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ABSTRACT

Cancer is known as a disease mainly caused by
gene alterations. Discovery of mutated driver path-
ways or gene sets is becoming an important step to
understand molecular mechanisms of carcinogene-
sis. However, systematically investigating common-
alities and specificities of driver gene sets among
multiple cancer types is still a great challenge, but
this investigation will undoubtedly benefit decipher-
ing cancers and will be helpful for personalized ther-
apy and precision medicine in cancer treatment. In
this study, we propose two optimization models to
de novo discover common driver gene sets among
multiple cancer types (ComMDP) and specific driver
gene sets of one certain or multiple cancer types to
other cancers (SpeMDP), respectively. We first apply
ComMDP and SpeMDP to simulated data to validate
their efficiency. Then, we further apply these meth-
ods to 12 cancer types from The Cancer Genome
Atlas (TCGA) and obtain several biologically mean-
ingful driver pathways. As examples, we construct
a common cancer pathway model for BRCA and OV,
infer a complex driver pathway model for BRCA car-
cinogenesis based on common driver gene sets of
BRCA with eight cancer types, and investigate spe-
cific driver pathways of the liquid cancer lymphoblas-
tic acute myeloid leukemia (LAML) versus other solid
cancer types. In these processes more candidate
cancer genes are also found.

INTRODUCTION

Cancer is a complex and heterogeneous disease with di-
verse genetic and environmental factors involved in its etiol-
ogy. With the advances of deep sequencing technology, huge
volume cancer genomics data have been generated through
several large-scale programs (e.g. The Cancer Genome At-

las (TCGA) (1), International Cancer Genome Consor-
tium (ICGC) (2) and the Cancer Cell Line Encyclopedia
(CCLE) (3)), which provide huge opportunities for under-
standing the molecular mechanisms and pathogenesis un-
derlying cancer (4). Currently, a crucial challenge in can-
cer genomics is to distinguish driver mutations and driver
genes which contribute to cancer initiation and develop-
ment from passenger ones which accumulate in cells but
do not contribute to carcinogenesis (5,6). Most early efforts
have been devoted to detect individual driver genes with re-
current mutations (7). However, this kind of methods do not
consider the complicated mutational heterogeneity in can-
cer genomes with diverse mutations in genes.

Although cancer patients exhibit diverse genomic alter-
ations, many studies have demonstrated that driver muta-
tions tend to affect a limited number of cellular signaling
and regulatory pathways (1,8,9). Therefore, a great deal of
attention has been devoted to evaluate the recurrence of mu-
tations in groups of genes derived from known pathways or
protein-protein interaction networks (9–11). These groups
of genes are considered as candidate driver pathways, which
may be frequently perturbed within tumor cells (12,13) and
can lead to the acquisition of carcinogenic properties such
as cell proliferation, angiogenesis or metastasis (14,15). A
main concern is that the human protein interaction net-
work and biological pathways are far from being complete.
It is necessary to develop new methods without relying on
prior knowledge to discover novel mutated driver gene sets
or pathways.

Previous studies indicate that a driver gene set has two
key properties: (i) covering a large number of samples (high
coverage); and (ii) its mutations tend to exhibit mutual ex-
clusivity (high mutual exclusivity), i.e. a single mutation is
usually enough to disturb one pathway (8,16,17). For exam-
ple, the mutation of TP53 and the copy number amplifica-
tion of MDM2 seldom appear simultaneously in glioblas-
toma multiforme (GBM) patients (p53 pathway) (1). These
rules have been frequently used to de novo discover mu-
tated driver gene sets in recent years (18–20). For exam-
ple, Vandin et al. developed Dendrix by designing a weight
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function to combine the coverage and exclusivity of a gene
set, and maximizing it via a Markov chain Monte Carlo
(MCMC) approach to extract driver gene sets (18). Zhao
et al. further developed a binary linear programming (BLP)
model (19) to get the exact solutions of the maximiza-
tion problem, and designed a genetic algorithm to optimize
variant weight functions and incorporate prior biological
knowledge into it in a more flexible manner. However, these
studies have all focused on a single pathway without con-
sidering the cooperativeness between pathways (18–21).

In fact, a great deal of evidence has suggested that path-
ways often function cooperatively in cancer initiation and
progression (15,16,22,23). Thus, exploring the complex col-
laboration among different biological pathways and func-
tional modules may shed new lights on the understanding
of the cellular mechanisms underlying carcinogenesis. Leis-
erson et al. (24) generalized Dendrix (Multi-Dendrix) to si-
multaneously identify multiple driver gene sets in cancer.
More importantly, the collaboration among different path-
ways means these gene sets are likely simultaneously mu-
tated in a large cohort of patients. To this end, Zhang et al.
(25) developed CoMDP to de novo discover co-occurring
mutated driver gene sets in cancer by introducing a novel
weight function and a mathematical programming model;
Melamed et al. (26) introduced an information theoretic
method GAMToC to identify combinations of genomic al-
terations in cancer; and Remy et al. (27) developed a logical
model to explain mutually exclusive and co-occurring ge-
netic alterations in bladder carcinogenesis.

On the other hand, different cancer types may have cer-
tain commonalities (28). Investigating the similarities and
differences among multiple cancer types may enhance the
understanding of pathologies underlying cancers and pro-
vide new clues to efficient drug design and cancer treatment.
The TCGA pan-cancer project surveyed multi-platform
aberration data in cancer samples from thousands of cancer
patients among 12 cancer types (29), which provides huge
opportunities to make such investigations (30,31). For ex-
ample, different histological cancers can be classified into
the same clusters (30,32,33), which means that different can-
cers may be treated by the same drugs. Recently, Leiserson
et al. (34) proposed a directed heat diffusion model (Hot-
Net2) to identify pathways and protein complexes based on
pan-cancer network analysis; Kim et al. (35) investigated
different kinds of mutual exclusivity among multiple can-
cer types and designed statistical testing methods for driver
gene set identification (MEMCover). Although recent pan-
cancer studies revealed that some pairs of genes showing
mutually exclusivity are common or specific for some cancer
types (28,36), there is still a lack of systematic investigation
of commonalities and specificities in pathway level.

