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High computational cost associated with digital pathology image analysis approaches is a
challenge towards their translation in routine pathology clinic. Here, we propose a
computationally efficient framework (SuperHistopath), designed to map global context
features reflecting the rich tumor morphological heterogeneity. SuperHistopath efficiently
combines i) a segmentation approach using the linear iterative clustering (SLIC)
superpixels algorithm applied directly on the whole-slide images at low resolution (5x
magnification) to adhere to region boundaries and form homogeneous spatial units at
tissue-level, followed by ii) classification of superpixels using a convolution neural network
(CNN). To demonstrate how versatile SuperHistopath was in accomplishing
histopathology tasks, we classified tumor tissue, stroma, necrosis, lymphocytes
clusters, differentiating regions, fat, hemorrhage and normal tissue, in 127 melanomas,
23 triple-negative breast cancers, and 73 samples from transgenic mouse models of high-
risk childhood neuroblastoma with high accuracy (98.8%, 93.1% and 98.3%
respectively). Furthermore, SuperHistopath enabled discovery of significant differences
in tumor phenotype of neuroblastoma mouse models emulating genomic variants of high-
risk disease, and stratification of melanoma patients (high ratio of lymphocyte-to-tumor
superpixels (p = 0.015) and low stroma-to-tumor ratio (p = 0.028) were associated with a
favorable prognosis). Finally, SuperHistopath is efficient for annotation of ground-truth
datasets (as there is no need of boundary delineation), training and application (~5 min for
classifying a whole-slide image and as low as ~30 min for network training). These
attributes make SuperHistopath particularly attractive for research in rich datasets and
could also facilitate its adoption in the clinic to accelerate pathologist workflow with the
quantification of phenotypes, predictive/prognosis markers.

Keywords: deep learning, machine learning, digital pathology, computational pathology, tumor region
classification, melanoma, neuroblastoma, breast cancer
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INTRODUCTION

The analysis of histopathological images of surgical tissue
specimens stained with hematoxylin and eosin (H&E) remains a
critical decision-making tool used for the routine management of
patientswithcancerand the evaluationofnew therapeutic strategies
in clinical trials (1–3). In several precisionmedicine settings, there is
an increasing demand for accurate quantification of histological
features.However, in their diagnostic practice, pathologists exercise
a predominantly qualitative or semi-quantitative assessment with
an inherent degree of inter- and intra-observer variability, which
occasionally hampers their consistency (4–7). In the new era of
digital pathology, advanced computational image analysis
techniques are revolutionizing the field of histopathology by
providing objective, robust and reproducible quantification of
tumor components, thereby assisting pathologists in tasks such as
tumor identification and tumor grading (8, 9). Histopathological
image analysis can now be performed in high-resolution H&E-
stained whole-slide images (WSI) using state-of-the-art deep
learning and classical machine learning approaches for single cell
segmentation and/or classification. The new ability to map the
spatial context of each single cell also opened new avenues for the
study of the tumor micro-environment (10–16), which is key to
guide the delivery of precisionmedicine including immunotherapy.

However, computational pathology is still not widely adopted in
the oncological setting. One of the challenges lies in the gigabyte
sizes of high-resolution WSIs, which result in computationally
expensive approaches. WSIs need to be divided into images
patches (typical size: 256x256) before being processed by deep
networks such as convolutional neural networks (CNNs) (17).
Secondly, single-cell approaches provide markers that are often
hard-to-be-evaluated or even interpreted by the pathologists and
can be prone to the generalization errors when applied in new
unseen dataset. As a result,many promisingmarkers eventually fail
to reach the clinic due to a lack of cross-validation in new
independent datasets. On the other hand, tissue classification
approaches, which target multicellular assemblies and
paucicellular areas where individual cells are incorporated into
the region segmentation,wouldbeaccessible for visual validationby
pathologists. Such algorithms would enable the characterization of
the distribution and interrelationship of global features that are
currently detectable by human perception but not quantifiable
without artificial intelligence- (AI-)assisted numerical expression.

