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The finding that high-dose dexamethasone improves survival in those requiring critical
care due to COVID-19 will mean much greater usage of glucocorticoids in the subsequent
waves of coronavirus infection. Furthermore, the consistent finding of adverse outcomes
from COVID-19 in individuals with obesity, hypertension and diabetes has focussed
attention on the metabolic dysfunction that may arise with critical illness. The SARS
coronavirus itself may promote relative insulin deficiency, ketogenesis and hyperglycaemia
in susceptible individuals. In conjunction with prolonged critical care, these components
will promote a catabolic state. Insulin infusion is the mainstay of therapy for treatment of
hyperglycaemia in acute illness but what is the effect of insulin on the admixture of
glucocorticoids and COVID-19? This article reviews the evidence for the effect of insulin on
clinical outcomes and intermediary metabolism in critical illness.
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TRIALS OF GLUCOCORTICOIDS IN COVID-19

The RECOVERY Trial
At the time of writing, no pharmacological intervention for COVID-19 has been as successful as
steroids for treating the acute illness. The Randomized Evaluation of COVID-19 Therapy
(RECOVERY) trial showed that dexamethasone 6mg daily for 10 days reduced the mortality of
mechanically ventilated patients by 29% (1). This was despite 8% of the usual care group receiving
Dexamethasone in RECOVERY, which would bias results towards the null, raising the possibility of
even greater benefit. However, mortality was measured at 28 days and longer-term data will be
informative as the adverse impacts of steroid administration (in other acute conditions) may be seen
up to 90 days (2).

i) Dose: It is not entirely clear how the dose of 6 mg was decided upon. Immediately prior to the
pandemic, the Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre,
randomised controlled trial’ (DEXA-ARDS) reported on outcomes in ARDS of dexamethasone at a
starting dose of 20mg daily (3). This dose is consistent with prior studies of ARDS (which used
methylprednisolone regimens dosed at 1-2 mg/kg/day initially) (4).

A common pattern evolving from five retrospective trials early in the course of the pandemic was
for greater benefit with low dose steroids compared to the high dose steroids (5). It is likely that the
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6mg dose was a trade-off between the beneficial effects of
resolving pulmonary and systemic inflammation and
supporting blood pressure; and the adverse effects of inhibiting
immune response, reduce pathogen clearance, and provoking
viral replication (6).

ii) Pharmacokinetics: In RECOVERY, the trial drug could be
given orally or intravenously and surprisingly, the route of
administration was not recorded in the study documentation.
It is conceivable that for patients receiving mechanical
ventilation, the route of administration was more likely to be
intravenous, whereas it was probably given orally outside of this
subgroup. The bioavailability of oral dexamethasone is between
70% and 78%, and therefore dexamethasone in tablet form may
not have an equivalent therapeutic effect (7).

Meta-Analysis of Glucocorticoids
in COVID-19
Following release of RECOVERY outcomes, several ongoing
hydrocortisone trials were stopped as it was considered
ethically imperative to use dexamethasone. This reduced the
numbers of participants and hard end points were not achieved.

A meta-analysis was undertaken by WHO Rapid Evidence
Appraisal for COVID-19 Therapies (REACT) Working Group
(8). This incorporated data from seven trials (RECOVERY,
REMAP-CAP, CoDEX, CAPE COVID, and three additional
trials) totalling 1703 patients (678 had been randomized to
corticosteroids and 1025 to usual care or placebo), hospitalized
with COVID-19 critical illness.

The 28-day mortality was lower in patients randomised to
corticosteroids: 222 deaths among 678 patients randomized to
corticosteroids compared with 425 deaths among 1025 patients
randomised to usual care or placebo (odds ratio [OR], 0.66 [95%
CI, 0.53-0.82]; P < 0.001). The RECOVERY trial provided 59% of
the patients (8). In the analysis that excluded patients recruited to
the RECOVERY trial, the OR was 0.77 (95% CI, 0.56-1.07) for
all-cause mortality comparing corticosteroids with usual care or
placebo. The point-estimate for reduced mortality was similar
between dexamethasone and hydrocortisone: OR for mortality
reduction was 0.64 (95% CI 0.50 to 0.82) with dexamethasone
and 0.69 (0.43 to 1.12; P=0.13) with hydrocortisone). Of note, the
only trial that assessed methylprednisolone (Steroids-SARI)
was underpowered and OR for effect was 0.91 with wide
confidence interval (0.29 to 2.87). Outcomes were also similar
with lower- vs higher-dose corticosteroid regimens (demarcation
between low and high-dose was pre-specified at 15 mg/d of
dexamethasone, 400 mg/d of hydrocortisone, and 1 mg/kg/d
of methylprednisolone).

