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Abstract: Edible insects are expected to become an important nutrient source for animals and hu-
mans in the Western world in the near future. Only a few studies on viruses in edible insects with
potential for industrial rearing have been published and concern only some edible insect species.
Viral pathogens that can infect insects could be non-pathogenic, or pathogenic to the insects them-
selves, or to humans and animals. The objective of this systematic review is to provide an overview
of the viruses detected in edible insects currently considered for use in food and/or feed in the
European Union or appropriate for mass rearing, and to collect information on clinical symptoms in
insects and on the vector role of insects themselves. Many different virus species have been detected
in edible insect species showing promise for mass production systems. These viruses could be a risk
for mass insect rearing systems causing acute high mortality, a drastic decline in growth in juvenile
stages and in the reproductive performance of adults. Furthermore, some viruses could pose a risk to
human and animal health where insects are used for food and feed.

Keywords: edible insects; mass rearing; production system; controlled environment; virus; regulation

1. Introduction

Edible insects are expected to become an important nutrient source for animals and
humans in the Western world in the near future and traditionally hold this status in many
tropical countries [1,2]. The reasons why insects are regarded as an alternative source of
animal protein are environmental, nutritional and economic [3–6]. More than 2000 edible
insect species are consumed worldwide [7]. The insects most widely consumed by humans
belong to the Coleoptera (31%), Lepidoptera (18%), Hymenoptera (14%), Orthoptera (13%)
and Hemiptera (10%) [8] orders and can be consumed at different life stages—eggs, larvae,
pupae, or adults [4,8,9]. Only a few of the edible species reported in the literature [7]
meet the demands of mass rearing systems and industrial activities. Twelve insect species
have been reported by EFSA to have the greatest potential to be used as food and feed
in the European Union [10]. Edible insects could be harvested seasonally in the wild
or reared in controlled environments in most European countries [11]. The different
production systems (i.e., industrialized rearing, insect farming, or wild harvesting) by
which the edible insects are bred can contribute to differences in their safety [2,11–13].
In recent years, due to the novelty and microbial complexity of industrial insect rearing
for human consumption, many articles and reviews have explored possible food safety
hazards to human and animal health associated with the use of insects for food and
feed, including chemical, microbiological and allergenic agents, and prions [10,11,14–21].
In addition to ‘general food hygiene requirements’, the production and marketing of
insects as food in the EU is governed by ‘Novel Foods’ legislation—i.e., Regulation (EU) No
2015/2283 [22]; Regulation (EU) 2017/2469 [23]; Regulation (EU) 2017/625 [24]; Regulation
(EU) 2019/1381 [25]; Regulation (EU) No 142/2011 [26]; Regulation (EU) 2017/893 [27].
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EFSA Scientific Opinion (2015) and adoptions and discussions of the EFSA NDA Panel on
Nutrition (2016) are also taken into consideration [10,28].

Both insects collected in Nature and those raised on farms may be infected with
pathogenic microorganisms, including bacteria, viruses, fungi, protozoa and other organ-
isms that can affect their safety as food [16,29]. Insects represent the largest group of animals
on earth in terms of biodiversity, with an estimated 5.5 million different species [30,31].
This diversity is reflected in a matching range of infecting viruses, which not only posi-
tively or negatively affect insect populations, but can also have a major impact on human
well-being [32,33]. Insects have been shown to contain a wide variety of viruses up to
indicate insects as major reservoirs and vectors of viruses [34–38] and recent papers reveal
an enormous diversity in RNA viruses detected in insect viruses [36].