Current computedpathology tools primarily focuson individual
cell analysis at high-resolution (40x/20xmagnification)with limited
local context features, whereas pathologists frequently employ
collateral information, taking into account the overall tissue
microarchitecture. Many established clinical markers are actually
identified at low or intermediate magnifications, including tumor
architecture-based grading systems (18, 19), stroma-tumor ratio
(20, 21), infiltrating lymphocytes (TILs) (22, 23) and necrosis (24–
26). This has not been yet fully emulated by computational
pathology methodologies. However, some methods for the
classification of tissue components have been suggested either
using image patch classification typically with a CNN or pixel-
level classification/segmentation typically with a U-Net-like
Frontiers in Oncology | www.frontiersin.org 2
architecture (27), mainly for tasks such as the dichotomized
classification of tissue (e.g. cancerous vs non-cancerous) (28, 29),
the segmentation of a feature of interest (e.g. glands) (16, 30) or
multi-type tissue classification (9, 31–35). For segmentation
purposes, U-Net-like architectures are usually preferred over
CNNs, which have established limitations in conforming to object
contours. Yet, CNNs have also resulted in promising segmentation
approaches (36–38) with the enhanced capability of classifying a
large number of categories (39). Multi-scale approaches
incorporating information from various image resolutions have
also been proposed (40–43). Different approaches have been
explored for the classification of epithelium or stroma using
superpixels-based segmentation of image patches with either
hand-crafted or deep learning features (44, 45). Bejnordi and
colleagues used a similar method for their multi-scale approach
for the classification of tissue or non-tissue components on low
resolution images and stroma and background regions from
intermediate and high resolution images (46). However, these
methods are typically performed on high-magnifications image
patches (20-40x andmore rarely 10x) and are associatedwith a high
computational cost.

Here, we propose a framework (SuperHistopath), which canmap
most of the global context features that contribute to the rich tumor
morphological heterogeneity visible to pathologists at low resolution
and used for clinical decision making in a computationally efficient
manner. We first apply the well-established simple linear iterative
clustering (SLIC) superpixels algorithm (47) directly on the WSI at
low resolution (5x magnification) and subsequently classify the
superpixels into different tumor region categories using a CNN
based on pathologists’ annotations. SuperHistopath particularly
capitalizes on:

i. the use of superpixels which provide visually homogeneous
areas of similar size respecting the region boundaries and
avoid the potential degradation of classification performance
associated with image patches, (no matter how small)
spanning over multiple tissue categories.

ii. the use of CNN necessary to accurately classify and map the
multiple tissue categories that constitute the rich and
complex histological intratumoral heterogeneity.

iii. the computational efficiency, faster processing speed and
lower memory requirements associated with processing the
WSI at low resolution.

We applied SuperHistopath to H&E-stained images from
three different cancer types: clinical cutaneous melanoma,
triple-negative breast cancer and tumors arising in genetically-
engineered mouse models of high-risk childhood neuroblastoma.

MATERIALS AND METHODS

Datasets
All digitized whole-slide images (WSI) used in this study were
H&E-stained, formalin-fixed and paraffin-embedded (FFPE)
sections, and scaled to 5x magnification as presented in
Table 1 (image sizes at 5x varied from ~8000x8000 to
January 2021 | Volume 10 | Article 586292
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~12000x12000 pixels). We applied our framework to clinical
patient samples of cutaneous melanoma and triple-negative
breast cancer, in addition to tumor samples from transgenic
mouse models of childhood neuroblastoma. Both the Th-MYCN
and Th-ALKF1174L/MYCN mouse models have been shown to
spontaneously develop abdominal tumors, which mirror the
major histopathological characteristics of childhood high-risk
disease (50, 51).
Region Classification
First, each dataset was pre-processed using the Reinhard stain
normalization (52) to account for stain variabilities that could
affect classification. Then, all images were segmented using the
simple linear iterative clustering (SLIC) superpixels algorithm,
which groups together similar neighboring pixels. With our
pathologist’s input, we selected the optimal number of superpixels
by visually identifying a superpixel size that capture only
homogeneous areas and adhere to image boundaries. This is a
critical step for ensuring accurate tissue segmentation, and
therefore, classification (Figure 1). The number of superpixels
was adapted for each image to ensure a homogenous superpixel
size across thedatasets andwasautomatically set basedon the image
size according to Equation 1 (53).
Frontiers in Oncology | www.frontiersin.org 3
Ni = ceiling
Si
U

� �
(1)

where Ni is the number of superpixels in the ith image, Si is
the size of image i in pixels, and U is a constant held across all
images that defined the desired superpixels size.