In this study, we develop two mathematical programming
models (ComMDP and SpeMDP) to de novo identify can-
cer common and specific driver gene sets, respectively. For
the former, we detect a set of genes which have significantly
high mutual exclusivity and large coverage in two or more
cancer types simultaneously. For the latter, we identify a
driver gene set specific to one or a group of cancer types (say,
S1) versus another group of cancer types (say, S2). In other
words, we require the detected genes to have significantly
high mutual exclusivity and large coverage in the group S1

but not in S2. We first apply ComMDP and SpeMDP to
simulated data to validate their effectiveness. Then, we ap-
ply them to the mutation data of 12 cancer types from the
pan-cancer project (29,30) and obtain several biologically
meaningful driver gene sets. For example, for breast car-
cinoma (BRCA) and ovarian carcinoma (OV), we identify
their common driver gene sets as well as their individual
specific driver gene sets relative to the other. Interestingly,
the identified common gene sets are involved with distinct
cancer pathways such as apoptosis pathway, ErbB signaling
pathway, PI3K–Akt signaling pathway and MAPK signal-
ing pathway, which enable us to construct a common cancer
pathway model for BRCA and OV. Further, we construct a
hypothetical mutated driver pathway model for BRCA car-
cinogenesis and progression based on eight common driver
gene sets of BRCA with eight cancer types, indicating the
complexity of BRCA carcinogenesis. In addition, we in-
vestigate specific driver pathways of the liquid cancer lym-
phoblastic acute myeloid leukemia (LAML) versus other
solid cancer types, and identify mutations of FLT3, IDH2,
NRAS, IDH1, RUNX1, NPM1, TET2, KIT, amplifications
of MLL, IGSF5 and deletions of TP53, GNAQ, which are
involved in proliferation, transcriptional deregulation, im-
paired hematopoietic differentiation, and so on. We expect
the proposed methods can discover new commonalities and
specificities among cancers and help to understand cancer
initialization and progression further.

MATERIALS AND METHODS

We first briefly describe the maximum weight submatrix
problem, where the coverage and exclusivity of a gene set are
combined to form a weight function for discovering driver
gene sets in a single mutation data (18,19). Then we propose
ComMDP and SpeMDP to de novo discover cancer com-
mon and specific mutated driver gene sets among multiple
cancer types, respectively (Figure 1).

The maximum weight submatrix problem

Given a binary mutation matrix A with m rows (samples)
and n columns (genes), Vandin et al. introduced a weight
function W and defined the maximum weight submatrix
problem (18). Specifically, it is designed to find a submatrix
M of size m × k in matrix A by maximizing W:

W(M) = |�(M)| − ω(M) = 2|�(M)| −
∑
g∈M

|�(g)|, (1)

where �(g) = {i: Aig = 1} denotes the set of samples in which
the gene g is mutated, �(M) = ∪g ∈ M�(g) measures the cov-
erage of M, and �(M) = ∑

g ∈ M|�(g)| − |�(M)| measures
the coverage overlap of M.

ComMDP for identifying common mutated driver gene sets
among two or multiple cancer types

Considering R (R ≥ 2) cancer types, for each we have the
mutation matrix Ar = (a(r )

i j ) with mr samples and the same
n mutated genes (r = 1, . . . , R). To find a common mutated
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Figure 1. Schematic illustration of the key idea of this study. (A) Obtain the
mutation matrix from the sequencing data (referring to somatic mutations,
copy number alterations (CNAs) and DNA methylation aberrations) (18).
(B) Identify the common and specific driver gene sets using ComMDP and
SpeMDP.

driver gene set M with large coverage and high exclusivity,
we introduce a weight function Cm:

Cm(M) =
R∑

r=1

[
2|�Ar (M)| −

∑
g∈M

|�Ar (g)|]. (2)

We propose the following BLP model to maximize it:

max Fm(x, u) =
R∑

r=1

[
2

mr∑
i=1

x(r )
i −

n∑
j=1

(
u j ·

mr∑
i=1

a(r )
i j

)]
(3)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(r )
i ≤

n∑
j=1

a(r )
i j u j , i = 1, . . . , mr , r = 1, . . . , R,

n∑
j=1

u j = K,

x(r )
i , u j ∈ {0, 1}, i = 1, . . . , mr , j = 1, . . . , n,

r = 1, . . . , R,

(4)

where uj indicates whether column j of the mutation matri-
ces falls into submatrx M or not, and all the columns j’s with
uj = 1 constitute M; x = {x(1), . . . , x(R)}, and x(r )

i indicates
whether the entries of row i are zeros or not in Ar (r = 1, . . . ,
R). Thus,

∑mr
i=1 x(r )

i represents the coverage of M in Ar (i.e.,
|�Ar (M)|); K is the total number of genes within M.

SpeMDP for identifying a certain or multiple cancer specific
driver gene sets

Suppose we want to find the specific mutated driver gene
sets for R cancer types relative to other T ones (R ≥ 1, T ≥
1). We use Ar = (a(r )

i j ) (r = 1, . . . , R) and Bt = (b(t)
kj ) (t = 1,

. . . , T) to denote corresponding mutation matrices, respec-
tively. We introduce the weight function Sm:

Sm(M) = 1
R

R∑
r=1

[
K|�Ar (M)| −

∑
g∈M

|�Ar (g)|]

− 1
T

T∑
t=1

[
K|�Bt (M)| −

∑
g∈M

|�Bt (g)|].
(5)

We maximize Sm by the following BLP model:

max Gm(x, y, u) = 1
R

R∑
r=1

[
K

mr∑
i=1

x(r )
i −

n∑
j=1

(
u j ·

mr∑
i=1

a(r )
i j

)]

− 1
T

T∑
t=1

[
K

lt∑
k=1

y(t)
k −

n∑
j=1

(
u j ·

lt∑
k=1

b(t)
kj

)]
,

(6)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(r )
i ≤

n∑
j=1

a(r )
i j u j , i = 1, . . . , mr , r = 1, . . . , R,

1
n

n∑
j=1

b(t)
kj u j ≤ y(t)

k ≤
n∑

j=1

b(t)
kj u j ,

k = 1, . . . , lt, t = 1, . . . , T,
n∑

j=1

u j = K,

x(r )
i , y(t)

k , u j ∈ {0, 1}, i = 1, . . . , mr , j = 1, . . . , n,

r = 1, . . . , R, k = 1, . . . , lt, t = 1, . . . , T,

(7)

where x = {x(1), . . . , x(R)}, y = {y(1), . . . , y(T)}. As stated
above, the constraint x(r )

i ≤ ∑n
j=1 a(r )

i j u j in Eq. (7) ensures

that
∑mr

i=1 x(r )
i is the coverage of M in Ar. In Eq. (5) or Eq.