There is an abundant literature on the presence of viruses in insects of economic
value or importance to public health, as in the case of silkworms and mosquitoes [39–41].
Few studies have been conducted on viruses in edible insects with potential for industrial
rearing and concern mainly pathogenic insect viruses, including only some edible insect
species [10,16,42]. Insects could harbor a plethora of viruses: (i) microbiota viruses; (ii)
viruses pathogenic to insects themselves; (iii) viruses pathogenic to vertebrates, both animal
and human. Viruses are part of the normal microbiota of an insect, i.e., its virome, and
thus intrinsically associated with insect metabolism, behavior and survival. Albeit under
situations of stress, the virome could become pathogenic for the insect [31,43]. Viruses
pathogenic to insects can cause a decline in growth and reproductive performance, in
addition to disease and mortality. For these reasons, said viruses pose a major concern
in insect mass rearing systems where insects are raised at high densities [16,44]. The fact
that invertebrate viruses can be transmitted to vertebrates further increases the importance
of screening measures for commercially bred prey insects [45]. Viruses pathogenic to
vertebrate hosts could be found in insects. While these viruses do not replicate in insects
and are not actively transmitted to vertebrates by insect vectors, they could be transmitted
passively by insects acting as mechanical vectors [10,46]. This vector capacity highlights the
potential of insects produced for food and feed to transmit viral diseases to vertebrates [10].
In some cases, however, insects are replicative vectors of viruses infecting vertebrates.
Arboviruses can replicate in their vector, infect vertebrates, and cause severe human (i.e.,
dengue fever, West Nile disease, Rift Valley fever, hemorrhagic fever, chickungunya fever)
and animal (Schmallenberg) diseases [47,48]. To date there is no evidence of these viruses
in edible insects.

The focus of this study was on virus species detected to date in edible insect species
currently considered for use in food and/or feed in the EU or with characteristics suited to
mass rearing systems.

2. Materials and Methods
2.1. Data Collection Process (Information Sources, Search Strategy, Eligibility Criteria)

For this systematic review, we performed a literature search to identify scientific
articles reporting viruses in diverse edible insect species. The information retrieved from
the literature conforms to the Preferred Reporting Items for Systematic reviews and Meta-
analyses (PRISMA) statement [49].

The insect species included in this review are those considered by EFSA, with the
exception of Bombyx mori: Musca domestica, Hermetia illucens, Tenebrio molitor, Zophobas
morio, Alphitobus diaperinus, Galleria mellonella, Achroia grisella, Acheta domesticus, Gryllodes
sigillatus, Locusta migratora and Schistocerca americana (Table 1). Since the taxonomy and
classification of Zophobas morio is still unclear and is currently identified as conspecific with
Zophobas atratus [50], in this review, as in the one by Rumbos and Athanassiou [51], we
consider Z. morio and Z. atratus as one species, referred to as Z. morio. However, in order to
collect all possible information, both scientific names were used in the string terms.
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Table 1. List of edible insect species considered in this review.

Order Family Genus Species Common Name Stage
Consumed

Insects
Potentially
Suitable for

Use in
Food and

Feed in the
EU *

Coleoptera Tenebrionidae Tenebrio T. molitor (Linnaeus, 1758) Mealworm larvae X **
T. castaneum (Herbst, 1797) Red flour beetle larvae

Zophobas Z. morio (Fabricius, 1776) Super worms larvae X
Alphitobius A. diaperinus (Panzer, 1797) Lesser mealworm larvae X **

Diptera Muscidae Musca M. domestica (Linnaeus, 1758) Common housefly larvae X **
Stratiomyidae Hermetia H. illucens (Linnaeus, 1758) Black soldier fly larvae X **

Lepidoptera Pyralidae Piraliini G. mellonella (Linnaeus, 1758) Greater wax moth larvae X
Achroia A. grisella (Fabricius, 1794) Lesser wax moth larvae X

Orthoptera Gryllidae Acheta A. domesticus (Linnaeus, 1758) House cricket adult X **
Gryllodes G. sigillatus (Walker, 1869) Banded cricket adult X **
Gryllus G. assimilis (Fabricius, 1775) Jamaican field cricket adult X **
Gryllus G. bimaculatus (De Geer, 1773) Two spotted cricket adult

Acrididae Locusta L. migratora (Linnaeus, 1758) African migratory
locust adult X

Schistocerca S. gregaria (Forskål, 1775) Desert locust adult
Schistocerca S. americana (Drury, 1770) American grasshopper adult X

Legend: * Commission Regulation (EU) No 142/2011; EFSA Scientific opinion, 2015 [10,26]; ** Insect species authorized to be used for the
production of processed animal protein (PAP) for aquafeeds in accordance with EU Regulation 2017/893 (7 species) [27].

In addition to the species considered promising by EFSA, we decided to also include:
Tribolium castaneum, Gryllus assimilis, Gryllus bimaculatus, and Schistocerca gregaria in this
review. These species have good potential as edible sources due to their breeding character-
istics and/or resistance to viruses. Two of them (G. assimilis and S. gregaria) have already
been listed by Mleck et al. [52] as suitable food species in Europe and other developed
countries. Furthermore, G. assimilis and G. bimaculatus are listed by Weissmann et al. [44]
as two of the five most commercially important cricket species worldwide.