The SLIC algorithm inherently provides a roughly uniform
superpixel size. Setting U = 1500, Equation 1 gave a mean
superpixels size of 51 × 51 pixels, equivalent to an area of
approximately 117 × 117 mm2. Bilinear interpolation was
subsequently use to resize each superpixel to a fixed size of
56 x 56 or 75 x 75 pixels (the minimum input size for inception-
like network architectures).

Region annotations were provided by a senior pathologist with
over 20 years of experience for the melanoma and breast cancer
clinical datasets, and a senior pediatric neuropathologist with over
20 years of experience for the neuroblastoma mouse datasets. For
training and testing, superpixels were assigned to each category
based on their isocenter locationwithin the annotated regions.Note
that region annotations for our algorithm do not need to delineate
boundaries as illustrated in Figure 1B.

The numbers of clinically relevant tissue categories, number
of WSIs and superpixels used for training and testing are
summarized for each tumor types in Table 2. Standard image
TABLE 1 | Summary of the datasets used.

Cancer type Number
of WSIs

Digital
scanner

Pixel resolution (5x
magnification)

Dataset

Cutaneous melanoma 127 Aperio
ImageScope

2.016 mm The Cancer Genome Atlas (TCGA)

Triple-negative breast
cancer

23 NanoZoomer
XR

2.3 mm Internal dataset,
Collaboration with The Serbian Institute of Oncology

High-risk
neuroblastoma
(mouse models)

73 NanoZoomer
XR

2.3 mm Internal dataset
Tumors samples coming from established Th-MYCN and Th-ALKF1174L/MYCN transgenic
mouse colonies (48, 49) and processed by a clinical histopathological core facility
A B

FIGURE 1 | Representative examples of the SLIC superpixels segmentation and ground-truth annotations in TCGA melanoma samples (A) Whole-slide image
segmentation using the SLIC superpixels algorithm. Note how the superpixels adhere to the boundaries of the different components of the tumor with each
superpixel containing a single type of tissue (B) Ground-truth annotations are provided by the pathologists by marking samples of the region components (the
different colors represent different regions) without the need for delineating the boundaries of the tumor components.
January 2021 | Volume 10 | Article 586292
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augmentations, such as rotations (90°, -90°, 180°), flips
(horizontal and vertical), and contrast (histogram equalization)
were performed in each case to capture more variation and even
out the training dataset imbalances.

Training of the Convolutional
Neural Networks
Our custom-designed CNN for superpixel classification consists
of 6 convolutional layers (32, 32, 64, 64, 128, 128 neurons,
respectively) of 3 x 3 filter size and 3 max-pooling layers, followed
Frontiers in Oncology | www.frontiersin.org 4
by a “flatten” layer and a dense layer of 256 neurons (Figure 2). A
superpixel RGB image (post-interpolation) was used as input into
the network and normalized from range 0–255 to range 0–1 using
themaximumvalue. The output of the networkwas a label assigned
to each superpixel based on which region category it belonged to.
After empirical experimentation, a ReLU activation function was
used in all layers except for the last layer where standard softmax
was used for classification. Theweights incident to eachhiddenunit
were constrained to have a norm value less than or equal to 3 and a
dropout unit of 0.2was used before everymax-pooling operation to
TABLE 2 | Summary of the datasets used for training and testing the convolutional neural network.

Cancer type Number of WSIs used for network training Regional classification

Cutaneous melanoma Total 27 6 categories Superpixels for training
Training 22 Tumor tissue 21940
Testing 5 Stroma 12419

Normal epidermis 1646
Lymphocytes cluster 2367
Fat 15484
Empty/white space 3412

Triple-negative breast cancer Total 23 6 categories Superpixels for training
Training 18 Tumor tissue 18873
Testing 5 Stroma 24220

Necrosis 15102
Lymphocytes cluster 3472
Fat 10044
Empty/white space 16473

High-risk neuroblastoma (mouse model) Total 60 8 categories Superpixels for training
Training 44 Region of undifferentiated neuroblasts 20512
Testing 16 Tissue damage (necrosis/apoptosis) 17645

Differentiation region 5740
Lymphocytes cluster 4009
Hemorrhage (blood) 6124
Muscle 6415
Kidney 14976
Empty/white space 21470
January 2021 | Vo
Note that the testing datasets consisted of whole-slide images from different patients from the training dataset.
FIGURE 2 | Architecture of our custom-designed convolutional neural network for the classification of superpixels into different tissue-level categories.
lume 10 | Article 586292
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avoid overfitting (54). The weights of the layers were randomly
initialized using “Glorot uniform” initialization (55), and the
network was optimized using the Adam method (56) with a
learning rate of 10-3 and a categorical cross-entropy cost function.
The number of trainable parameters for our custom-made network
is ~1.9M. The network was implemented in python (v. 3.6.5) using
the Keras/Tensorflow libraries (v. 2.2.4/1.12.0, respectively).