(6), because of the subtraction of the weights of Bt from
that of Ar, we use the restrictions 1

n

∑n
j=1 b(t)

kj u j ≤ y(t)
k ≤∑n

j=1 b(t)
kj u j to ensure that

∑lt
k=1 y(t)

k is the coverage of M
in Bt, and we use the coefficient K to ensure the weights of
Ar and Bt are all non-negative.

Statistical significance

We perform a permutation test to assess the significance of
results. We permutate the mutations independently among
samples to preserve the mutation frequency of each gene.
Two kinds of significance are calculated: (i) individual one
measuring the significance of a gene set in a certain muta-
tion matrix, where the weight W in Eq. (1) is used as the
statistic; (ii) overall one measuring the significance of a gene
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set by viewing all the mutation matrices as a whole, where
the weight Cm in Eq. (2) and the weight Sm in Eq. (5) are
used as the statistics for ComMDP and SpeMDP, respec-
tively.

Simulated data

To assess the performance of the proposed methods on a
variety of data, we construct eight datasets, sd1, ···, sd8, for
simulation study. For convenience of description, in the fol-
lowing we use Ar or Br to denote the mutation matrices, M(r )

i
to denote the i-th embedded submatrix (or gene set) in Ar
or Br for which the proposed methods are used to identify,
and p(r )

i to denote the gene mutation rate in M(r )
i (1 ≤ r ≤

R, 1 ≤ i ≤ I).
The datasets sd1 and sd2 are generated to illustrate the

performance of ComMDP for identifying common driver
gene sets among multiple cancer types. The difference is
that in sd1 for each r the M(r )

i have a constant mutation
rate (1 ≤ i ≤ I), but in sd2 they have varying ones, to in-
vestigate the possible impact of mutation rates in the gene
sets on the discovery accuracy. sd1 is constructed as follows.
First, we have three empty matrices Ar with the same sizes:
m (samples) × n (genes) (here m = 500, n = 900). Then,
we embed I submatrices M(r )

i with a mutation rate p(r) into
each matrix Ar (r = 1, ···, 3; i = 1, ···, I; I = 9; p(1) = 0.80,
p(2) = 0.85, p(3) = 0.90), where for each r, M(r )

i contains i
+ 1 genes (i = 1, ···, I), and for each i, these submatrices
M(r )

i occupy the same columns in the corresponding Ar (r
= 1, ···, 3). For each sample in Ar, a gene uniformly cho-
sen from M(r )

i is mutated with rate p(r), and once one gene
is mutated, the other genes in M(r )

i have a rate p0 to be mu-
tated (p0 = 0.04). Finally, the genes not in M(r )

i are mutated
in at most three samples, which can be viewed as the back-
ground mutation rate in the simulated data. The dataset sd2
is constructed in a similar way, the difference is that each
gene set has 9 genes (K = 9), and M(r )

i has a mutation rate
p(r )

i = 1 − i ∗ δ(r )(r = 1, · · · , 3; i = 1, · · · , 9), where �(1) =
0.03, �(2) = 0.04, �(3) = 0.05.

The simulated datasets sd3–sd7 are generated to demon-
strate the performance of SpeMDP for identifying specific
driver gene sets of one or several cancer type(s) versus other
cancers. In this case, the datasets are constructed to con-
tain two kinds of embedded gene sets. The first kind of gene
sets have mutations with (approximately) mutual exclusiv-
ity, like those in sd1 (called the first manner of embedding);
but for the second ones, we randomly select 60% samples
for which two genes are randomly chosen to be mutated
with proper mutation rates, ensuring they are not exclusive
(called the second manner of embedding). For the details of
the construction of sd3–sd7, please refer to the Supplemen-
tary Data. We use these five datasets sd3–sd7 to investigate
different aspects for SpeMDP applications. Specially,

• sd3 for discovering a certain cancer specific driver gene
sets

• sd4 for investigating in which case SpeMDP can identify
specific driver gene sets

• sd5 for investigating the impact of diverse mutation rates
on the results

• sd6 for investigating the method performance in different
mutation generation manners

• sd7 for discovering multiple cancer specific driver gene
sets

We construct dataset sd8 to see if the previous individual
cancer type approaches can also identify cancer common
and specific driver gene sets (e.g. BLP in MDPFinder (19)
or Dendrix (18)). The construction of sd8 is similar to that
of sd1. Seven groups of submatrices M(r )

i with six genes in
each are embedded into Ar with m = 500, n = 700, r = 1,
···, 3. The first group of submatrices are constructed in the
first embedding manner (thus corresponding to a common
driver gene set); each of the second to the fourth groups con-
tains two with the first embedding manner, one with back-
ground mutations (corresponding to neither common nor
specific driver gene sets); each of the last three groups con-
tains one with the first embedding manner, two with back-
ground mutations (each corresponding to a specific driver
gene set).

Biological data

We use mutation data from the pan-cancer project (30,33) to
assess our methods for practical applications. The 12 types
of cancer include bladder carcinoma (BLCA), breast carci-
noma (BRCA), colon adenocarcinoma (COAD), glioblas-
toma multiformae (GBM), head and neck squamous carci-
noma (HNSC), kidney renal clear-cell carcinoma (KIRC),
lymphoblastic acute myeloid leukemia (LAML), lung ade-
nocarcinoma (LUAD), lung squamous carcinoma (LUSC),
ovarian carcinoma (OV), rectal adenocarcinoma (READ)
and uterine cervical and endometrial carcinoma (UCEC).
Here, colon adenocarcinoma and rectal adenocarcinoma
are combined into one type denoted as COADREAD.