Since publication of the WHO meta-analysis, a more recent
randomised, placebo-controlled, double-blind study of 0.5 mg/kg
of methylprednisolone conducted in Brazil in 393 patients found
no difference in 28-day mortality and patients on steroids
required more insulin therapy (9). However, the Brazilian
cohort were on average about ten years younger than in
RECOVERY, had less heart disease (7% vs 28%), and there was
a greater proportion on mechanical ventilation at enrolment –
suggesting more severe disease (33.8% on mechanical ventilation
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vs 15.5% without). This runs counter to the idea that greater
benefit is seen in more severely unwell patients - the majority of
the studies in the WHO meta-analysis were conducted in
patients with serious or critically unwell patients, particularly
those who required high flow nasal oxygen or ventilation (8). In
the RECOVERY trial itself, there was no benefit among those
who were receiving no respiratory support at randomization
(17.8% dexamethasone vs. 14.0% control; rate ratio, 1.19; 95% CI,
0.91-1.55).
IMPLICATIONS OF COVID-19, AND THE
RECOVERY TRIAL PROTOCOL,
ON DIABETES

Diabetes was present in 24% of dexamethasone group vs 22% of
usual care of the RECOVERY trial. The study investigators did
not adjust for multiplicity in the study, between treatment arms
or for any of the pre-specified endpoints, meaning there is a
potential inflation of the type I error rate. This would be more of
an issue for some of the secondary endpoints. Even so, it is
surprising that data for patients with diabetes was not reported.
Two serious adverse events (SAEs) for hyperglycaemia, requiring
a longer admission for stabilisation, were recorded in the
dexamethasone group (10). Six milligrams of dexamethasone
OD is, in effect, five‐ to six-fold greater than the therapeutic
glucocorticoid replacement dose and therefore metabolic
perturbation is to be anticipated but the extent of this
is uncertain.

Prior to the COVID-19 pandemic, few papers examined the
acute effects of steroids on glucose homeostasis, when newly
administered to general medical inpatients. In these studies (11–
14), up to 50–70% of hospitalized patients (without known
diabetes) prescribed moderate-to-high glucocorticoid doses,
developed hyperglycaemia.

New hyperglycaemia (capillary glucose ≥11 mmol/L after
initiation of glucocorticoid therapy) was found in 14% of
general medical admissions treated with the equivalent of
30mg prednisolone (~4.5mg of dexamethasone daily), over a
short period of time (median 2.5 days; interquartile range [IQR]
1-4 days) (11). At higher doses of prednisolone (~40mg daily)
over four weeks - and including a subgroup receiving pulsed
methylprednisolone 500-1000mg per day - two-thirds of patients
developed steroid-induced diabetes (14). In these studies of
individuals without diabetes, SID was more likely with older
age, higher HbA1c level, lower estimated glomerular filtration
rate (eGFR) and greater illness severity (11–14).

In a meta-analysis of two randomised controlled trials, single-
dose 8mg dexamethasone, administered pre-operatively, led to a
mean 0.39mmol/L higher blood glucose than control, after 24
hours (95% CI: 0.04 - 0.74 mmol/L, P=0.03) (15–17). Extended
data, past 24 hours, is unavailable. Given the long half-life of
dexamethasone (36-54 hours), a prolonged effect might be
anticipated. Continuous day-curves of glucose sampling after
dexamethasone are not reported but after a single pre-operative
June 2021 | Volume 12 | Article 649405

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Whyte et al. Insulin and Glucocorticoids in COVID-19
dose 10mg dexamethasone in people without diabetes, peak
glucose was 2.5 mmol/L higher at 4 hours compared to control
(18), and significant increment, within 2 hours may be seen after
intravenous dosing (19).
COVID-SPECIFIC EFFECTS ON
GLUCOSE HANDLING

There may be a bidirectional relationship between diabetes and
COVID-19 whereby COVID-19 can worsen, or precipitate
diabetes and the presence of diabetes may worsen the severity
of the COVID-19 illness (20). A positive feedback loop is
thus engendered.

COVID-19 Causing Hyperglycaemia and
Diabetic Ketoacidosis
Acute hyperglycaemia has been seen in individuals infected with
SARS-CoV-2 but without known diabetes (21–26). In these
patients, the degree of admission hyperglycemia predicts
mortality and disease severity. The risk of COVID-19-related
hospitalisation and mortality has also been shown to be greater
in individuals with long-term hyperglycaemia (represented by
higher HbA1c) (27–29).

