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Abstract

Mesenchymal stem cells (MSCs) have long been regarded as critical components of regenerative 

medicine strategies, given their multipotency and persistence in a variety of tissues. Recently, 

the specific role of MSCs in mediating regenerative outcomes has been attributed (in part) to 

secreted factors from transplanted cells, namely extracellular vesicles. This viewpoint manuscript 

highlights the promise of cell-derived extracellular vesicles as agents of regeneration, enhanced by 

synergy with appropriate biomaterials platforms. Extracellular vesicles are a potentially interesting 

regenerative tool to enhance the synergy between MSCs and biomaterials. As a result, we believe 

these technologies will improve patient outcomes through efficient therapeutic strategies resulting 

in predictable patient outcomes.
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Introduction

Originally conceived to solve the shortage of organs for transplantation, the field of tissue 

engineering has evolved to encompass a broad clinical scope including regeneration of 

simple and complex tissues in a variety of clinical settings (Langer and Vacanti, 1993). 

At their core, tissue engineering strategies rely on three tenants: isolated cells, inductive 

substances, and matrices to facilitate organization, largely biomaterials (Khademhosseini 

and Langer, 2016; Langer and Vacanti, 2016). Despite significant academic advances, 

clinical translation remains slow due to challenges concerning cell sourcing, manufacturing 

scale, standardization, and regulation (Hoffman et al., 2019).
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Mesenchymal stromal cells (MSCs) have attracted significant attention as an ideal 

multipotent stem cell source since their discovery as fibroblast-colony forming cells 

(Friedenstein et al., 1970). MSCs are extracted from a variety of tissue sources and are 

capable of multilineage differentiation (Yingst and Hoffman, 1984). Over 800 clinical trials 

have been conducted to determine their therapeutic efficacy (Kabat et al., 2019; Squillaro 

et al., 2016). However, no MSC therapies have been formally approved for use in the 

United States Food and Drug Administration. Significant concerns around the large-scale 

preparation of MSCs remains challenging (Jayaraman et al., 2021; Phinney and Galipeau, 

2019; Sensebé et al., 2013).

Concurrent with advances in tissue engineering, advances in molecular and developmental 

biology have significantly informed innovative tissue engineering strategies (Lenas, 2018). 

In this viewpoint we highlight recent advances in investigational therapeutics which pose 

significant translational advantages using extracellular vesicles as agents of regeneration, 

in novel combination with biomaterial platforms, illustrated in Fig. 1. We hypothesize 

that thoughtfully designed biomaterials paired with cell-instructive signals may induce 

predictable regeneration by endogenous cell sources, posing significant translational 

advantages as next generation tissue engineering therapeutics.

Biomaterials Modulate Cell and Tissue Fate

MSCs respond to physical, chemical, and mechanical environment, providing a role for 

biomaterials-instructed regeneration (Jang and Kim, 2010; Leach and Whitehead, 2018). In 

addition to providing tissue organization in three dimensions, biomaterial features play a 

role in determining tissue fate through porosity (Loh and Choong, 2013), stiffness (Breuls 

et al., 2008), texture (Smith et al., 2009; Zhang and Ma, 2000), pore size (Gupte et 

al., 2018; Swanson et al., 2021), and chemical functionality (Zou et al., 2018), with the 

goal of replicating the niche or microenvironment of target cells and tissues to increase 

regenerative success (Williams, 2019). Biomaterials may be impregnated with growth 

factors or controlled release moieties to display inductive signals to cells, mimicking in vitro 
administration and secretion in vivo, which increases efficiency and minimizes off-target 

effects (Swanson et al., 2020b; Swanson et al., 2020c). Decellularized biomaterial matrices, 

containing residual proteins, are approved by the FDA in various forms and provide 

inspiration for a combination of inductive cue display within a biomaterial (Schmidt, 2012). 

Synthetic materials offer a greater degree of design tunability and manufacturing advantages 

(Agmon and Christman, 2016; Swanson and Ma, 2020); their fabrication methods are 

highly scalable, representing a clear path to clinical scale which is more cost-effective than 

cell-based therapies (Greenberg-Worisek et al., 2018; Sanz-Nogués and O’Brien, 2021; ten 

Ham et al., 2020).

Secreted Factors Enhance Biomaterials-Based Regeneration

Kitami et al. (2016) demonstrate that prolonged survival of transplanted cells does 

not directly accelerate osseous wound healing, despite accelerated healing in defects 

treated with cells (Kitami et al., 2016). These results suggest that transplanted cells 

alone are not responsible for regenerative outcomes directly, yet they provide important 
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instructive signals. Similar findings in transplanted adipose-derived MSCs have been 

reported (Muhammad et al., 2017). The secretome, the composite milieu of cells’ secreted 

factors which includes: proteins, growth factors, and extracellular vesicles (EVs), has 

recently been identified as a critical driver of cell fate (Pinho et al., 2020). Saha et al. 