RESULTS

Simulation study

We first apply ComMDP to the simulated datasets sd1, sd2
and apply SpeMDP to sd3–sd7 to assess their performance.
We run each method ten times for each dataset. We further
apply them to sd8 and compare them with driver gene set
discovery approaches for individual cancer types (BLP (19)
is used here).

Common driver gene set discovery. For sd1 ComMDP can
identify the embedded gene sets for all the ten runs when the
number of genes K ≤ 8 (Figure 2A). When K = 9, it can de-
tect the embedded gene set for five runs, and it has a wrong
one for each of other five runs. When K = 10, each detection
of eight runs contains nine correct genes plus a wrong one,
and each of other two runs has two wrong ones. We also
investigate the possible impact of varying mutation rates in
the gene sets on the discovery accuracy. For the embedded
nine gene sets of K = 9 with diverse mutation rates in sd2,
each of ten runs can identify at least eight correct genes in
each gene set (Figure 2B).
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Figure 2. The results of simulation study. Accuracy of the common driver gene set discovery: (A) for K = 2 to 10 with a constant mutation rate and (B) for
fixed K = 9 in which the embedded nine gene sets (I = 9) have decreasing mutation rates. (C) Accuracy of the specific driver gene set discovery for K = 2 to
10 with a constant mutation rate. (D) Illustration of the situation for specific driver gene set discovery: (i) two kinds of exclusive gene sets corresponding to
a common driver pathway, so it cannot be found; (ii) exclusive (red) versus nonexclusive (brown) gene sets can be found; (iii) exclusive (red) versus random
(brown) gene sets can be found. Numbers of correctly identified specific driver gene sets for ten runs with K = 6 and I = 9: (E) both kinds of gene sets have
decreasing mutation rates and (F) one has increasing and the other has decreasing mutation rates. (G) Numbers of correctly identified specific driver gene
sets for ten runs about multiple cancer types with K = 6 and I = 9.

Specific driver gene set discovery. First, we consider the
situation of one cancer specific driver gene sets. In sd3,
SpeMDP can correctly detect the embedded gene sets for K
= 2 to 10 (Figure 2C). The results on sd4 demonstrate that
when the gene set is exclusive in kind 1 (kind 2) set but not
in kind 2 (kind 1) set, or one is exclusive and the other takes
background mutations, SpeMDP can successfully identify
it (Figure 2D). In the first case, the gene set is approximately
exclusive in both kinds 1 and 2 sets which corresponds to a
common driver pathway, so SpeMDP cannot find it. In sd5,
the mutation rates in kind 1 and kind 2 sets simultaneously
get smaller and smaller, so the mutation coverage will get
small (so does the weight W) in kind 1 set along with i gets
large (1 ≤ i ≤ I, I = 9), and more exclusive mutation in kind 2
dataset will become possible. Therefore, the performance to
detect the embedded gene set will decrease when i gets large
(Figure 2E). We further validate this on sd6. The mutation
rate of sd6 in kind 2 dataset gets larger and that in kind 1 set
gets smaller along with i becomes large (1 ≤ i ≤ I, I = 9). In
this case, we successfully identify all the embedded gene sets

except the one corresponding to i = 2 (Figure 2F). Lastly,
the result on sd7 indicates that SpeMDP is also effective to
identify specific gene sets for multiple cancer types (Figure
2G), where the dataset is simulated in a similar way to that
of sd6.

Individual driver gene set discovery approaches cannot detect
common and specific driver gene sets well. For sd8, we first
use the BLP model in MDPFinder (19) to identify individ-
ual driver gene sets in each Ar which contains seven embed-
ded submatrices, and we get the ones marked by ellipses in
Figure 3. Then we apply ComMDP and SpeMDP to iden-
tify the common and specific driver gene sets among all the
Ars, and we obtain those marked by the rectangle and dot-
ted rectangles, respectively. Note that the detected individ-
ual and common driver gene sets do not have any overlap.
Moreover, the detected individual driver gene sets in the sec-
ond and third mutation matrices (A2 and A3) are not specific
(Figure 3).
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Figure 3. ComMDP and SpeMDP can exactly identify the embedded common driver gene sets (rectangle) and specific driver gene sets (dotted rectangles),
respectively. The BLP of MDPFinder (19) can identify the individual driver gene sets in each dataset (ellipses).

Applications to biological data

We investigate common driver gene sets among all the pair
mutation data of the 11 cancer types with K = 2 to 10. We
summarize all the significant driver gene sets with both in-
dividual and overall significance less than 0.05 (Supplemen-
tary Table S1). The mutation rates of TP53 in LUSC and
OV are very high (164/182 and 405/445, respectively). We
distinguish these situations with or without TP53 when re-
lating to these two cancer types.

Common mutated driver gene sets among two or multiple can-
cer types. Previous studies indicate that BRCA and OV
have similar phenotypes to some extent. Interestingly, we
indeed obtain significant common driver gene sets between
them by ComMDP for K = 7 to 10 (Table 1), and reveal 10
genes TP53, PIK3CA, MAP3K1, MAP2K4, PIK3R1, LPA,
KRAS, ERBB2, FGFR2, TNXB in total. These genes are
enriched in several signaling pathways relating to apopto-
sis, ErbB signaling pathway, PI3K-Akt signaling pathway,
MAPK signaling pathway, etc. Based on known KEGG
pathway knowledge (Figure 4A), we propose a common
mutated pathway model for cancer initiation and progres-
sion in both BRCA and OV (Figure 4B). We show the heat
map of the alterations of the gene set for K = 10 (Supple-
mentary Figure S1) and see that TP53 has a very high mu-
tation rate in OV (as stated above). The mutation rates of
other nine genes are very low. It implies that TP53 muta-
tion plays a dominant role in this pathway in OV, indicating
that the common driver get set exploration helps to identify
driver pathways with low mutation frequency (Figure 4).