To choose the best network for our framework, we tested
other known neural network architectures as implemented in the
Keras framework, including InceptionV3 (57), Xception (58),
InceptionResNetV2 (59), and ResNet (60). We initialized the
weights using the pre-trained ImageNet weights. To optimize
each network, we excluded the final classification layer, and
added three additional layers, i) a global average pooling layer, ii)
a dense layer of 256 neurons with ReLu activation, constrained to
have a norm value less than or equal to 3, and iii) a dense layer
tailored to the number of classes of each cancer type using the
softmax function for classification.

For inception-like architectures (Inception v3, Inception
ResNetV2, Xception) only superpixels of size 75 x 75 were used.
We trained all the networks for 50 epochs using batch sizes of 150
and 256 for superpixels of sizes 75 x 75 and 56 x 56, respectively,
and kept the models with the highest validation accuracy.

The Xception and custom-made networks were re-trained
from the beginning for each cancer type, without applying any
further changes.
Application of SuperHistopath
for the Quantification of Clinical Features
of Interest
In the melanoma dataset, we calculated the number of pixels
belonging to each classified category. For each patient we derived
i) the ratio of pixels classified as stroma region to all pixels in tumor
compartments, and ii) the ratio of pixels classified as clusters of
lymphocytes to all pixels in tumor compartments; we evaluated the
prognostic value of these quantitative indices using survival
analysis. Patients were divided into high- and low-risk groups
based on split at the median value of all scores to ensure both
groups were of similar size. Kaplan-Meier estimation was used to
compare overall survival in the 127 patients. Differences between
survival estimates were assessed with the log-rank test and hazard
ratios were calculated using Cox’s proportional-hazard regression.

In the neuroblastoma dataset, we evaluated the differences in
phenotype between the Th-ALKF1174L/MYCN (n=7) and Th-
MYCN tumors (n=6) by quantifying the proportion of pixels
Frontiers in Oncology | www.frontiersin.org 5
classified by our SuperHistopath as regions rich in undifferentiated
neuroblasts, differentiating neuroblasts, tissue damage (necrosis/
apoptosis) hemorrhage and clusters of lymphocytes. Note that i)
we did not quantify stroma in these tumors as they faithfully
mirror the stroma-poor phenotype which define high-risk disease
ii) lymphocytes clusters universally correspond to encapsulation of
lymph node by the tumor, rather that tumor infiltrates, consistent
with the “cold” immune phenotype of high-risk disease. We focus
on identifying any significant difference in the ratio of
differentiation or the ratio of hemorrhagic regions to all tumor
compartments between the two tumor types using the Mann-
Whitney U test, with a 5% level of significance.
RESULTS

SuperHistopath Can Accurately Map
the Complex Histological Heterogeneity
of Tumors
Melanoma
We first developed and evaluated our framework on the H&E-
stained, FFPE sections of clinical specimen of cutaneous
melanoma scaled to 5x magnification. Figure 1 shows the
results of the segmentation using the simple linear iterative
clustering (SLIC) superpixels algorithm, which groups together
similar neighboring pixels.

The optimizedXception network achieved the highest score and
classified the melanoma sample regions into 6 predefined tissue
categories of interest: tumor tissue, stroma, cluster of lymphocytes,
normal epidermis, fat, and empty/white space with an overall
accuracy of 98.8%, an average precision of 96.9%, and an average
recall of 98.5% over 14,092 superpixels in a separate test set of five
images (Tables 3, 4). Our custom CNN also achieved comparable
performance to the state-of-the-art networks with an overall
accuracy of 96.7%, an average precision of 93.6%, and an average
recall of 93.6% (Figure 2, Supplementary Table 1). The confusion
matrices for the XCeption and our custom CNN networks are
presented in Table 4 and Supplementary Table 1, respectively.
Figure 3 shows qualitative results of our approach’s regional
classification in representative melanoma WSIs using the
optimized Xception network.

Breast Cancer
SuperHistopath classified sample regions into 6 predefined tissue
categories of interest: tumor, necrosis, stroma, cluster of
TABLE 3 | Evaluation metrics of the different neural network architectures in the TCGA melanoma test dataset.