(2019) demonstrated similar results in the functional recovery of ischemic myocardium after 

cardiac progenitor cell (CPC) transplantation, and specifically identified EVs produced by 

CPCs, one component of cellsecreted factors that is readily isolated, contained microRNAs 

associated with myocardial recovery. These findings suggest that transplanted cells may act 

as an in-situ drug factory, synthesizing inductive cues which catalyze regeneration, rather 

than directly participate (Moghadasi et al., 2021). In the context of tissue engineering, it is 

plausible to replace transplanted MSCs with secreted factors, such as EVs, in a way which 

mimics their natural secretion (Fig. 1).

Growing Role for Extracellular Vesicles in Catalyzing Regeneration

EVs are lipid-bound vesicles with diameters in the range of 50–150 nm (Swanson et al., 

2020a; Thery et al., 2018; Witwer et al., 2019). Originally thought to be a waste shedding 

mechanism by cells, recent evidence suggests that EVs are nature’s endogenous nanoparticle 

delivery system and a form of cell-cell communication, containing microRNAs and proteins 

(van Niel et al., 2018). Like stem cells, EVs have shown important therapeutic potentials in a 

variety of disease states and target tissues, outlined in Table 1.

EV-based therapeutics are promising regarding their translational and therapeutic potential. 

Ibrahim et al. (2014) isolated cardiosphere-derived cell EVs and profiled their molecular 

cargo to determine enriched miRNAs after demonstrating EV injection recapitulates the 

regenerative effects of transplanted cells. Inhibition of EV biosynthesis in vivo blocked these 

same effects. Interestingly, administration of the upregulated miR-146a reproduced only 

some, but not all, effects of EV administration. The authors propose EVs as a method of 

tying together regenerative paracrine and autocrine effects of cardiac progenitors without 

manually postulating their complex mixtures of signaling molecules.

The molecular cargo of EVs is reflective of its donor cell identity, and culture environment 

(Dai et al., 2019; Fevrier and Raposo, 2004; Quesenberry and Aliotta, 2010). This affords 

significant, large-scale cell culture manipulations to take place in vitro which tailor EV 

cargo towards specific regenerative applications, for example, by small molecule or growth 

factor treatment. It is also reasonable to consider biomaterial culture platforms as a method 

of large-scale EV manufacturing, given our understanding of biomaterial influences on 

cell phenotype. 3D cultures are also shown to increase EV yield in response to tissue-

like organization (Lee et al., 2021; Rocha et al., 2019). Additionally, EVs isolated from 

highly controlled culture systems may be optimally tuned to educate naïve recipient cells 

(endogenous or transplanted) in recipient tissue defects, minimizing the requirement of 

preconditioned cells for transplantation.

Compared to MSCs, EVs exhibit “immune privilege” and demonstrate a better safety 

profile in terms of tumorigenicity and immunogenicity (Rani et al., 2015; Zhang et al., 

2018b). EVs are shown to be well-tolerated without adverse immune responses or need 
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for immunosuppressive agents (Mendt et al., 2018). EVs from immortalized cell lines 

represent an opportunity to standardize their biosynthesis and cargo (Deb et al., 2019; Kim 

et al., 2021; Swanson et al., 2020b) given that immortalized cells are less susceptible to 

change over time. Recombinant DNA technology may allow for further manipulation of 

the EV membrane or cargo, recently described as “designer exosomes” (Jafari et al., 2020). 

Recent literature suggests cross-species efficacy of EVs (Swanson et al., 2020b; Swanson 

et al., 2020c; Zhu et al., 2017); plant-derived EVs are also under investigation for various 

therapeutic uses (Akuma et al., 2019; Garaeva et al., 2021). As a result of recent interest in 

EV-based therapeutics, good manufacturing practices (GMP) have been developed for their 

commercial manufacturing (Bahr et al., 2020; Colao et al., 2018; Harn et al., 2020; Mendt et 

al., 2018).

The ideal regenerative therapeutic would allow for off-the-shelf clinical use and require 

minimal preparation, particularly for routine applications such as in clinical dentistry and 

dermatology. Researchers must consider that most healthcare settings do not have advanced 

tissue culture capability to handle or culture MSCs for use in tissue engineering applications, 

when required. Compared to MSCs, EVs are easily lyophilized and stored for future use (El 

Baradie et al., 2020; Swanson et al., 2020b). Charoenviriyakul et al. (2018) demonstrated 

that lyophilized EVs retained their activity for approximately 4 weeks even when stored 

at 25°C (room temperature), which poses significant clinical and commercial distribution 

advantages.

Vision for Next-Generation Regenerative Technology

Despite numerous human clinical trials underway with EV-based therapeutics for a variety 

of clinical applications, most are limited to intravenous infusion or direct injection. EVs 

circulate the body rapidly, thereby requiring a high dose to reach therapeutic efficacy and 

pose risk for off-target effects. In the context of tissue engineering, the therapeutic effect 

is needed and desired locally. Our group and others have reported early developments in 

the delivery and sustained release of EVs by clinically and biologically relevant means. An 

important feature of these biomaterials platforms is that they are highly versatile. EV cargo 

may be changed (see Table 1 for examples) based on the clinical indication and desired 

outcomes, however the design of the platform technology remains otherwise unchanged. 