We also employ BLP (19) to identify individual driver
gene sets in BRCA and OV (Table 2), respectively. For each
K in Table 2, there is only one common gene TP53 be-
tween the identified gene sets for these two cancers. For
other genes in the common gene sets in Table 1, PIK3CA,
MAP3K1, MAP2K4 and PIK3R1 only appear in the gene
sets of BRCA, and KRAS, FGFR2 and LPA appear only in

those of OV (Table 2). Thus, only a local path of the com-
mon mutated pathways (Figure 4B) can be found by BLP
for each of these two cancers (Figure 4C).

ComMDP has distinct advantages over both the gene-
centric frequency-based approaches and the individual
driver gene set based approaches. First, in the identified
common gene sets (Table 1), some genes have very low mu-
tation frequency. For example, TNXB, LPA and FGFR2 all
have less than five mutations in 466 BRCA samples and 445
OV samples, respectively. With such low frequency, these
genes cannot be discovered by the gene-centric frequency-
based approaches. But all the three genes have important bi-
ological functions (Figure 4B) and are closely related to the
carcinogenesis of BRCA and OV (37–40). For instance, Hu
et al. validated TNXB as a promising biomarker for early
metastasis of breast cancer (37); Kim et al. demonstrated
TNXB might be helpful to predict the prognosis of patients
with stage III serous ovarian cancer through differential ex-
pression analysis (38); LPA and its receptors play an im-
portant role in mediating malignant behaviors in various
cancers and recent studies (39,41) suggested they could be
potential diagnostic biomarkers for BRCA and OV, respec-
tively; FGFR2 were suggested as candidate targets for ther-
apeutics in clinical trial for BRCA and OV (40,42). Second,
some of the ten important common genes (Table 1) cannot
be identified by the driver gene set identification approaches
for individual cancer type (Table 2). Especially, TNXB and
ERBB2 are not identified for any cancer by BLP. Actually,
ERBB2 is a well-known cancer gene, and it plays a crucial
role for certain subtypes of BRCA and OV patients (43,44).
Third, it is important to note that the individual cancer type
approach can only discover a small part of the common
gene set for each cancer type (Figure 4), whereas ComMDP
can integrate information from different cancers and imply
a more biologically reasonable common driver pathway.

Importantly, identifying all significant common driver
gene sets of BRCA with certain cancer types will help
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Figure 4. (A) Known KEGG pathway knowledge in cancer. (B) A common mutated pathway model for BRCA and OV initiation and progression. It is
inferred based on the identified common gene sets and their participant pathway knowledge. The gene AKT1 does not appear in the identified common
gene sets. (C) Only local parts of the common mutated pathway in (B) can be found by the individual cancer type approach BLP: (a) BRCA (up for 2 ≤ K
≤ 6, below for 7 ≤ K ≤ 10) and (b) OV, according to the detected genes in Table 2.

Table 1. Significant common driver gene sets between BRCA and OV identified by ComMDP

K Common gene set p1 p2 p

7 TP53, PIK3CA, MAP3K1, MAP2K4, PIK3R1, LPA, KRAS 0 0.003 0
8 TP53, PIK3CA, MAP3K1, MAP2K4, PIK3R1, LPA, KRAS, ERBB2 0 0.004 0
9 TP53, PIK3CA, MAP3K1, MAP2K4, PIK3R1, LPA, KRAS, ERBB2, FGFR2 0 0 0
10 TP53, PIK3CA, MAP3K1, MAP2K4, PIK3R1, LPA, KRAS, ERBB2, FGFR2, TNXB 0 0 0

p1 and p2 denote the p-values of the common gene sets in BRCA and OV, respectively. p represents the overall significance.

Table 2. Significant individual driver gene sets in BRCA and OV by BLP

K Driver gene set in BRCA Driver gene set in OV

2 TP53, PIK3CA TP53, KRAS
3 TP53, PIK3CA, GATA3 TP53, KRAS, IDI2
4 TP53, PIK3CA, GATA3, CDH1 TP53, KRAS, FGFR2, PIGV
5 TP53, PIK3CA, GATA3, CDH1, CTCF TP53, KRAS, IDI2, PIGV, BRAF
6 TP53, PIK3CA, GATA3, CDH1, CTCF, MACROD2 TP53, KRAS, IDI2, BRAF, LPA, EGFR
7 TP53, GATA3, CDH1, MACROD2, AKT1, MAP3K1,

MAP2K4
TP53, KRAS, IDI2, BRAF, PIGV, EGFR, C4orf45

8 TP53, GATA3, CDH1, MACROD2, AKT1, MAP3K1,
MAP2K4, PIK3R1

TP53, KRAS, FGFR2, C4orf45, EPHA3, PPID, ETFDH,
FNIP2

9 TP53, GATA3, CDH1, MACROD2, AKT1, MAP3K1,
MAP2K4, PIK3R1, POLD4

TP53, KRAS, FGFR2, PIGV, EGFR, C4orf45, EPHA3,
PPID,
FNIP2

10 TP53, GATA3, CDH1, MACROD2, AKT1, MAP3K1,
MAP2K4, PIK3R1, POLD4, ARID1A

TP53, KRAS, IDI2, BRAF, LPA, C4orf45, EPHA3,PPID,

ETFDH, FNIP2

Here the p-values are all less than 0.0001.
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to understand various aspects of BRCA carcinogenesis.
Besides OV, other cancer types include BLCA, COAD-
READ, GBM, HNSC, KIRC, LUAD and UCEC (Sup-
plementary Table S1). In total, we discover 38 different
genes in all eight significant gene sets (Supplementary Fig-
ure S2). These genes are involved in many important sig-
naling pathways (Supplementary Figure S3) and relate to
diverse cancers (such as prostate cancer, endometrial can-
cer, pancreatic cancer, lung cancer, glioma, colorectal can-
cer, etc) (searched by DAVID (45)). It is known that can-
cer is a very complex disease. We integrate prior path-
way knowledge and all the common driver gene sets of
BRCA with the eight cancer types to explore more details
about BRCA carcinogenesis (Figure 5). Compared to Fig-
ure 4, we find some new paths and more genes involving
in the important hallmarks of cancer in Figure 5, such
as [IFNA6–cytokineR/JAK–PI3K-Akt signaling pathway–
TP53–Fas–CASP8] leading to apoptosis, [ARID1A–NF1–
KRAS–MAPK signaling pathway] leading to proliferation,
[GATA3–MAPK14] leading to cell survival, etc.