Hyperglycaemia in COVID-19 may represent an effect on
insulin resistance but it has also been questioned whether insulin
production might also be affected. A decade ago, it was
hypothesized that SARS coronavirus may directly damage
islet cells (30). More recently, in vitro studies suggest that
SARS-CoV-2 infection of pancreatic endocrine cells results in
robust chemokine induction and upregulation of markers of cell
death (31). Observational data of clinical outcomes provides
support for a direct pancreatic insult: diabetic ketoacidosis
(DKA) has been associated with COVID-19 disease (32–34).
Reports from China, early in the pandemic, suggested ketosis was
a relatively frequent occurrence: of 658 patients, 42 (6.4%)
presented with positive urine or serum ketones, and, of these,
three (7%) patients met the American Diabetes Association
(ADA) criteria for DKA (33). Those with ketosis were about
twice as likely to have diabetes at baseline, and the 3 individuals
who developed DKA had underlying diabetes (one with type 1
diabetes, two with type 2 diabetes). A marked increase in DKA
was also observed in children and adolescents in Germany and
Australia during the COVID-19 pandemic (35, 36). However,
other groups have found no increased incidence of new-onset
type 1 diabetes during this COVID-19 pandemic, compared to
historical rates (37). Furthermore, antibody positivity to SARS-
CoV-2 has not been associated with greater risk of type 1 diabetes
in children (38).

SARS-CoV-2 enters human cells via co-expression of its cell
entry factors, angiotensin-converting enzyme 2 (ACE2) and its
obligate co-factor, transmembrane serine protease 2 (TMPRSS2).
However, analysis of six transcriptional datasets of primary
human islet cells found that ACE2 and TMPRSS2 were not co-
expressed in single b cells (39), suggesting that direct viral entry
is not the means of pancreatic damage with COVID-19.
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There have been small case series of individuals with COVID-
19 with mildly raised lipase and/or amylase but not meeting the
criteria for pancreatitis (40). Therefore there is no convincing
evidence for more diffuse pancreatic injury as a mechanism
for insulinopaenia.

Black individuals have been particularly affected by COVID
and are over-represented in series with ketosis (41). It is possible
that the clinical picture of ketosis in COVID relates, in part, to
unmasking ketosis-prone type 2 diabetes (KPDM) – which has
been linked with Black ethnicity (42). Alternatively, increase in
the prevalence of severe DKA in COVID-19 positive patients
might relate to delayed hospital admission and/or accessing
medical advice.

In summary, ketosis is associated with length of hospital
admission and overall mortality (33). The data appear to show
that Covid-19 causes DKA more often than other respiratory
tract viral infections.

Diabetes Predisposing to Infection
With COVID-19
Elevated glucose levels can directly induce SARS-CoV-2 viral
replication in human monocytes. Glycolysis appears to sustain
SARS-CoV-2 replication via the production of mitochondrial
reactive oxygen species and activation of hypoxia-inducible
factor 1a (HIF1a) (43). HIF1a, in turn, upregulates glycolytic
genes and IL-1b expression. Therefore, acute hyperglycaemia
might directly support viral proliferation. Furthermore, people
with diabetes have a number of pathophysiological changes that
may underlie a more severe clinical response to COVID-19, these
include: greater proinflammatory cytokine release, compromised
host immune responses, endothelial dysfunction, and a greater
propensity for development of coagulation-related complications
(44, 45). Taken together, diabetes leads to greater viral
replication and more severe COVID-19 disease, leading to
greater hyperglycaemia.
EFFECT OF CRITICAL ILLNESS
ON GLUCOSE, FAT AND
PROTEIN METABOLISM

Endogenous Hypercortisolaemia
Under non-stressed conditions, the adrenal cortex produces
approximately 20 mg of cortisol during the day. This then
increases within 4-6 hours of acute stress, from a baseline of
approximately 400 nmol/l, to a peak of more than 1500 nmol/L
(depending on the severity of illness) (46). Estimates for
equivalency of hydrocortisone dosing have ranged from 60 to
200 mg cortisol per day (47, 48).

Cortisol production is at least partially ACTH-dependent.
There is a stimulatory effect on the hypothalamus by
inflammatory mediators such as TNFa and IL-1 for the release
of CRH (49). Cytokines can also have an effect downstream on
the pituitary; for instance, IL-6 appears to directly stimulate the
release of ACTH (49). However, the concept of vastly increased
corticosteroid production in critical illness has been challenged.
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Using stable isotope tracers, the rate of appearance of cortisol,
was only 1.8-fold higher in critically ill patients than in healthy
matched controls in the presence of low morning plasma ACTH
values (47). Therefore impaired cortisol clearance likely also
contributes to hypercortisolaemia. Hypoperfusion of cortisol-
metabolizing organs could, theoretically, reduce cortisol
breakdown but there is evidence for reduced hepatic
expression and activity of cortisol-metabolizing enzymes 5a-
and 5b-reductase and renal 11b-hydroxysteroid dehydrogenase-2
(Figure 1) (47). Cortisol-binding globulin (CBG) decreases in the
context of physiological stress (50). The concentration of CBG
being negatively associated with mortality in septic shock (51).
The net effect of an elevation in total cortisol and a reduction in
cortisol-binding globulin will be to increase free cortisol levels
(50). Greater cortisol concentration is associated with increased
mortality in COVID-19 (52).