This allows for versatile and widespread use of these biomaterials technologies as platform 

technologies.

Hydrogels encapsulating EVs function to maintain EVs at the site of implantation, 

increasing their half-life in vivo (Zhang et al., 2018a). Historically hydrogels have had 

mixed success with the long-term encapsulation of cells due to mass transfer limitations. 

Because EVs are non-living, many fewer parameters must be considered. Gingival MSC in 

chitosan/silk hydrogel sponge accelerates wound healing on skin defects in diabetic mice by 

inducing neoepithelialization and angiogenesis to a greater degree than the hydrogel alone 

(Shi et al., 2017). Other examples of hydrogel-based EV delivery are discussed by Riau et al. 

(2019).
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Synthetic biodegradable materials which encapsulate EVs in controlled amounts allow for 

their controlled dosing and long-term sustained release. We demonstrated the first report 

of an EV-containing poly(lactic acid-co-glycolic acid) (PLGA) microsphere. Over time, the 

PLGA polymer is degraded to allow EV release to local cells. We demonstrated that this 

delivery system was sufficient to induce odontogenesis (mineralized dentin formation) as a 

novel pulp-capping strategy to protect vital tooth tissue, where EV or cell administration 

would be otherwise limited. In this way, EVs are locally released from a depot for up 

to 12 weeks (Swanson et al., 2020b). As a further development of this technology, we 

developed a microsphere delivery platform which can be embedded into a tissue engineering 

scaffold. This approach combines the advantageous properties of EVs and their sustained 

release with a biomaterial scaffold optimized for bone regeneration (Swanson et al., 2020c). 

We demonstrated that this approach was sufficient to catalyze osseous wound healing of 

a calvarial defect without the transplantation of exogenous MSCs. Instead, we relied on 

released EVs to guide the fate of endogenous cells. We anticipate that these technologies 

are key to clinical translation of regenerative EV therapeutics. Other motifs of EV tethering, 

including ECM-inspired immobilization, covalent conjugation, and electrostatic interaction 

are described by Man et al. (2020).

Comparisons of MSC-based and EV-based regenerative technology consider that MSC 

sources are well-characterized and readily accessible (Moghadasi et al., 2021). While cell 

populations involved in tissue formation and repair are characterized for many tissues, 

ideal progenitor populations remain elusive for others or may not be suitable to autologous 

expansion and re-implantation. In these cases, EVs may be advantageous in that they can 

be produced at a larger scale than the cell source itself, and EVs from cell sources other 

than the target source may be able to catalyze regenerative outcomes. Since EVs can be 

stored for future use with relative ease and ability to be generated at small scales, EV-based 

regenerative therapeutics are further advantageous.

The potential implications of combined EV and biomaterial therapeutics allow for a tailored, 

predictable, tissue/patientspecific approach to regeneration, which is highly desirable by 

both patients and clinicians. EVs and biomaterial constructs are significantly easier to 

manufacture, store, and regulate compared to MSCs. These attributes represent significant 

cost savings, as well as increased likelihood of clinical adoption as these technologies 

would not require sophisticated technical expertise or equipment to implement into existing 

clinical workflows. As a result of the increased bio-instructive nature of optimized EV-

biomaterial platforms, we believe that this may lead to simpler cell sourcing. EVs have been 

demonstrated to induce cell migration both in vitro and in vivo, sufficient to catalyze wound 

healing without requiring the transplantation of exogenous cells (Swanson et al., 2020b; 

Swanson et al., 2020c). In the same way, when exogenous cells are necessary, significant ex 
vivo autologous cell preparation (i.e., flow cytometry, ex vivo expansion) may be minimized 

as an instructive combination of EVs and biomaterial matrix provide sufficient selection 

criteria for regenerative cell populations, allowing more crude preparations.
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Conclusion

Predictability of regenerative outcomes is ultimate goal of next generation tissue engineering 

technology. In this Viewpoint, we highlight the synergy for development of biomaterial 

platforms which contain EVs, rather than rely on transplantation of stem cells. EVs in 

conjunction with tuned biomaterials matrices represent an exciting avenue for discovery, 

translation, and commercialization. We believe that EV-based biomaterial technologies hold 

the potential to democratize access to regenerative medicine therapeutics across medical 

disciplines and care settings given their decreased cost, increased manufacturing throughput, 

advantageous storage character and potentially easier point of care use. Successful clinical 

translation of these technologies will continue to rely on an intimate understanding of the 

molecular cargo encapsulated by EVs, interactions at cell-biomaterial interface and means of 

efficient EV delivery. We believe that regenerative potential represents a significant benefit 

to patients for a variety of conditions; therapeutic approaches which circumvent challenges 

associated with, such as EV-based therapies, will allow for more expedient clinical trials, 

regulatory approval, and widespread clinical adoption, ultimately improving patient care 

outcomes and quality of life.
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FIGURE 1. 
Schematic overview demonstrating next-generation tissue engineering therapeutic strategy 

which relies on synergy between biomaterial scaffolds and sustained release of EVs to 

induce tissue regeneration. Made with Biorender.
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