We note that, based on the common driver gene sets of
BRCA with multiple cancer types, we can get distinct new
discoveries versus previous work. For example, the authors
in (28) identified 127 significantly mutated genes (SMGs)
from diverse signaling and enzymatic processes, and calcu-
lated the most frequently mutated genes in the pan-cancer
cohort for each cancer type. Especially, for BRCA they ob-
tained eight genes (TP53, PIK3CA, MAP3K1, MAP2K4,
GATA3, AKT1, CDH1, CBFB), seven of which belong
to our 38 genes except CBFB. On one hand, we find
more genes involved in the cellular processes that the
above eight genes relating to: transcription factor/regulator
(CTCF), genome integrity (ATM, BRCA2), MAPK signal-
ing (KRAS, NF1), PI(3)K signaling (PTEN, PIK3R1). On
the other hand, we detect several genes involved in other
important biological processes in cancer: histone modi-
fier (ARID1A, PBRM1, KDM6A), RTK signaling (FGFR2,
FGFR3), cell cycle (CDKN1B). This indicates that these bi-
ological processes may also contribute to the carcinogen-
esis of BRCA. More importantly, we identify some other
genes that are not included in the 127 selected genes in (28),
but they play also crucial roles, such as CASP8, IFNA6,
ERBB2, TNXB, NOTCH2 (Supplementary Figure S3). For
example, CASP8 is involved in the programmed cell death
induced by Fas and various apoptotic stimuli, and there are
many studies relating to its biological functions (46–48);
NOTCH2 plays a role in a variety of developmental pro-
cesses by controlling cell fate decisions, and has close re-
lationship with BRCA progression (49,50); IFNA6 belongs
to the family of interferon, although it has not been well
studied, this kind of immune-associated genes may be worth
paying great attention for immunotherapy of cancers (51).

Note that BLCA has common significant driver gene sets
with all the other 10 cancer types (Supplementary Table
S1). For BRCA stated above, some genes frequently ap-
pear in many common gene sets (Supplementary Figure
S2). But for BLCA, the common gene sets are not neces-
sarily the same, such as those with BRCA (Supplementary
Table S2), COADREAD (Supplementary Table S3), GBM
(Supplementary Table S4) and LUSC (Supplementary Ta-
ble S5). For example, we identify two different sets of genes

for BRCA and COADREAD, whereas their functional an-
notations are quite similar (Supplementary Figure S4). All
these are closely related to cancer generation and progres-
sion.

Furthermore, we also investigate the common mutated
driver gene sets among multiple cancer types. For exam-
ple, we find that BRCA, OV, LUAD and GBM have com-
mon significant gene sets with K = 4 to 10 (Table 3), which
relate to the mutations of genes TP53, PIK3CA, KRAS,
MAP3K1, EP300, PIK3R1, TNXB, KDM6A, LPA and
deletion of gene IFNA6. As an example, we show the heat
map of the alterations of the gene sets in these four cancer
types for K = 4 (Figure 6). These gene alterations are ap-
proximately mutually exclusive in all the four cancer types.
Compared to the situation of only considering BRCA and
OV (Table 1), it covers three new genes. Besides IFNA6
stated above, two others are EP300 and KDM6A. EP300 in-
teracting with TP53 is a transcriptional coactivator to medi-
ate many transcriptional events including DNA repair (52).
It also functions as a histone acetyltransferase to regulate
transcription via chromatin remodeling. Gene KDM6A is
associated with chromatin organization and transcriptional
misregulation in cancer (53). Indeed, this investigation can
help one to reveal common characteristics among diverse
cancers.

Mutated driver gene sets specific to one cancer or multiple
cancer types. We apply SpeMDP to the mutation data
without common driver genes and identify several signif-
icant BRCA specific driver gene sets relative to OV with
K = 3, 4, 9, 10 (Table 4). These gene sets relate to the
mutations of GATA3, CDH1, AKT1, CTCF and amplifi-
cations of ERBB2, WHSC1L1, CCND1, PLK1, RFPL4A,
DDAH1, many of which have been suggested to be closely
related with breast cancer initiation and progression by a
number of studies (54–57). For example, GATA3 plays a
specific role in the differentiation of breast luminal epithe-
lial cells, and has particular diagnostic utility in the setting
of triple-negative breast carcinomas (58); the tumor sup-
pressor CDH1 has been shown to be a potential drug target
in breast cancer (54); and epigenetic silencing of HOXA10
by CTCF in breast cancer cells is related to tumorigenesis
(55). Similarly, we also identify significant OV specific driver
gene sets relative to BRCA with K = 2 to 10 (Table 4), and
significant BRCA and OV specific driver gene sets relative
to the liquid cancer LAML with K = 9, 10 (Supplementary
Table S6).

The liquid cancer LAML has significant common or specific
driver gene sets compared to solid cancer types. LAML is
the only liquid cancer in the current study. Interestingly,
it has some common driver gene sets with solid cancers.
Specifically, by using ComMDP we identify LAML has
a significant common driver gene set with COADREAD,
GBM and BLCA for K = 5, which includes deletion of
IFNA6, and mutations of TP53, IDH1, WT1, SDK1.

