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Prader-Willi syndrome (PWS) is a complex imprinting disorder related to genomic

errors that inactivate paternally-inherited genes on chromosome 15q11-q13 with severe

implications on endocrine, cognitive and neurologic systems, metabolism, and behavior.

The absence of expression of one or more genes at the PWS critical region contributes

to different phenotypes. There are three molecular mechanisms of occurrence: paternal

deletion of the 15q11-q13 region; maternal uniparental disomy 15; or imprinting defects.

Although there is a clinical diagnostic consensus criteria, DNA methylation status must

be confirmed through genetic testing. The endocrine system can be the most affected

in PWS, and growth hormone replacement therapy provides improvement in growth,

body composition, and behavioral and physical attributes. A key feature of the syndrome

is the hypothalamic dysfunction that may be the basis of several endocrine symptoms.

Clinical and molecular complexity in PWS enhances the importance of genetic diagnosis

in therapeutic definition and genetic counseling. So far, no single gene mutation has been

described to contribute to this genetic disorder or related to any exclusive symptoms.

Here we proposed to review individually disrupted genes within the PWS critical region

and their reported clinical phenotypes related to the syndrome. While genes such as

MKRN3, MAGEL2, NDN, or SNORD115 do not address the full spectrum of PWS

symptoms and are less likely to have causal implications in PWS major clinical signs,

SNORD116 has emerged as a critical, and possibly, a determinant candidate in PWS, in

the recent years. Besides that, the understanding of the biology of the PWS SNORD

genes is fairly low at the present. These non-coding RNAs exhibit all the hallmarks

of RNA methylation guides and can be incorporated into ribonucleoprotein complexes

with possible hypothalamic and endocrine functions. Also, DNA conservation between

SNORD sequences across placental mammals strongly suggests that they have a

functional role as RNA entities on an evolutionary basis. The broad clinical spectrum

observed in PWS and the absence of a clear genotype-phenotype specific correlation

imply that the numerous genes involved in the syndrome have an additive deleterious

effect on different phenotypes when deficiently expressed.
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INTRODUCTION

Prader-Willi syndrome (PWS; OMIM 176270) was first described
in 1956 by Andrea Prader, Alexis Labhart and Heinrich Willi
based on a study of nine children with a common clinical tetrad:
short stature, intellectual disability, obesity, and small hands
and feet (1, 2). The phenotypic analysis was expanded in the
following years and decades, revealing the complexity of the
syndrome, affecting endocrine, cognitive and neurologic systems,
metabolism, and behavior. PWS was the first human disease to be
related to genomic imprinting errors, and also the first one shown
to be caused by uniparental disomy (3, 4). This rare genetic
disorder has a prevalence of 1 in 10,000–30,000 live births, males
and females are affected equally in all ethnic groups (5).

The PWS critical region on chromosome 15q11-q13 is
monoallelically expressed by paternally inherited genes,
exclusively. The absence of expression of one or more of these
genes contributes to different phenotypes of PWS (6, 7) and there
are three main mechanisms of occurrence: paternal deletion
of the 15q11-q13 region; maternal uniparental disomy 15; or
imprinting defects (8–10). On the other hand, in the same
region, the loss of expression of the UBE3A gene (preferentially
maternally expressed) drives to Angelman syndrome, with
completely different clinical characteristics. By their common
implicated region and mechanisms, both syndromes are
considered sister imprinted disorders (11, 12).

Clinical manifestations vary with age, impacting multiple
body systems (Table 1). Fetal size is usually within the normal
range. Compared to unaffected siblings, birth weight and body
mass index (BMI) are 15% lower on average. Prenatal hypotonia
may cause decreased fetal movement, abnormal fetal position at
delivery, and increased incidence of assisted delivery or cesarean
section (14, 15).

TABLE 1 | Clinical characteristics and the nutritional phases in PWS.