Secretion of cortisol can be driven by factors outside the HPA
axis in critical illness (53). This is supported by reduced
adrenocorticotropic hormone (ACTH) and the increased
irregularity and asynchrony of the ACTH and cortisol time
series during critical illness (54). A biphasic response to critical
illness has been proposed whereby an initial ACTH-dependent
process gives way to later non-ACTH pathway (55). Within the
adrenal gland, macrophages, and lymphocytes, physiologically
widely infiltrating the adrenal cortex, and adrenocortical, and
chromaffin cells produce cytokines, as IL-1, IL-6, TNFa,
leukaemia inhibitory factor (LIF), and IL-18 which have a key
role in the immune-adreno-cortical communication (56).

Insulin Resistance
Hypercortisolaemia will increase the rate of hepatic
gluconeogenesis and inhibit glucose uptake and utilisation by
peripheral tissues (57, 58). Unlike in health, where
glucocorticoids promote hepatic glycogen storage, acute illness
is characterised by markedly reduced glycogen synthesis (59).

The action of glucocorticoids will be compounded by elevated
circulating catecholamines, which can antagonise the actions of
Frontiers in Endocrinology | www.frontiersin.org 4
insulin by several mechanisms: they can stimulate glucagon by a
b-adrenergic effect, increase hepatic glucose production by direct
stimulation of glycogenolysis and gluconeogenesis and decrease
glucose uptake (60). A b2 receptor mediated increase in lipolysis
could also exacerbate insulin resistance through ectopic fat
distribution, release of adipokines or promoting macrophage
infiltration of adipose tissue (61). Critical illness is associated
with markedly elevated levels of glucagon which increases
hepatic amino acid catabolism, contributing to the illness-
induced hypoaminoacidaemia (62). In COVID-19, the
profound viral induced inflammation, in particular IL-6
mediated, will further increase insulin resistance (63). The
severity of pneumonitis correlates with the insulin
requirement, but there does not appear to be a specific effect of
COVID-19 on insulin resistance (64).

Catabolism Induced by Insulin Resistance
The surge in proinflammatory mediators and counter-regulatory
hormones, favours the shift to catabolism marked by insulin
resistance - with insulin sensitivity reduced by 70% (Figure 2)
(65). Indeed, in the presence of critical-illness, hepatic glucose
production increases at least twofold compared to healthy
controls, to rates approaching 15 – 25 mmol/kg/min (66, 67).
Hyperglycaemia is also the result of diminished insulin-mediated
glucose uptake by skeletal muscle (59, 68). Critically ill patients
have significantly lower, and more variable insulin sensitivity, on
day 1 than later in their intensive care unit (ICU) stay (69, 70),
although insulin resistance may persist for months (71). The
acute effect is likely due to the acute counter-regulatory response
to critical illness as described above. Catabolism, insulin
resistance and stress hyperglycaemia are evolutionarily
responses designed to allow the host to survive during periods
of severe stress. Glucose can be utilized by tissues that are central
to the recovery process. These include the central and peripheral
nervous system, bone marrow, leucocytes and erythrocytes and
the reticuloendothelial system. Glucose uptake to these tissues is
non-insulin dependent - hence greater glucose concentration
FIGURE 1 | Cortisol metabolism. Cortisol is converted in peripheral tissues to cortisone by 11b-hydroxysteroid dehydrogenase (11b-HSD). Cortisone has marginally
reduced glucocorticoid activity compared to cortisol (80-90%), and thus, cortisone can be considered an active metabolite of cortisol. Unbound cortisol is biologically
active, but the majority of circulating cortisol is bound to corticosteroid-binding globulin (CBG) and albumin. Cortisol is metabolized by 5a- and 5b reductases to form
5a- and 5b-tetrahydrocortisol (5a- and 5b-THF).
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facilitates uptake (72). This evolutionary paradigm - of either
survival or rapid deterioration - has been superseded by the
ability to ‘suspend’ critical illness for days or weeks with modern
critical care. In the modern era, prolonged or severe
hyperglycaemia is associated with increased risk of critical
illness polyneuropathy and prolonged mechanical ventilation.
Loss of lean body mass is associated with poor ICU survival, or
delayed recovery in survivors (73).