More importantly, LAML is expected to have some
specific mutation patterns. We investigate LAML specific
driver pathways relative to other 10 solid cancers, and dis-
cover significant driver gene sets with K = 2 to 10 except
K = 5 (Table 5). These gene alterations include mutations
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Table 3. Significant common driver gene sets among BRCA, OV, LUAD and GBM

K Common gene set p1 p2 p3 p4 p

4 TP53, IFNA6, PIK3CA, KRAS 0.0010 0.0040 0.0020 0 0
5 TP53, IFNA6, PIK3CA, KRAS, MAP3K1 0 0.0020 0.0040 0 0
6 TP53, IFNA6, PIK3CA, KRAS, MAP3K1, EP300 0 0.0080 0.0040 0 0
7 TP53, IFNA6, PIK3CA, KRAS, MAP3K1, EP300, PIK3R1 0 0.0040 0 0 0
8 TP53, IFNA6, PIK3CA, KRAS, MAP3K1, EP300, PIK3R1, TNXB 0 0.0020 0.0010 0 0
9 TP53, IFNA6, PIK3CA, KRAS, MAP3K1, EP300, PIK3R1, TNXB,

KDM6A
0 0.0040 0.0020 0 0

10 TP53, IFNA6, PIK3CA, KRAS, MAP3K1, EP300, PIK3R1, TNXB,
KDM6A, LPA

0 0.0010 0.0080 0 0

p1, p2, p3 and p4 denote the p-values of the common gene sets in BRCA, OV, LUAD and GBM, respectively. p represents the overall significance.

Table 4. BRCA and OV specific mutated driver gene sets relative to each other

Type K Specific gene set p q P

BRCA/OV 3 ERBB2, GATA3, CDH1 0.0110 1 0.0100
4 ERBB2, GATA3, CDH1, WHSC1L1 0.0360 0.9510 0.0300
9 ERBB2, GATA3, CDH1, WHSC1L1,

CCND1, AKT1, CTCF, PLK1, RFPL4A
0.0410 0.7810 0.0420

10 ERBB2, GATA3, CDH1, WHSC1L1,
CCND1, AKT1, CTCF, PLK1, RFPL4A,
DDAH1

0.0160 0.7550 0.0280

OV/BRCA 2 BRCA1, BRCA2 0 0.6000 0
3 BRCA1, BRCA2, CACNA1A 0 0.6570 0
4 BRCA1, BRCA2, CACNA1A, WT1 1.0000e-03 0.6770 0
5 BRCA1, BRCA2, CACNA1A, CASC1,

GUSBP3
0 1 0

6 BRCA1, BRCA2, CACNA1A, CASC1,
GUSBP3, HUS1B

0 1 0

7 BRCA1, BRCA2, WT1, ADPRHL2,
METTL17, DNM2, COX4I2

0 0.9970 0

8 BRCA1, BRCA2, WT1, ADPRHL2,
METTL17, DNM2, COX4I2, SRP19

0 1 0

9 BRCA1, BRCA2, WT1, ADPRHL2,
METTL17, DNM2, COX4I2, SRP19,
PARP8

0 1 0

10 BRCA1, BRCA2, WT1, ADPRHL2,
METTL17, DNM2, COX4I2, SRP19,
PARP8, PRPS2

0 1 0

p and q denote the p-values of the gene set in BRCA relative to OV (BRCA/OV) or vice versa (OV/BRCA), respectively. P represents the overall significance.
Here the identified gene set is significant means that p and P are both less than 0.05, but q is larger than 0.05.

Table 5. LAML specific mutated driver gene sets relative to BRCA, HNSC, KIRC, LUSC, BLCA, GBM, LUAD, COADREAD, OV and UCEC

K Specific gene set p q1, ···, q10 P

2 FLT3, IDH2 0.0150 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.0170
1.0000, 0.9520, 0.9890, 1.0000, 1.0000

3 FLT3, IDH2, NRAS <0.0001 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.0010
1.0000, 0.9220, 0.7220, 0.9960, 0.8160

4 FLT3, IDH2, 0.0020 1.0000, 1.0000, 1.0000, 1.0000, 0.9480, 0.0020
NRAS, IDH1 0.9340, 0.8970, 0.5450, 0.9960, 0.8450

6 FLT3, MLL, IGSF5, 0.0180 0.5110, 1.0000, 1.0000, 1.0000, 1.0000, 0.0140
RUNX1, NPM1, TP53 1.0000, 0.9920, 0.9830, 0.9840, 0.9640

7 FLT3, IDH2, IGSF5, 0.0430 0.4720, 0.9940, 0.9930, 1.0000, 0.9630, 0.0240
RUNX1, NPM1, TP53, TET2 1.0000, 0.9930, 0.9930, 0.9800, 0.9410

8 FLT3, IDH2, IGSF5, MLL, 0.0050 0.5020, 0.9950, 1.0000, 1.0000, 1.0000, 0.0050
RUNX1, NPM1, TP53, KIT 1.0000, 0.9630, 0.8860, 0.9640, 0.9870

9 FLT3, IDH2, IGSF5, MLL, 0.0130 0.4890, 0.9900, 0.9960, 1.0000, 0.9710, 0.0050
RUNX1, NPM1, TP53, KIT, TET2 1.0000, 0.9650, 1.0000, 0.9680, 0.9950

10 FLT3, IDH2, IGSF5, MLL, GNAQ, 0.0090 0.3820, 0.9780, 0.9980, 1.0000, 0.9750, 0.0030
RUNX1, NPM1, TP53, KIT, TET2 1.0000, 0.9790, 1.0000, 0.9740, 0.9880

p, q1, ···, q10 denote the p-values of the gene set in LAML, BRCA, HNSC, KIRC, LUSC, BLCA, GBM, LUAD, COADREAD, OV and UCEC, respectively.
P represents the overall significance. For each K, p and P are less than 0.05, but q1, ···, q10 are all larger than 0.05.
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Figure 5. Hypothetical driver pathways for BRCA carcinogenesis and progression. It is inferred based on the common driver gene sets between BRCA and
other eight cancer types. The dotted arrows denote indirect effects, and a line represents a known interaction between them or occurrence of the mutations
in a known signaling pathway. The ComMDP discovered genes are in red.

of FLT3, IDH2, NRAS, IDH1, RUNX1, NPM1, TET2,
KIT, amplifications of MLL, IGSF5 and deletions of TP53,
GNAQ. We show the heat map of the alterations of the gene
sets in all the 11 cancer types for K = 10 (Figure 7) and
see that the alterations display significant mutual exclusiv-
ity in LAML, but not in other ten cancer types. Most of
these identified genes have been previously reported to be
related to LAML (59). For example, eight genes of them
are involved with six functional categories associated with
LAML carcinogenesis (Figure 8). Many large-scale studies
have confirmed that FLT3 can activate mutations in LAML
occurrence and disease progression and thus plays an im-
portant role in the pathogenesis of LAML (59,60); NPM1
is thought to be involved in several processes including cen-
trosome duplication, cell proliferation and regulation of the
ARF/TP53 pathway and its mutations are associated with
LAML supported by various studies (61–63); KIT confers
unfavorable prognosis for LAML patients (59).