Median ages Clinical characteristics

Prenatal—birth Decreased fetal movements

Lower birth weight and body mass compared to sibs

0–9 months Severe hypotonia

Feeding problems and failure to thrive

9–25 months Improved feeding and appetite

Normal growth

Delayed physical and social milestones

2.1–4.5 years Weight increasing without appetite increase or excess

calories

4.5–8 years Weight increasing with appetite increase

Global developmental delay

8 years—adulthood Hyperphagic, rarely feels satiety

Mild intellectual disability and behavior problems

Hypogonadism

Adulthood Appetite no longer insatiable for some

Short stature and small hands and feet

Gunay-Aygun et al. (13); Miller et al. (14); Driscoll et al. (5).

Severe hypotonia is a clinical hallmark of PWS, leading to
failure to thrive during infancy due to lethargy and poor suck.
Other common neonatal findings are decreased movement and
spontaneous arousal, weak cry, thick saliva, and poor reflexes
(13, 16). Around 9 months of life, eating behavior starts to
normalize, and the hypotonic status tends to improve, but mild-
to-moderate hypotonia persists throughout life, with reduced
muscle mass and tone (9, 17).

Physical and social milestones (as sitting, walking, first words,
and reading) are delayed and can be achieved at about double
the normal age (18). Most individuals have mild intellectual
disability, learning difficulties, and poor academic performance.
During early infancy, characteristic behavioral problems are
common, such as stubbornness, manipulation, compulsiveness,
self-injury, and difficulty with change in routine (5, 19, 20).
Another common feature in the syndrome is sleep disruption,
related to sleep apnea that impairs the quality and efficiency of
sleep, frequently associated with excessive daytime sleepiness,
and sedentary behavior with a higher predisposition to obesity
(13, 21).

In later childhood, individuals with PWS will reach severe
obesity unless food intake is strictly controlled by family and
caretakers. The lack of satiety (hypothalamic origin) results
in hyperphagia, with obsessive food seeking. In uncontrolled
cases, obesity, and its complications are the major causes of
morbidity andmortality: respiratory insufficiency, cardiovascular
problems, metabolic syndrome, sleep apnea, and type 2 diabetes
mellitus (22, 23). Mortality rates range between 1.25 and 3% per
year (24, 25). Hyperphagia in PWS is still not fully understood
and controlling appetite remains a challenge.

The endocrine system can be the most affected in PWS.
Growth hormone (GH) deficiency is present in up to 74% of
cases and is associated with short stature, small hands and
feet, low motor strength, increased fat mass, and decreased
movement and energy expenditure (26, 27). GH replacement
therapy has shown positive effects not only on growth and body
composition but also on development, behavior, and nocturnal
respiratory abnormalities, although a careful respiratory follow
up is mandatory during long-term GH administration (28–
34). Hypogonadism affects both sexes and is manifested as
hypogenitalism, incomplete pubertal development and infertility
in most individuals (35). Hypogonadism is thought to have a
hypothalamic origin, and subsequent insufficient secretion of
pituitary gonadotropins and sexual hormones (testosterone or
estrogen) (7, 36, 37). Other endocrine abnormalities include
hypothyroidism (20–30%), central adrenal insufficiency (about
5%) and type 2 diabetes (up to 25%) due to obesity complications
(24, 38–41).

MOLECULAR GENETICS AND
DIAGNOSTIC

The hypothalamic dysfunction observed in PWSmay be the basis
of several symptoms (such as hypotonia, developmental delay
or obesity) that overlaps features of other conditions on clinical
grounds, like normal obesity and intellectual disability (42).
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Definitive diagnosis requires DNA testing. The PWS region spans
∼6Mb on the long arm of chromosome 15 (Figure 1). Within
this region, at least 2.5Mb comprises genes with differential
expression depending on parental origin. This locus holds
protein-coding genes and several non-coding RNAs, which are
believed to be involved in the regulation of alternative splicing,
mainly in the brain (10, 16).