Metabolomic and lipidomic approaches have shown that
circulating triglyceride and fatty acid concentrations correlate
with disease severity in COVID-19 (74). This mirrors data from
septic patients in the first days of hospital admission (75).
Microdialysis catheters have been used in femoral adipose
tissue in patients with systemic inflammatory response
syndrome/severe sepsis or shock. On day 1 of ICU admission
56% of patients had increased interstitial levels of glycerol and
FFA, the two products of lipolysis, with glycerol concentrations
being higher in those receiving glucocorticoids (76). Increased
very-low density lipoprotein (VLDL) production by the liver also
contributes to the elevation of plasma triglyceride concentration
in sepsis (77). By contrast, the absorption of lipid from the small
intestine is diminished in critical illness (78).

Protein Catabolism
Negative nitrogen balance has been linked to detrimental clinical
outcomes. The survival of critically-ill patients, their duration of
ICU admission, and the duration to recovery of normal
physiological function, are all inversely correlated with loss of
lean body mass during hospitalisation (79). As the largest protein
pool, it is unsurprising that the major site of protein loss is from
skeletal muscle. Muscle biopsy studies in the critically-ill have
shown rapid decreases in myosin heavy-chain mRNA and
protein expression by the fifth day of ICU admission (80), with
Frontiers in Endocrinology | www.frontiersin.org 5
average of 2% loss per day over the first 10 days (80–82). The
duration of corticosteroid treatment, independent of duration of
intensive care unit stay or other risk factors, is a dominant risk
factor for a low myosin/actin ratio (81). Long-term outcomes
from ICU-acquired weakness are significant and include lower
one-year survival, and reduced walk and exercise ability five-
years later (83).

The predominant defect appears to be an accelerated rate of
proteolysis that cannot be compensated for by a moderate rise in
the rate of protein synthesis (84, 85). There are multiple stimuli
for the increase in muscle catabolism, including hormonal and
cytokine but regression analysis found that plasma cortisol
concentration was the most significant predictor of protein
breakdown (where it explained nearly 40% of the variance)
(84). These data are consistent with earlier studies in normal
subjects, whereby artificial elevation of plasma cortisol - to levels
observed after trauma - resulted in a 15% increase in whole body
protein breakdown (86). The possibility of hyperglycaemia, itself,
acting as a spur for proteolysis has been explored in normal
subjects with the use of combined insulin and somatostatin
administration (87). Using stable isotopic tracer methodology,
hyperglycaemia (~ 10.5mmol/L) was associated with a three-fold
increase in proteolysis, without alteration of whole-body protein
synthesis or protein oxidation compared to normoglycaemia
(~5.2mmol/L). A retrospective review of burned patients
suggested a correlation between the extent of proteolysis and
prevailing glycaemia, with maximal proteolysis occurring in
patients with plasma glucose above 12.8 mmol/L and least
catabolism in those with plasma glucose below 8.6 mmol/L
(88). However, both hyperglycaemia and protein degradation
may have merely represented the disease severity and by
extension, the degree of insulin resistance. Sepsis can
significantly increase protein catabolism and exacerbate muscle
FIGURE 2 | Mechanisms of hyperglycaemia during states of stress and inflammation. Stress hyperglycemia is the end result of a neurohumeral and inflammatory
process characterized by excessive gluconeogenesis and glycogenolysis and impaired insulin-mediated glucose uptake. Grey arrows: gluconeogenic precursors IL,
interleukin; TNF-a, tumour necrosis factor-a; VLDL, very low-density lipoprotein.
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protein loss in already hypercatabolic patients (89), suggesting a
significant role for cytokines as catabolic factors. Cytokines and
stress hormones increase protein turnover via a common
mechanism involving the activation of muscle-specific
ubiquitin-ligases (82).

Proteolysis and Secondary Infection
A catabolic state may compromise the immune response by
mechanisms such as poor wound healing, altered mucosal
barrier, tissue oedema due to low albumin and reduced muscle
strength (and vital capacity) leading to pneumonia. Loss of
respiratory muscular power will prolong ventilation and
adversely affect the patient’s ability to clear the airways with
sufficient cough and thus increase the risk of pneumonia (79).
Skeletal muscle contributes in a bidirectional role in systemic
inflammatory signalling and the modulation of the inflammatory
response including by release of heat shock proteins (HSP) (90).
Skeletal muscle provides a key nutrient to the immune system in
the form of glutamine (91), which is a constitutively essential
amino acid during catabolic situations. Glutamine acts as an
energy substrate for leucocytes and is necessary for tissue repair
and intracellular pathways associated with pathogen recognition
(92). Deficiency of a skeletal muscle amino acid reservoir would
render a patient more susceptible to death from multiple organ
failure following a ‘second-hit’ episode of sepsis as there would be
inadequate substrate supply for immune function.