Moreover, we can predict the potential implication of
GNAQ with LAML based on its appearance in the LAML
specific driver gene set even with very low mutation fre-
quency in LAML (2/164). GNAQ has been considered as
one of uveal melanoma driver genes (64), and a prog-
nostic factor for mucosal melanoma (65). Another study
(66) indicates that variations of GNAQ tend to occur in
childhood LAML patients. On the other hand, mutational-
driven comparison with other cancer types showed that

uveal melanoma is very similar to pediatric cancers, charac-
terized by very few somatic insults and, possibly, important
epigenetic changes (64). Thus, we suggest that GNAQ might
be a candidate driver gene for childhood LAML patients
and its function in LAML carcinogenesis and progression
is worth further exploration.

DISCUSSION

In this study, we develop ComMDP and SpeMDP to iden-
tify cancer common and specific mutated driver gene sets
among two or multiple cancer types, respectively. We first
apply them to a set of simulated data with diverse mutation
rates and pathway sizes to demonstrate their effectiveness.
We further apply them to real biological data from TCGA,
and obtain a set of cancer common and specific gene sets
which are involved in several key biological processes or sig-
naling pathways. This suggests that the identified common
or specific driver gene sets may play crucial roles and are
worthy to be further explored.

Applications of ComMDP and SpeMDP to real data
show their advantages over both gene-centric frequency-
based approaches and individual driver gene set based ap-
proaches. For example, we identified TNXB, LPA, FGFR2,
CASP8, NOTCH2 for BRCA, all of which are mutated
with very low frequency (less than five mutations in 466
patients), but have critical biological functions in carcino-
genesis of BRCA. All these genes cannot be discovered by
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Figure 6. The heat map of the alterations in the common driver gene set
(TP53, PIK3CA, IFNA6, KRAS) among the four cancer types including
BRCA, OV, LUAD and GBM.

the gene-centric frequency-based approaches (28). We also
find that some of the identified important common genes
(Table 1) cannot be detected by the driver gene set identi-
fication approaches for individual cancer types (19). More-
over, the individual cancer type approaches can only dis-
cover a small part of the common pathway for each cancer
type (Figure 4), whereas ComMDP can integrate informa-
tion from different cancers and give a more biologically rea-
sonable common driver pathway. Furthermore, in the spe-
cific driver gene sets of LAML relative to solid cancer types
by SpeMDP, GNAQ (with only two mutations in 164 LAML
patients) has showed potential implication with LAML car-
cinogenesis and progression, but it cannot be detected by
gene-centric approaches.

We obtain the common driver gene sets of all pairs of the
11 cancer types with K = 2 to 10 (Supplementary Table S1),
and note that the significance of common driver gene sets
has no transitivity. For example, there are significant com-
mon driver gene sets between LAML and COADREAD as
well as LAML and LUAD for K = 3 to 10 (Supplemen-
tary Tables S7 and S8). But there are no significant ones
between COADREAD and LUAD for K = 2 to 10. In con-
trast, there are no significant common gene sets between
GBM and HNSC as well as HNSC and OV for K = 2 to
10, but there are significant ones between GBM and OV for
K = 3 to 10 (Supplementary Table S9).

Figure 7. The heat map of the alterations in the LAML specific driver
gene set (FLT3, IDH2, IGSF5, MLL, RUNX1, NPM1, TP53, KIT, TET2,
GNAQ) relative to other ten cancer types including BLCA, BRCA, COAD-
READ, GBM, HNSC, KIRC, LUAD, LUSC, OV and UCEC.
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Figure 8. Specific driver pathways or biological processes of LAML relative to the 10 solid cancer types. (A) Mutations in FLT3 confer a proliferative
advantage through the RAS-RAF, JAK-STAT and PI3K-AKT signaling pathways. (B) Mutations in NPM1 result in the aberrant cytoplasmic localization
of NPM1 and NPM1-interacting proteins. (C) Deletions of tumor suppressor genes, such as TP53, lead to transcriptional deregulation and impaired
degradation through MDM2 and PTEN. (D) DNMT3A and TET2 mutations, as well as IDH1 and IDH2 mutations, can lead to the deregulation of
DNA methylation. (E) Mutations in myeloid transcription factors such as RUNX1 and transcription factor fusions by chromosomal rearrangements
lead to transcriptional deregulation and impaired hematopoietic differentiation. (F) Mutations of genes involved in the epigenetic homeostasis of cells,
such as mutations of ASXL1 and EZH2, lead to deregulation of chromatin modification as well as MLL-MLLT3 gene fusion, which can impair other
methyltransferases. Note: the genes in purple represent they appear in the identified specific driver gene sets (referring to (59,67))

In this study, to identify common driver gene sets, we first
select the genes which have mutations in all the examined
cancer types for further analysis. In fact, this model can be
generalized to include the genes which have no mutations in
some of the considered cancer types. We may add some con-
strains to ensure that the number of non-mutation cancer
types is not more than a preassigned number for any con-
sidered gene. Moreover, it can also be used to investigate the
commonalities and specificities among different subtypes
within a certain cancer. We expect that our methods can
provide crucial information for understanding the molec-
ular mechanism of cancer generation and progression.
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