The bicistronic gene SNURF-SNRPN is central to the PWS
region and crucial to understanding the methylation pattern
in the syndrome. The CpG island at the 5′ end of SNURF-
SNRPN (encompassing the promoter region, exon 1 and intron
1) is differentially imprinted according to parental origin: the
unmethylated paternal allele is expressed while the methylated
maternal allele is repressed (43). The PWS imprinting center

(PWS-IC, Figure 1) involves the CpG island and exon 1 within
the 4.3 Kb smallest region of overlap (44). Furthermore, SNURF-
SNRPN expression produces a long transcript also including
PWS-IC, Six snoRNA genes, IPW and UBE3A antisense
(Figure 1), which is hypothesized to repress paternal UBE3A
(45–48).

Most PWS patients (65–75%) present a 5–6Mb deletion
at 15q11-q13 from the paternal origin (16, 49). There are
two proximal breakpoints and a common distal breakpoint
(Figure 1), these regions are flanked by low copy repeat
sequences that predispose to abnormal chromosomal pairing and
uneven crossing-over, resulting in errors during meiosis (50,
51). Maternal Uniparental Disomy (mDUP) occurs when both
chromosomes 15 are inherited from the mother and accounts

FIGURE 1 | Chromosome map of 15q11.2-q13.1 region. Symbols: ovals, protein-coding genes; rectangles, RNA genes; BP1, breakpoint 1; BP2, breakpoint 2; BP3,

breakpoint 3; Type 1, BP1-BP3 deletion with ∼6Mb; Type 2, BP2-BP3 deletion with ∼5.3Mb; Cen, Centromere; Tel, Telomere; IC, Imprinting Center.
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for ∼20–30% of cases, being associated with advanced maternal
age (9, 15). Imprinting defects are caused by epimutations or
microdeletions in the PWS-IC in 1–3% of PWS cases. These
individuals have biparental allele inheritance, but a maternal-
only DNA methylation pattern (11, 52).

Clinical and molecular complexity in PWS enhances the
importance of genetic diagnosis in therapeutic definition
and genetic counseling. Only DNA methylation analysis can
consistently diagnose the syndrome in all three molecular classes
(deletion, mUPD, and imprinting defects) and differentiate it
from Angelman Syndrome (9, 52). The methylation analysis
targets the 5′ CpG island of the SNURF-SNRPN locus and
will correctly diagnose more than 99% of cases. Currently,
there are three assays with this detection capacity: methylation-
specific PCR (MS-PCR, the gold standard), methylation-
specific multiplex ligation-dependent probe amplification (MS-
MLPA) and methylation-sensitive high-resolution melting (MS-
HRM) (53–58).

After methylation status confirmation, defining the exact
molecular mechanism behind the syndrome origin is important
for genetic counseling. Sporadic deletion cases have <1% risk of
recurrence, while rare cases of structural abnormalities involving
chromosome 15 (such as translocations, ring formation,
isochromosome or inversions) can be as high as 25–50% and
fluorescence in situ hybridization (FISH) can address the deletion
source (59–65). mUPD 15 is typically de novo (recurrence <1%),
proband and parents should be investigated by small nucleotide
polymorphisms (SNP) microarray for accurate counseling (66,
67). Most imprinting defects cases are classified as epimutations
with no alteration in the DNA sequence and have <1%
recurrence risk. However, 15% of individuals with imprinting
defects present a paternally inherited microdeletion (7.5–100 kb)
in the PWS-IC, in which cases the risk of recurrence is 50%. IC
analysis by MS-MLPA or DNA sequencing will address the exact
origin of this event (5, 44).

GENOTYPE-PHENOTYPE RELATIONSHIPS
IN PRADER-WILLI SYNDROME

None of the PWS genetic errors are associated with exclusive
symptoms. However, the most prevalent molecular classes
(deletion and mUPD) show statistical differences in frequency
or severity in some clinical characteristics. Patients with
paternal deletion were more related to feeding problems,
sleep disturbances, hypopigmentation and speech and language
deficits (68). Individuals with the larger type 1 deletion (Figure 1)
have been reported to have better academic performance and
intellectual abilities, and more compulsiveness when compared
to type 2 deletion patients (69, 70). Several other features
are more common in mUPD individuals, such as post-term
delivery, higher verbal IQ, psychosis and autism spectrum
disorder (15, 69, 71–75). On the other hand, mUPD patients
are less likely to have the typical PWS facial appearance or
hypopigmentation (16). So far, no single gene mutation has
been described to contribute to this genetic disorder. Here we
proposed to review genes individually disrupted within the PWS

critical region and their reported clinical phenotypes related to
the syndrome.