Network Accuracy (%) Precision (%) Recall (%) Parameters (in millions)

InceptionV3 97.5 94.2 96.7 ~22.4
InceptionResNetV2 97.7 94.1 97.3 ~54.8
ResNet50 93.8 92.2 88.9 ~24.2
Xception 98.8 96.9 98.5 ~21.4
Our custom-made CNN 96.7 93.6 93.6 ~1.9
January 2021 | V
The bold values in the Accuracy (%), Precision (%) and Recall (%) fields indicate the highest value i.e. the best performance achieved amongst the networks under comparison. The bold
value in the Parameters (in millions) field indicate the network with the fewer parameters used amongst the networks under comparison.
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lymphocytes, fat, and lumen/empty space with an overall
accuracy of 93.1%, an average precision of 93.9%, and an
average recall of 93.6% using Xception and 91.7%, 92.5%,
91.8% respectively using our custom-made CNN over 10,349
superpixels in the independent test set of five images. The
Frontiers in Oncology | www.frontiersin.org 6
confusion matrices for the XCeption and our custom CNN
networks are presented in Table 5 and Supplementary Table
2, respectively. Figure 4 shows qualitative results our approach’s
regional classification in representative triple-negative breast
cancer WSIs.
A B

D E F

G

C

FIGURE 3 | (A–F) Representative examples of the results obtained from the application of the SuperHistopath pipeline in whole-slide images of tumors (5x) of the
Cancer Genome Atlas (TCGA) melanoma dataset [(G) Magnified regions of interest]. Note the important clinically-relevant phenotypes characterized by clusters of
lymphocytes infiltrating the tumor in samples (B, D). or the majority of clusters of lymphocytes residing just outside the tumor area (left and central part) with only a
few clusters infiltrating the tumor (right part) in sample (C).
TABLE 4 | Confusion matrix of the classification of superpixels using the optimized Xception network in melanoma patients in 6 categories: tumor, stroma, normal
epidermis, cluster of lymphocytes (Lym), fat and empty/white space (separate test set of 5 whole-slide images).

Tumor Stroma Epidermis Lym Fat Empty space

Tumor 5286 10 7 8 0 0
Stroma 9 986 0 0 2 0
Epidermis 22 0 545 0 1 0
Lym 0 0 1 821 0 0
Fat 0 9 0 0 5603 3
Empty space 0 0 0 0 98 681
January
 2021 | Volume 10 |
Overall accuracy = 98.8%, average precision = 96.9%, average recall = 98.5%.
The bold values indicate the correct predictions of the network.
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Neuroblastoma
SuperHistopath classified the tumor regions into eight predefined
tissue categories of interest: undifferentiated neuroblasts, tissue
damage (necrosis/apoptosis), areas of differentiation, cluster of
lymphocytes, hemorrhage, muscle, kidney, and empty/white
space with an overall accuracy of 98.3%, an average precision of
98.5%, and an average recall of 98.4% using Xception and 96.8%,
97.1%, 97.2% respectively using our custom-made CNN over 9,868
superpixels in the independent test set of 16 images. The confusion
matrices for the XCeption and our custom CNN networks are
presented in Table 6 and Supplementary Table 3, respectively.
Frontiers in Oncology | www.frontiersin.org 7
Figure 5 shows qualitative results of our approach’s regional
classification in representative WSIs of neuroblastoma arising in
the Th-MYCNmouse model.

SuperHistopath Pipeline for the Analysis
of Low-Resolution WSI Affords Significant
Speed Advantages
The average time for the SLIC superpixels algorithm to segment
aWSI in 5x magnification was < 2 min using a 3.5 GHz Intel core
i7 processor. The average time for both the Xception and our
custom-made CNN network to classify every superpixel in the
TABLE 5 | Confusion matrix of the classification of superpixels using the optimized Xception network in triple-negative breast cancer patients in six categories: tumor,
necrosis, cluster of lymphocytes (Lym), stroma, fat, and lumen/empty space (separate test set of five whole-slide images).