The proportion of patients with COVID-19 plus secondary
bacterial infections ranges from 5% to 30% (93) and the
incidence rate of bacterial blood-stream infections among
patients with COVID-19 admitted to the ICU appears to be
higher than in historical cohorts (93, 94). Rates of bacterial
secondary infection in severe COVID-19 will be skewed by
prescription of antibiotics - to cover for bacterial
superinfection (as with during influenza pandemics) – as
advocated by several guidelines (95).
THE METABOLIC EFFECTS OF A SHORT-
COURSE OF GLUCOCORTICOIDS

Administration of even relatively low doses of prednisolone
(6-7.5 mg daily) over one to two weeks acutely increases basal
hepatic glucose production and reduces insulin mediated
suppression of hepatic glucose production and stimulation of
peripheral glucose disposal (57, 58). Glucocorticoids will inhibit
the conversion of pyruvic acid to acetyl-coenzyme A, leading to
an accumulation of pyruvic acid and resulting in glucose re-
synthesis (96). Induction of gluconeogenic enzymes, such as
glucose-6-phosphatase, fructose-1,6-bisphosphatase and
phosphoenolpyruvate carboxykinase, add to this effect (97). In
the liver, glucocorticoids increase glycogen storage, which can be
observed from three to twenty-four hours after the
administration of glucocorticoids (96), whereas in skeletal
muscle they play a permissive role for catecholamine-induced
glycogenolysis and/or inhibit insulin-stimulated glycogen
synthesis (98). A negative effect on first- and second-phase
Frontiers in Endocrinology | www.frontiersin.org 6
insulin release is also seen with glucocorticoids, possibly
mediated via a reduced insulinotropic effect of glucagon-like
peptide-1 (GLP-1) (99, 100).

Acutely, over 5-7 days, glucocorticoids in therapeutic doses
can induce protein catabolism, in healthy subjects, by increasing
the rate of protein degradation by the ubiquitin-proteasome
system and autophagy lysosome system (101) and by
increasing whole-body protein oxidation (102). Protein
synthesis is also suppressed at the level of translational
initiation, preventing the production of new myofibrillar
protein (101). A dose-response gradient with worsening whole
body protein metabolism at increased steroid doses, has been
measured with isotopic techniques (103).
ANTICIPATED OUTCOMES OF INSULIN
USE IN HOSPITALISED PATIENTS
RECEIVING DEXAMETHASONE

Clinical Outcomes
The historic paradigm that hyperglycaemia in critically-ill
patients was an adaptive response that provided glucose for the
brain, red cells, and wound healing meant that the approach to
treatment was to treat the blood glucose only once high enough
to cause an osmotic drag and produce a diuresis (approximately
11-12mmol/L). This approach was reconsidered following the
publication of two randomised controlled trials from Leuven of
insulin use in critically-ill patients (104, 105). The first study
involved adults admitted to a surgical ICU with glucose targets in
the intervention group of 4.5 - 6.1 mmol/L, compared with a
comparatively high ceiling for the control group of 10.0 –
11.mmol/L) (105). Tight control reduced ICU mortality from
8% to 4.6%. Only 13% of the patients had diabetes. Most benefit
was amongst patients with multiple organ failure and sepsis. Of
importance, 62% of admissions were due to cardiac surgery and
an effect of glucose/insulin on the myocardium was postulated.
The insulin infusion rate was (mean) 0.04 iU/kg/hr; consuming
9g glucose/hr (105). In contrast, studies using a fixed glucose-
insulin-potassium (GIK) regime, with acute myocardial
infarction, to promote a switch away from myocardial fatty
acid metabolism to glucose metabolism, were approximately
0.1 - 1 iU/kg/hr; 30 - 80 g glucose/hr) (106). Expectation that
cardio-metabolic modulation with high-dose insulin could
improve outcomes were diminished after the neutral results
seen in the large Clinical Trial of Reviparin and Metabolic
Modulation in Acute Myocardial Infarction Treatment and
Evaluation-Estudios Clinicos Latino America (CREATE-ECLA)
(107). Furthermore, post-hoc analysis of the Leuven surgical
study (105) suggested that the benefit accrued from
normoglycaemia, rather than from hyperinsulinaemia (108).