The Makorin Ring Finger Protein 3 (MKRN3, ZNF127) gene
encodes a zinc finger protein of the Makorin family and is
paternally expressed ubiquitously in human adult tissues, with
the highest level in testis, although its exact mechanism of action
remains to be elucidated (76). This gene is associated with
inhibition of puberty initiation, and loss of function mutations
in MKRN3 are recognized as the main genetic cause of Central
Precocious Puberty (77). This correlation has been described by
distinct studies with different ethnic groups, affecting equally
both sexes, with all mutations segregated in a paternal manner
atMKRN3 (78–81). Experimental models with mice also support
the correlation between mutations in Mkrn3 and puberty
dysfunctions, suggesting it may play a role in the hypothalamic-
pituitary-gonadal axis (77–79). Altogether, this makes MKRN3 a
strong candidate gene for hypogonadism and infertility in PWS.

The physiological consequence of loss of expression of
MAGE Family Member L2 (MAGEL2) has been related to
phenotypic characteristics of PWS (82). Magel2-null mice
exhibited endocrine dysfunction similar to PWS: neonatal
growth retardation; excessive weight gain; increased adiposity
after weaning; impaired hypothalamic regulation and changes
in circadian rhythm (83, 84). Hyperphagia, commonly observed
in individuals with PWS, is associated with a defect in the
hypothalamic arcuate nucleus, which is the major action site of
multiple complex interactions between neuropeptide Y (NPY),
agouti-related peptide (AgRP), proopiomelanocortin (POMC),
and leptin, regulating the food intake and body weight (85, 86).
NPY/AgRP interaction stimulates food intake, whereas POMC
reduces it. Loss of MAGEL2 expression disturbs leptin-mediated
depolarization of POMC neurons, indicating that food intake
is being less repressed and fat storage regulated by leptin is
uncontrolled (87, 88). Additionally, loss of expression of Magel2
impairs reproductive function in mice. Magel2-null females
showed extended and irregular estrous cycles, while males
displayed decreased testosterone levels, and reduced pheromone
detection, which has a direct relationship between the main
olfactory epithelium and the hypothalamic GnRH neuronal
system (89, 90). These results suggest that lack of expression of
MAGEL2 contributes to the reproductive deficiencies observed
in PWS and also highlights the role of normal circadian rhythm
in maintaining fertility.

Therein, specific point mutations on the paternal allele of
MAGEL2 were reported in 4 individuals with PWS spectrum
phenotype: muscle hypotonia, weight gain, developmental delay,
and hypogonadism. Although all clinical characteristics were
consistent with PWS clinical diagnosis, methylation analysis
on the promoter-exon 1 region of the SNURF-SNRPN gene
showed normal allelic patterns (82). All four subjects were
diagnosed with an autism spectrum disorder, intellectual
disability, and different degrees of clinical and behavioral
features of PWS. Although not a main characteristic, autism
is present in 19% of individuals with PWS (71). These
four individuals presented a normal methylation pattern, not
compatible with PWS, despite similar clinical conditions, which
was subsequently called Schaaf-Yang Syndrome (SYS) (91).
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Recent data of an international cohort of 78 patients with
truncating MAGEL2 mutations emphasized that SYS overlaps
with PWS on clinical grounds in the early stages of life but
diverges with the advance of childhood and adolescence (92).
PWS features such as hypopigmentation, facial appearance,
small hands and feet, thick saliva, behavioral problems are not
commonly seen in SYS. And above all distinct symptoms, SYS
does not usually cause the high appetite and severe obesity
observed in PWS, which can disassociate MAGEL2 and the
hyperphagia condition.