Tumor Necrosis Lym Stroma Fat Empty space

Tumor 1830 13 15 42 0 0
Necrosis 50 1446 2 320 0 0
Lym 4 2 705 10 0 0
Stroma 42 120 20 3836 0 1
Fat 0 0 0 0 562 5
Empty space 0 0 0 0 67 1257
January
 2021 | Volume 10 |
Overall accuracy = 93.1%, average precision = 93.9%, average recall = 93.6%.
The bold values indicate the correct predictions of the network.
A B

D E F

G

C

FIGURE 4 | (A–F). Representative examples of the results obtained from the application of the SuperHistopath pipeline in whole-slide images of tumors (5x) of the
triple-negative breast cancer (G) Magnified regions of interest. Note the important clinically-relevant features, such as the amount of tumor necrosis inside tumors
(A) and (B), lymphocytes which, are infiltrating the tumor in large number in samples (C, D), but are surrounding the stroma barrier without infiltrating the tumor in
samples (A, B, E, F).
Article 586292
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images was 1–2 min using the same processor. A quick
convergence of the networks (around epoch 30) was observed
in all cases, which needed ~3 h for Xception and only ~30 min
for our custom-made CNN using a Tesla P100-PCIE-16GB GPU
card, and therefore the latter was used for experimenting.

SuperHistopath Can Provide
Robust Quantification of Clinically
Relevant Features
Stroma-to-Tumor Ratio and Clusters of
Lymphocytes Abundance as Predictive Markers
of Survival in Melanoma
We first use SuperHistopath to quantify both the stroma-to-
tumor ratio and the immune infiltrate, which have both shown to
Frontiers in Oncology | www.frontiersin.org 8
provide prognostic and predictive information in patient with
solid tumors, including melanoma (20, 21, 23). The important
role of immune hotspots has been established based on density
analysis of single cell classification of lymphocytes in high-
resolution images (61, 62). Here, we demonstrate in our
melanoma dataset of 127 WSIs i) that a high stromal ratio as
identified in low resolution WSIs is a predictor of poor prognosis
(SuperHistopath: p = 0.028, Coxph-Regression [discretized by
median]: HR = 2.1, p = 0.0315; Figure 6A) and ii) that clusters of
lymphocytes hold predictive information in our melanoma
dataset, with a high lymphocyte ratio being an indicator of
favorable prognosis [SuperHistopath: p = 0.015, Coxph-
Regression (discretized by median): HR = 0.4, p = 0.018;
Figure 6B]. Pearson’s correlation showed no significant
TABLE 6 | Confusion matrix of the classification of superpixels using the optimized Xception network in the Th-MYCN and Th-ALKF1174L/MYCN mouse models in eight
categories: region of undifferentiated neuroblasts, necrosis, cluster of lymphocytes (Lym), hemorrhage (blood), empty/white space, muscle tissue and kidney (separate
test set of 16 whole-slide images).

Undifferentiated region Necrosis Lym Differentiation Blood Empty space Muscle Kidney

Undifferentiated region 1403 3 0 14 1 0 0 0
Necrosis 13 1642 1 26 49 2 5 18
Lym 6 5 1150 0 0 0 0 3
Differentiation 0 0 0 1261 0 0 0 0
Blood 1 7 0 0 1327 0 9 0
Empty space 0 2 0 0 0 560 3 2
Muscle 0 2 0 0 1 0 1176 0
Kidney 0 0 0 0 0 0 0 1176
J
anuary 2021 | Volum
e 10 | Article
Overall accuracy = 98.3%, average precision = 98.5%, average recall = 98.4%.
The bold values indicate the correct predictions of the network.
A

B

FIGURE 5 | (A) Representative examples of the results obtained from the application of the SuperHistopath pipeline in whole-slide images of tumors (5x) arising in
genetically-engineered mouse models of high-risk neuroblastoma [(B) Magnified region of interest].
586292
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correlation between stromal ratio and clusters of lymphocytes
ratio (r = -0.13, p = 0.13), and between absolute sizes of stroma
and clusters of lymphocytes (r = 0.13, p=0.11). Taken together,
our data, captured from low resolution (5x) WSIs, are consistent
with those extracted from single-cell analysis in high-resolution
WSIs (53).

Necrosis Quantification
We use the SuperHistopath to quantity tumor necrosis in our
breast cancer and childhood neuroblastoma preclinical datasets.
Tumor necrosis, defined as confluent cell death or large area of
tissue damage hold predictive and prognostic information, both
at diagnosis and after chemotherapy, in many solid tumors
including breast cancer and childhood malignancies (24–26,
63, 64). While visible at 5x objective lens magnification, its
quantification can often be a challenging task even for
experienced pathologists. Here, we show that SuperHistopath
can provide satisfactory quantification of necrosis in clinical
breast cancer samples by distinguishing from stroma with high
specificity (91.5%) and satisfactory precision (79.5%) and in the
high-risk neuroblastoma mouse models with high precision and
specificity (93.5% and 98.9% respectively).