The second Leuven study was in medical ICU patients, where
no mortality benefit was seen, except in those requiring ICU
stays of three or more days (104). These data suggest that insulin
may protect against the development of organ failure
(particularly from sepsis), rather than reversing pathological
processes once established. Three other studies also did not
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show benefit in mixed medical and surgical ICUs. The Volume
Substitution and Insulin Therapy in Severe Sepsis (VISEP) study
enrolled 480 severe sepsis patients who were randomized to tight
glycaemic control or standard glucose control (109). VISEP was
suspended early for increased rates of hypoglycaemia in the
intensive control arm (17.6% vs 4.5%) and no difference in 28-
day or 90-day mortality. The Glucontrol study was also
suspended after enrolment of 1101 patients due to safety and
protocol concerns (110). There was no difference in mortality,
but rates of hypoglycaemia were approximately 4 times higher in
the intensive insulin group (9.8% vs 2.7%). The Normoglycemia
in Intensive Care Evaluation–Survival Using Glucose Algorithm
Regulation (NICE-SUGAR) study randomised 6104 patients to a
target of 4.5 - 6.0 mmol/L or to < 10 mmol/L (111). There was a
greater risk of mortality in the intensive glycaemic control group
(odds-ratio 1.14) with no difference in the length of ICU or
hospital stay. Once again, the risk of hypoglycaemia was
significantly higher in the intensively treated group than
conventionally treated (6.8% vs 0.5%). Thereafter, glycaemic
targets in ICU have been pragmatically orientated at 8 - 10
mmol/l (112).

By contrast, there has been little direct evidence that treating
hyperglycaemia reduces morbidity or mortality on a general
medical or surgical ward. New hyperglycaemia in hospitalized
patients, of any aetiology, is associated with a much greater risk
of mortality than chronic hyperglycaemia (113). Acute
hyperglycaemia affects the innate and adaptive immune
responses at multiple levels : i t reduces neutrophil
degranulation, chemotaxis, and phagocytic activity; impairs
complement activation; and inhibits lymphocyte proliferative
response (114). However, the pathogenesis of hyperglycaemia
is important for the interpretation of clinical outcome data as in
those without pre-existing diabetes it has worse prognosis. In
these cases, it may be that hyperglycaemia is a surrogate for
illness severity.

Historically, the effect of hyperglycaemia on viral outcomes
has been less clear (44). However, given the unique interplay
between hyperglycaemia and SARS-CoV-2 replication, an a
priori case can be made for glycaemic control to reduce the
severity of COVID-19. Retrospective reports have shown that
glucose control preceding admission impacts illness severity and
mortality (27, 29). Few data exist for post-admission glycaemic
control. In a small study of 25 patients with hyperglycaemia and
hospitalised with COVID-19, use of intravenous insulin to
achieve a mean glucose of 7.69 ± 1.85 mmol/L (vs 10.65 ± 0.84
mmol/L in the no insulin infusion group) was associated with
reduced IL-6 and D-dimer levels and improved composite end-
point (admission to an ICU, the use of mechanical ventilation, or
death) (23).

Anti-Catabolic Action
Hepatic Glucose Production and Peripheral
Glucose Uptake
Glucose infusion at 4mg/kg/min, raising blood glucose to
10mmol/L and endogenous plasma insulin to ~400pmol/L
failed to suppress lipolysis following elective colorectal
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surgery (115). By contrast, normalisation of blood glucose
(to 5.9 ± 0.3 mmol/L) with exogenous insulin can significantly
reduce plasma triglycerides within 24 hours (116), through
suppression of lipolysis (68). Therefore, infusion of glucose,
without concomitant insulin, is unable to suppress lipolysis in
critical illness.

Normalisation of blood glucose is associated with an increase
of peripheral glucose uptake (68, 116), but it has been suggested
that exogenous insulin administration is unable to overcome
hepatic glucose production in critically-ill patients (117). Insulin
regulates hepatic gluconeogenesis via phosphoenolpyruvate
carboxylase (PEPCK) which decarboxylates oxaloacetate to
phosphoenolpyruvate in the gluconeogenic pathway.
Uncontrolled expression of PEPCK was associated with poor
prognosis in critically-ill patients (117), which led the authors to
conclude that hepatic insulin resistance could not be overcome
and that normalisation of blood glucose with insulin in critically-
ill patients must instead be attributable to increasing glucose
disposal. However, these data came from post-mortem studies
and so the lack of an hepatic effect of insulin might simply
represent the degree of metabolic derangement associated with
illness severity: for instance glucocorticoids can independently
up-regulate PEPCK gene expression (97). Patients in this study
had an ICU stay greater than 5 days. This is pertinent as it has
been proposed that the site of insulin-resistance could change
with time; within 24 hours postoperatively it is mainly the
peripheral tissues that are affected (118), whereas by the third
postoperative day, the liver appears to be most resistant to insulin
(119). Our group has shown that variable dose intravenous
insulin administered to medical ICU patients for 48 hours
(started within 36 hours of admission), to maintain blood
glucose between 7 – 9 mmol/l is sufficient to limit hepatic
glucose production rate (68).

Protein Turnover
Glucose intolerance seen in critical-illness is but one
manifestation of insulin resistance – a process that could also
manifest in terms of muscle protein catabolism.