The Necdin (NDN) gene encodes a DNA binding protein
highly expressed in mature hypothalamic neurons (93).
It has been postulated as a key regulator of GnRH levels
both in vitro and in vivo, modulating essential intracellular
processes for neurite and axonal outgrowth (94–96). Lack
of NDN reduces GnRH gene expression, leads to decreased
numbers of GnRH neurons, and decreased targeting of
GnRH axons to the median eminence of the hypothalamus
during development, which can contribute to hypogonadism
and infertility in PWS. Also, Necdin paternal-deficient
mice were associated with alterations in serotonin and
respiratory systems, resulting in irregular breathing and
sleep apneas, commonly observed in PWS. Another important
evidence reported with Ndn-KO mice was sudden death
due to respiratory disorders, which is the main side effect
associated with GH therapy (97–99). NDN might be a genetic
factor contributing to apneas and respiratory dysfunctions
of PWS.

Interestingly, (100) described three patients with atypical
deletions related to PWS. Patient 1 was deleted for MKRN3,
MAGEL2, and NDN with no PWS major clinical criteria, except
for obesity, developmental delay, and high pain threshold.
Patients 2 and 3 had a deletion encompassing NPAP1, SNURF-
SNRPN, and the SNORD genes, but did not reach MKRN3,
MAGEL2, and NDN, and presented PWS major clinical signs
(100). This report suggests that a paternal deficiency of MKRN3,
MAGEL2, and NDN is not sufficient to generate the full PWS
phenotype and postulates NPAP1, SNURF-SNRPN, and the
SNORD genes (discussed ahead) to be the critical region for
PWS. These results contradict other studies and exemplify the
complexity to establish a genotype-phenotype relationship in
PWS (78, 82, 83, 98, 99, 101, 102).

The Prader-Willi region encompasses a series of long non-
coding RNAs (lncRNAs) which are characteristically more
than 200 nucleotides long and can be involved in epigenetic
modifications of DNA, and regulation of gene expression at
transcriptional and post-transcriptional levels (103–105). The
first lncRNA inside the PWS region is the Prader-Willi Region
Non-Protein Coding RNA 1 (PWRN1), biallelically expressed in
the testis and kidneys, and monoallelic expressed in the brain, in
addition to being an alternative 5′ part of SNURF–SNRPN (106).
Wawrzik et al. (107) hypothesized that the action of PWRN1
on the imprinting mechanism may be indirect through keeping
the paternal allele in an open chromatin configuration, allowing
access to transcription factors (107). The main limitation for
further confirmation studies is the lack of gene orthology in
mice (108–110).

The Nuclear Pore Associated Protein 1 (NPAP1), formerly
known as Chromosome 15 Open Reading Frame 2 (C15orf2),
is an intronless gene that is biallelically expressed in adult
testis and monoallelically expressed in fetal brain, including the
hypothalamus which is related to several endocrine features of
PWS (106, 111). Moreover, this gene is associated with the
Nuclear Pore Complex (NPC), in which the main function is to
regulate macromolecular transport between the nucleus and the
cytoplasm. NPCs also participates in several nuclear processes,
such as gene regulation, mRNA biogenesis, and cell cycle control.
Likewise PWRN1, due to the lack of orthology in mice the exact
role of the NPAP1 gene in the development of PWS is not
clear (112).

The Small Nuclear Ribonucleoprotein Polypeptide N
(SNRPN) gene is located within the central region associated
with PWS and has an important regulatory role over the
imprinted genes located in chromosome 15 (113, 114), while
the SNRPN Upstream Reading Frame (SNURF) gene is encoded
by an evolutionarily-conserved upstream open reading frame
and is localized to the nucleus (115). SNURF-SNRPN is a
complex bicistronic gene encoding two different proteins,
and the PWS-IC is found at its 5’ end. SNURF is encoded by
exons 1–3 and produces a small nuclear protein of unknown
function (113), exons 4–10 correspond to the SNRPN portion
and encode the protein SmN, involved in mRNA splicing (43).
It also holds six snoRNA genes located telomerically which are
expressed as a long transcript (46). The SmN protein shows the
highest expression in the brain and heart (115–117). Despite
its central position in PWS, the function and regulation of the
many alternative transcripts of SNURF-SNRPN are still poorly
understood (48).