Quantification of Neuroblastoma Differentiation
We used SuperHistopath to quantify the phenotype of MYCN-
driven transgenic mouse models of high-risk stroma-poor
neuroblastoma. We show that SuperHistopath can identify
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areas of differentiation, a critical feature for the stratification of
children neuroblastoma, with both high precision and specificity
(100% and 96.9% respectively). SuperHistopath also showed that
expression of ALKF1174L mutation significantly shift the MYCN-
driven phenotype from poorly-differentiated and hemorrhagic
phenotype (Th-MYCN: 1.8 ± 1.3% differentiating area and 29.2 ±
6.7% hemorrhage, Figure 6C) into a differentiating phenotype
also characterized by the almost complete abrogation of the
hemorrhagic phenotype (Th-ALKF1174L/MYCN: 20.3 ± 3.1%
differentiating area and 0.2 ± 0.1% hemorrhage, p=0.0003 and
p=0.0008 respectively, Figure 6D) as previously demonstrated
(51, 65).
DISCUSSION

In this study, we implemented SuperHistopath: a digital
pathology pipeline for the classification of tumor regions and
the mapping of tumor heterogeneity from low-resolution H&E-
stained WSIs, which we demonstrated to be highly accurate in
three types of cancer. Combining the application of the SLIC
superpixels algorithm directly on low magnification WSIs (5x)
with a CNN architecture for the classification of superpixels,
contributes to SuperHistopath computational efficiency
al lowing for fas t process ing , whi l s t a ffording the
quantification of robust and easily interpretable clinically-
relevant markers.
A

B

DC

FIGURE 6 | Quantification of clinically relevant features with SuperHistopath. (A, B) show associations between survival outcomes and SuperHistopath-defined risk
groups in the Cancer Genome Atlas (TCGA) cohorts of patients with melanoma. (A) Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low
risk group (red) classified by stromal cells ratio derived from SuperHistopath and (B) Kaplan-Meier Survival curves for patients in the high-risk group (blue) and low
risk group (red) classified by immune infiltrate based on lymphocytes cluster ratio derived from SuperHistopath. (C, D) show the SuperHistopath-based quantification
of tumor phenotype in genetically-engineered mouse model of high-risk neuroblastoma. (C) Representative SuperHistopath-segmented whole-slide images (5x) and
pie chart showing the Super-CNN quantified mean composition of the tumors arising in Th-MYCN (n=6) and Th-ALKF1174L/MYCN (n=7) mouse models of high-risk
neuroblastoma. Note the marked difference of phenotype induced by the expression of the ALKF1174L mutation characterized by (D) a significantly increased
neuroblastoma differentiation neuroblasts and the total abrogation of the characteristic hemorrhagic phenotype of Th-MYCN tumors.
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Applying our computational approach on low-resolution
images leads to markedly increased processing speed, for both
the classification of new samples and network training. Here, we
chose the (5x) magnification as a compromise between tumor
structures visibility and computational cost. Specific metrics such
as stroma-to-tumor ratio could potentially be derived from images
at even lower magnifications (e.g. 1.25x) as recently shown (53).
Digital histology images are conventionally processed at 40x (or
20x) magnification where cell morphology is most visible. At those
resolutions, WSIs are large (representative size at 20x: 60000 x
60000 pixels), requiring of a lot of memory and images to be
divided into patches (tiles) for processing. Under these conditions,
the training of new networks for cell segmentation and
classification typically requires days and the application to new
WSI samples can take hours prior to code optimization. In
contrast, the training of our neural network until acceptable
convergence needed as little as ~30 min and application on new
samples ~5 min (for both superpixel segmentation and
classification) in our study. High-resolution images are essential
when studying cell-to-cell interactions, however we show that the
processing of low resolution images is appropriate for the
extraction of specific global context features.