Insulin’s effect on protein metabolism in the healthy adult has
been contentious but it appears primarily to act via the inhibition
of proteolysis (120–122), although increased protein synthesis
has also been suggested (123). Interpreting the mechanism of
action of insulin on protein anabolism is complicated by its other
physiological action – that of causing hypoaminoacidaemia.
Models of protein turnover involving the measurement of
blood-flow across a limb combined with muscle biopsies have
been used, predominantly in burned subjects, to examine the
effect of insulin on protein turnover. It has been considered that
critical-illness leads to impaired amino acid uptake by myocytes,
resulting in reduced protein synthesis. In two papers it was
suggested that resistance to amino acid uptake may be overcome
by a combination of high-dose insulin infusion (to achieve
plasma insulin concentrations in the range of 2000 to 5000
pmol/L) plus amino acid provision (124, 125). This had the effect
of increasing protein synthesis by approximately 350%, due to a
six-fold increase in amino acid transport into the cells. As amino
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acids by themselves were unable to fully support protein
synthesis, it was suggested that insulin may have an
independent role in protein synthesis. However, two groups
have used the amino acid clamp technique to show that in the
presence of adequate amino acid availability, increasing the
insulin concentration had no further effect on protein synthesis
(126, 127). One small study showed decreased whole-body
protein breakdown and synthesis in cardiac surgery patients
when administering glucose and insulin under maintenance of
normoglycemia (128). However, other studies of ICU patients
randomized to tight blood glucose control (4.4-6.1 mmol/L) with
conventional, low-dose, insulin infusion protocols have shown
no amelioration of muscle loss (81, 129), or whole-body protein
turnover (68). None of these studies delivered supplemental
amino acids although 0.13 to 0.26 g of nitrogen per kilogram
per 24 hours was the standard approach, within 24 hours of ICU
admission (68, 81).

What if a hyperinsulinaemic approach was used, rather than
conventional low-dose insulin? Exogenous provision of glucose
has several theoretical benefits in terms of protein sparing.
Firstly, it would be expected to shift substrate utilisation
towards increased oxidation of glucose instead of protein.
Secondly, exogenous glucose might decrease hepatic glucose
production and thereby act indirectly to reduce the need for
gluconeogenic precursors. Thirdly, it might drive the
accompanying need for insulin and the benefits on protein
sparing that might ensue. We have previously reported that
despite the infusion of high-dose insulin, causing a six-fold rise
in plasma insulin (to ~1500 pmol/L) over the conventional
insulin infusion rate, proteolysis was unaffected and remained
significantly higher than in the control subjects (68). Such a
finding is consistent with previous observations, in both normal
subjects and surgical patients, that glucose administration
(≥ 4mg/kg/min, causing a doubling of insulin concentration)
does not influence the degradation of peripheral protein (130,
131). Our group has also shown that insulin and glucose
administration was capable of full suppression of glucose rate
of appearance despite ongoing proteolysis (68), suggesting that
the function of proteolysis is not to provide gluconeogenic precursors.
FUTURE RESEARCH QUESTIONS

Work is needed to further understand the interplay between
diabetes and COVID-19. Mechanistic studies are needed to
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determine the effect of COVID-19 on tissue-specific insulin
resistance, the impact on pancreatic B-cell dysfunction, and
pulmonary perfusion in the presence of hyperglycaemia (44,
45). The international CoviDiab registry is expected to address a
number of these questions (20, 44). Knowledge by which SARS-
CoV-2 impacts upon glucose metabolism will be critical for
understanding disease pathogenesis and development or choice
of therapies.

It would be unrealistic to expect a prospective randomised
controlled trial of glucose normalisation on COVID-19
outcomes, but effort must be made for retrospective analyses of
propensity-matched subjects. Attention must also be paid to the
long-term metabolic sequalae of COVID – given the catabolic
processes outlined in this review. Further data are needed on
COVID-19 survivors for nutritional status and measures of
functional independence in the months after critical care for
COVID-19. Early rehabilitation programs are already being
evaluated in ongoing clinical studies (132).
CONCLUSION

Following the RECOVERY trial results, the use of short-courses
of glucocorticoid therapy will be widespread in the remaining
time of the COVID-19 pandemic. Based upon the evidence
reviewed, the ten-day course of the RECOVERY protocol will
be expected to increase both hepatic and peripheral insulin
resistance and lead to skeletal muscle loss. Current evidence
suggests exogenous insulin should be able to overcome the
hepatic and peripheral insulin resistance of glucose metabolism
but is unlikely to impact upon skeletal muscle loss engendered by
glucocorticoids. Strategies to achieve glycaemic normalisation
might have a direct disease modifying effect on the SARS-CoV-2
virus. Further work is needed to develop strategies to limit
muscle loss. Even so, we may see a long-term effect on
functional capacity from the critical-illness induced by
COVID-19.
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