Within the long SNURF-SNRPN transcript, there are a series
of Small Nucleolar RNAs (snoRNAs) thought to participate in
DNA methylation, alternative splicing and post-transcriptional
regulation (10, 118). The PWS region encompasses five single
copy snoRNA genes (SNORD64, SNORD107, SNORD108,
SNORD109A, and SNORD109B) and two snoRNA gene clusters
(SNORD115 and SNORD116). The expression of SNORD
genes varies in different human and mouse tissues, suggesting
specificity in post-transcriptional activity (46, 119–122).
Although most of the SNORDs are ubiquitously expressed
in human tissues, SNORD115 and SNORD109B appear to
be restricted to the brain. Our understanding of the single-
copy SNORDs in PWS remains extremely limited, but some
progress has been made with the clusters: SNORD116 has 29
tandemly repeats and SNORD115 is composed of 48 gene copies
(118). Given that SNORD sequences are well-conserved across
placental mammals (especially in primates and rodents), this
suggests they have an evolutionary functional role (123, 124).

A minimal critical region has emerged implicating that the
SNORD116 cluster is crucial for most of the PWS phenotype,
based on clinical evidence on rare patients with small deletions
(150–200Kb) or translocations (11, 125–128). Experimental
studies on Snord116-KO mice displayed PWS features such
as post-natal growth retardation and hyperphagia (129–132).
Remarkably, a Snord116-KO mice model specifically in NPY
neurons in the hypothalamic arcuate nucleus summarized the
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same overall phenotype observed in mice lacking Snord116
globally; low birth weight, increased body weight gain in early
adulthood, increased energy expenditure and hyperphagia (130).
This suggests an important role of Snord116 in controlling
NPY neuronal functions, and thus food intake and energy
homeostasis. Also, a recent study reported Snord116-deficient
mice with decreased activity of the hypothalamic prohormone
convertase PC1 impairing the prohormone processing of
proinsulin, pro-GH-releasing hormone, and proghrelin, pointing
to an important part of SNORD116 and PC1 deficiency in the
main neuroendocrine features of PWS (133). Interestingly, it
was shown that a mouse Snord116 deletion model displayed
loss or shift in methylation dynamics in 97% of CpG islands in
the cerebral cortex dependent on the circadian cycle. And this
disrupted epigenetic rhythm had a strong overlap betweenmouse
and human genes related to meal timing, circadian biology, and
obesity (134). In the recent years, SNORD116 has emerged as a
critical, and possibly, determinant candidate in PWS not only by
its highly conserved sequence in the minimal critical region, but
also because paternal deletions affecting the expression of NDN,
MKRN3, MAGEL2, or SNORD115 genes do not address the full
spectrum of PWS symptoms (10, 100, 123, 135, 136).

The Imprinted in Prader-Willi Syndrome (IPW) gene is
a lncRNA known to modulate another evolutionarily distinct
imprinted gene cluster at the human chromosomal region 14q32
expressed only from maternally inherited alleles (137). IPW is
widely expressed both in fetal and adult tissues, exclusively from
the paternal allele (138). It has been postulated that IPW has
no biological consequences in PWS, based on the relatively
poor conservation between human and mouse sequences (138),
and the fact that mice with a paternally inherited deletion
including Ipw did not show PWS symptoms (139). However,
Stelzer et al. (137) proposed that lack of expression of IPW
results in aberrant upregulation of maternally expressed genes
at the 14q32 imprinted cluster, pointing that the action of
IPW on the imprinting mechanism of this locus occurs by
histone modification, and consequently, transcription reduction
(137). This hypothesis is supported by clinical reports of
affected individuals with mUPD 14 (overexpression of maternal
genes) presenting PWS-like phenotypes, such as neonatal
hypotonia, small hands and feet, intellectual disability and
hyperphagia (140–142). These findings pinpoint a regulatory
cross-talk between 15q11-13 and 14q32 imprinted loci, but
further, suggest that some PWS phenotypes may arise from
different chromosomal regions other than the PWS critical
locus (143, 144).