Furthermore, SuperHistopath combines the main advantages of
regional classification and segmentation approaches. On one hand,
classification approaches applied on smaller patches resulting from
splitting WSIs allow the use of CNN for the robust classification of
many categories necessary to capture intratumor heterogeneity
(39), yet at the expense of higher risk of misclassification, especially
close to regional boundaries where an image patch, regardless of its
size, may contain multiple tumor components. Overlapping
(sliding) window approaches can improve the issue, yet at an
increased computational cost. On the other hand, segmentation
approaches such as U-Net-like architectures can resolve the
regional boundaries issue but appear to work better for few
classes, typically two. SuperHistopath efficiently combines the use
of a segmentation approach using superpixels to adhere to region
boundaries with CNN classification to cover the rich tumor
histological heterogeneity (here 6-8 region categories depending
on the cancer type).

Our method also markedly simplifies and accelerates the
process of preparing ground-truth (annotations) datasets as i)
the use of superpixels alleviate the need for careful boundary
delineation of the tumor components of interest (Figure 1B),
a cumbersome and time-consuming process necessary
for using U-Net-like architectures and ii) each annotated
region contains large numbers of superpixels facilitating the
collection of the large datasets traditionally required by deep
learning methods.

The appropriate choice of superpixel size is crucial to warrant
both accurate tissue segmentation and classification. Equation 1
ensured a uniform superpixel size for every whole-slide image
regardless of their original size. The main considerations for
choosing superpixels size (i.e. setting the constant U) is to ensure
that they only contain a single tissue type, while being large
enough to contain sufficient tissue information. In our study, we
found that classification is not sensitive to small changes of U.
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However larger superpixels (U > 1750) did not adhere well to the
tissue boundaries, whereas smaller superpixels (U < 1250) indeed
led to a slight decrease in classification performance.

Many promising computational pathology-derived biomarkers
ultimately fail to translate in the clinic due to their inherent
complexity and the difficulty for pathologists to evaluate them in
new datasets. In this proof-of-concept study, we showed that
SuperHistopath can quantify well-understood features/markers
already used, albeit only qualitatively or semi-quantitatively, by
pathologists, including the stroma-to-tumor ratio, lymphocyte
infiltration, tumor necrosis, and neuroblastoma differentiation.
We also show that SuperHistopath-derived results corroborated
those obtained from single-cell analysis on high-resolution samples
(53). The computational efficiency of SuperHistopath, combined
with the simple superpixels-enabled data collection, could facilitate
its adoption in the clinic to accelerate pathologist workflow, could
assist in intra-operative pathological diagnosis and should facilitate
working with large datasets in clinical research.

Moving forward, we plan to expand the types of global context
features extractable from SuperHistopath in more cancer types.
We will also evaluate the accuracy of SuperHistopath on digitized
frozen tissue sections to demonstrate its potential to assist in the
rapid intra-operative pathological diagnostic. We will also update
our previous framework (SuperCRF) which incorporates region
classification information to improve cell classification (53) using
SuperHistopath. Together both SuperHistopath and SuperCRF
would provide invaluable tools to study spatial interactions across
length scales to provide a deeper understanding of the cancer-
immune-stroma interface, key to further unlock the potential of
cancer immunotherapy (17).

In this proof-of-concept study, we applied our method to three
cancer types with disparate histology without any changes (just
retraining). While the approach could thus be virtually extended
to any type of cancer, improvement could be made tailored to a
specific global feature, cancer type or dataset and could include
further exploring i) the use of SVM to combine the CNN-extracted
features with handcrafted ones, ii) the use of other image color
spaces which has been shown to improve classification in certain
cases (66) and iii) alternative superpixel algorithms such as the
efficient topology preserving segmentation (ETPS) algorithm (67).
Additionally, further improvement of this proof-of-concept
framework could be sought via experimentation with
hyperparameter tuning, or the use of other custom and well-
established architectures (59, 68). Since superpixels only capture
small homogeneous areas, combination with other approaches
such as classification of larger image patches with a deepCNN or
U-net-like architectures might be more appropriate for the single
purpose of segmenting some large and multi-component tumor
structures, e.g. certain types of glands (16).

To conclude, our novel pipeline, SuperHistopath can accurately
classify and map the complex tumor heterogeneity from low-
resolution H&E-stained histology images. The resulting enhanced
speed for both training and application (~5 min for classifying a
WSI and as low as ~30 min for network training) and the efficient
and simple collection of ground-truth datasets make
SuperHistopath particularly attractive for research in rich datasets
January 2021 | Volume 10 | Article 586292
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and would facilitate its adoption in the clinic to accelerate
pathologist workflow in the quantification of predictive/prognosis
markers derived from global features of interest.
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