactions. Under these
conditions, NTP is capable of sub-millisecond precision, which assures the significance of
our measurements, particularly the maximum values observed, which are all in the range
of 15 ms to 39 ms.

RYU  
OF-Controller 

Edge-Core AS4610

Model B

C1 2

OF-Switch 1
Management Port 

Console Port
M

Setup 
Console 

 
h8 h3 h5 h2  

MQTT PublisherDummy

h1    h4 h6 h7
D-ITG VLC vsftpd

PC Ethernet
Interfaces

Raspberry Pi 4

Edge-Core AS4610 C
OF-Switch 2

Management Port 

Console Port
M

3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

h11 h9 h10 h12 h13 
MQTT Publisher

h14 h15 
MQTT Subscriber  

h16 
Broker
RT-NM

 
NTP

Master

Laptop
Computer

Figure 11. Experimental set-up architecture.

To follow closely the emulation scenario described in Section 5 the nodes were placed
in equivalent positions and programmed to generate similar load patterns. For each
load level, the experiments were also executed 200 times, with random placement of the
publishers. Figure 12 shows the complete experimental set-up.

Running Apps Display

Edge-Core AS4610 
OF-Switch 1 & 2

Tower PC

RYU OF-Controller

Raspberry Pi 4

NTP Master

Figure 12. View of the complete experimental setup.

6.2. Experimental Results

Figure 13 shows the latency distribution obtained for NO and TS flows, with and
without the real-time extensions, considering just the Simple topology, as referred before,
for the three load-levels {A, B, C}. The similarity to the corresponding emulation results
shown in Figure 8 is striking. Apart from a slight increase in the observed absolute latency
values for the TS flows in the physical experiment, all relative observations referred to
before apply equally in this case.
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Figure 13. Latency of time-sensitive vs. normal MQTT flows with and without real-time extensions
for the Simple topology physical implementation with load levels A, B, and C.

The referred slight increase in latency is clearly visible by inspecting Table 5 and
comparing it with the corresponding scenario in Table 3. This difference is essentially
caused by the forwarding latency through the real switches, which is 3 ms to 4 ms higher
than in Mininet. Moreover, the physical setup uses several publishers sharing the same
computer, potentially causing mutual interference and consequent extra delay.

The results achieved with the physical setup establish the practicality of RT-MQTT
using COTS equipment but also verify the emulation results, increasing their significance
and showing the effectiveness and scalability of the proposed real-time MQTT extensions.

Table 5. Average/Maximum latency of TS and NO MQTT flows with real-time extensions in the
physical setup.

Latency(ms)
per Load-Level (A, B, C)

Avg Max
Topology Publisher A B C A B C

Simple

h(NO)/P0 18 25 35 24 31 39
h2/P10 × 17 18 × 21 22
h5/P20 13 15 16 17 19 21
h9/P30 11 12 13 15 16 17

Table 6 shows the CI bounds for a 99% confidence level regarding the experiments
with the physical implementation. The obtained CI bounds match the expected behavior
growing with the load levels and decreasing with the priority. Compared with the CI
bounds obtained in the emulation experiments (Table 4), the bounds obtained now with
the physical implementation are higher. This is also expected, emerging directly from the
higher latencies observed in the physical setup due to higher switch forwarding latency
and computational resource sharing effects.
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Table 6. Confidence Intervals (99% confidence) for TS and NO MQTT flows: physical setup.

Confidence Interval Range of
Latency (ms) per Load-Level (A, B, C)

A B C
Topology Publisher LB UB LB UB LB UB

Simple

h(NO)/P0 17.1 18.4 24.0 25.7 34.2 36.0
h2/P10 × × 16.6 18.4 17.7 18.3
h5/P20 12.6 13.7 14.5 15.3 15.4 16.3
h9/P30 10.6 11.7 11.6 12.5 12.6 13.3

7. Conclusions and Future Work

Despite its increasing popularity in (I)IoT applications, MQTT doesn’t provide real-
time services, impairing its use in scenarios that have timeliness requirements, such as those
found in industrial environments. The literature presents several contributions that address
this important limitation, but they are essentially focused on the broker’s performance.
This work followed a more comprehensive approach, proposing a set of extensions to
the MQTT protocol that allow specifying real-time requirements for time-sensitive flows
while preserving full compatibility with the standard. Such specifications are then used by
the network management, implemented in SDN/Openflow, to create real-time channels
with suitable attributes. The extensions were implemented and subjected to an extensive
performance assessment, both in emulation and physical setups. The results show the
effectiveness of the time-sensitive traffic segregation and prioritization mechanisms, with
significant latency reduction, particularly for higher network loads and complex topologies.

Future work includes developing analytic tools to estimate upper bounds for the
time-sensitive traffic latency and its incorporation in the framework within an Admission
Control service. Furthermore, complementary performance evaluation campaigns will be
carried out, using concrete use cases and considering additional metrics, such as reliability,
resource utilization, and scalability. In addition, the integration of security features will
also be analyzed, considering both eventual conflicts, limitations, and impact on resource
utilization and real-time performance. Finally, we also expect to implement a physical
setup replacing SDN/Openflow with IEEE 802.1 TSN.

Author Contributions: E.S. and P.P. conceptualized and designed the proposal and methodology.
E.S. developed software, designed emulation and implementation scenarios, and also performed
the experimental assessment. E.S., P.P., and L.A. analyzed the resulting data. E.S. prepared the
original draft. P.P. and L.A. provided guidance for writing and performed writing—review and paper
revision. L.A. made final supervision. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is funded by the FCT/MCTES through national funds and, when applicable,
co-funded by community funds under projects UIDB/50008/2020-UIDP/50008/2020 and CISTER
UIDB/04234/2020, as well as the FCT scholarship PD/BD/137388/2018.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2022, 22, 3162 18 of 19

Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet-of-Things
IIoT Industrial-Internet-of-Things
MQTT Message Queuing Telemetry Transport
QoS Quality-of-Service
RT Real-Time
SDN Software-Defined Networking
RT-MQTT Real-Time MQTT
COST Commercial Off The Shelf
OF OpenFlow
ONF Open Networking Foundation
IntServ Integrated Services
NV Network Virtualization
PAC Priority-based Admission Control
TS Time-Sensitive
NO Normal
OF-Switches OpenFlow Switches
OF-Controller OpenFlow Controller
OF-DB OF-DataBase
RT-NM Real-Time Network Manager
OVSDB Open vSwitch Databas
e OVSDB-MP Open vSwitch Database Management
D-ITG Distributed Internet Traffic Generator
FTP File Transfer Protocol
NTP Network Time Protocol
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