SNORD115 gene is the most characterized SNORD within
the PWS region. It presents a complementary sequence
of 18 nucleotides with the mRNA encoding the serotonin
receptor 5-HT2C, perfectly base pairing with exon V that
undergoes both alternative RNA splicing and RNA editing
(post-transcriptional changes to specific nucleotide sequences)
(118). Mice with a large deletion encompassing the Snord115
cluster developed normally to adulthood with apparently no
significant defects (139). And there are also clinical reports
on patients with an entire deletion of the SNORD115 gene
cluster that did not present any PWS major clinical signs

(135, 136). Taken together, these findings suggest that lack of
SNORD115 is not sufficient to cause PWS, but a phenotypic
effect when absent along with other genes in the PWS
critical region cannot be excluded. Actually, the 5-HT2C gene
encodes G protein-coupled receptor specific to the brain, whose
activation is associated with a variety of physiological processes,
such as dopamine modulation, anxiety, sleep regulation,
satiety response, energy balance, and locomotor activity (145).
Interestingly, experimental studies have described 5-HT2C
receptor knockout mice that developed are hyperphagia and late-
onset obesity, two major clinical features of PWS in humans
(146, 147). Therefore, the absence of SNORD115 expression
in PWS accompanied by the possible post-transcriptional
impairment of the 5-HT2C receptor activity may be partly
responsible for some of the behavioral and metabolic features of
the syndrome.

The establishment of a causal genotype-phenotype
relationship can bring light to new therapeutic approaches
for PWS. Epigenetic therapy has been used in cancer treatment
mostly focusing on the identification of small molecules
and compounds with the capacity to reverse the epigenetic
changes (epigenome reprogramming) (145, 148). The successful
experience obtained from the epigenetic-cancer therapies
contributes to the development of similar approaches for
genomic imprinting disorders. Recent studies have shown that
histone methyltransferase inhibitors are capable of reactivating
the expression of paternally expressed SNRPN and SNORD116
from the maternal chromosome, both in PWSmouse models and
in cultured PWS patient-derived fibroblasts (149, 150). Although
further investigation needs to be performed in vivo, epigenetic
therapy aiming PWS genes in the maternal chromosome could
reverse, or at least regulate, some PWS clinical conditions such as
hyperphagia and behavioral problems (151). This data supports
future studies to assess translational epigenetic-based therapies
for PWS in humans.

CONCLUSION

PWS is a complex imprinting disorder caused by the lack
of expression of paternally-inherited genes on chromosome
15q11-q13 with severe implications on endocrine, cognitive
and neurologic systems, metabolism, and behavior. The PWS
critical region encompasses five protein-coding genes (MKRN3,
MAGEL2, NDN, NPAP1, and SNURF-SNRPN) and more than
80 RNA genes (PWRN1, IPW, and several SNORDs) but their
contribution to unique PWS phenotypes is still unclear. The
broad clinical spectrum and the absence of a clear genotype-
phenotype specific correlation imply that the numerous genes
involved in PWS have an additive deleterious effect when
deficiently expressed. So far, the lack of expression of the
SNORD116 gene cluster has arisen as the best explanation for
most of the PWS phenotype, yet there is a clear need to investigate
more of itsmechanism of action, especially the incorporation into
ribonucleoprotein complexes, possibly acting in hypothalamic
and endocrine functions in adulthood and perinatal period.
Besides SNORD115 and SNORD116, our understanding of the
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biology of the PWS SNORD genes is still rather shallow.
These SNORDs exhibit all the hallmarks of RNA methylation
guides and can associate with other proteins to form functional
ribonucleoprotein complexes. Also, the SNORD sequences are
well-conserved across placental mammals, strongly asserting that
they have a functional role as RNA entities under evolutionary
pressure. A better understanding about genotype-phenotype in
PWS can open space for new therapeutic approaches especially
for patients that present side effects related to the current
standard treatment, and develop genetic counseling for the
different levels of severity in PWS that require specific and
constantmedical follow-up, improving the life quality of patients,
family, and caretakers.
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