Silk and honey are the primary products of the Bombyx mori (Silkworm) and Apis mel-
lifera (Western honeybee), respectively. Although the edible part of these insects (silkworm
pupae and bee brood) is already consumed in many parts of the world and constitutes a
promising edible resource, it is not specifically covered in this review because it is only a
marginal part of the production system of these insect species [53–55].

Relevant studies were searched through two online database repositories, PubMed
and Web of Science, using the keywords: “virus*” AND “scientific name of edible insect
species” OR “common name of edible insect species” (see Table 1 for the name details).
The research was limited to studies published in English up to February 2021. Subsequently,
after removing duplicates, only full-text articles were screened, including the grey literature
(i.e., materials and research produced by organizations outside traditional commercial or
academic publishing and distribution channels); only papers providing original research
and data were selected and considered for this review (eligibility assessment). Relevant
papers and reviews were also manually cross checked to identify further references, which
have been identified as “other sources” in Table S1 The following data were extracted from
selected articles and listed in Table S1: bibliographic details (database source, authors,
title, source, year of publication, DOI or any PMID) and name of the edible insect species
considered. Information regarding viruses detected in each insect species, grouped by
order, is discussed in the text and summarized in table form.
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2.2. Summary of Extracted Data

The four-phase study selection process in the present review is reported in Figure 1.
In the initial research a total of 783 studies were identified (PubMed = 248, Web of
Science = 490, citations from retrieved articles = 45). Of these, 608 papers were retrieved
after removal of duplicates (161) and documents without full text availability (14). Of
these, a final 176 articles, fulfilling the inclusion criteria, were identified for this review.
The other publications (n = 432) were discarded due to: no virus detected in the insect
species considered; no monitoring activity; virus detected in insect species not considered
in this review; lack of original data; studies regarding other topics; unclear presentation
of data.
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3. Results

The edible insect species considered in this review are grouped below by order
(Coleoptera, Diptera, Lepidoptera and Orthoptera). A specific paragraph has been created
for each insect species, describing the main nutritional and productive characteristics,
potential for mass rearing systems, and associated viruses. Information on virus character-
istics (i.e., family, genus, species, and genomic aspects), insect stage involved during viral
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infection, type of viral infection (i.e., natural if virus was detected in the wild or experimen-
tal if a species of insect was tested for susceptibility to a virus), any detected symptoms or
mortality, have been summarized in the tables (Note 1: in this review, chilo iridescent virus
(CIV) is used as synonym of invertebrate iridescent virus 6 (IIV-6), the type species of the
genus Iridovirus within the family Iridoviridae [56]; Note 2: within the Iridoviridae family,
different or novel strains of invertebrate iridescent virus 6 (i.e., invertebrate iridescent virus
29, cricket iridescent virus, Gryllus bimaculatus iridescent virus, and lizard-cricket iridescent
virus) have been considered separately [57–60]).

3.1. Coleoptera
3.1.1. Alphitobius diaperinus

The darkling beetle, Alphitobius diaperinus, is one of the most abundant insect pests
in commercial poultry production facilities, with cosmopolitan occurrence [61–63]. Since
1 July 2017, A. diaperinus has been listed as one of the seven insect species authorized to
date for use in the large-scale production of processed animal protein (PAP) for aquaculture
feeds, in accordance with EU Regulation (EC) No. 2017/893 [27]. For this reason, several
papers describing nutritional aspects, breeding facilities, and microbial dynamics during
the industrial production cycle [64–69] are present in the literature. Although A. diaperinus
belongs to the species with the greatest potential to be used as food and feed in the EU [10], it
could serve as a reservoir and vector for a plethora of pathogenic microorganisms, as bacteria,
fungi, coccidia, worms, and tapeworms, and of viruses that cause serious diseases [51,70,71].
It is a mechanical vector of avian viruses belonging to different genuses: Marek’s disease,
avian leucosis virus, fowl pox virus (FWPV), infectious bursal disease virus (IBDV), turkey
coronavirus (TCV), Newcastle disease viruses, infectious laryngotracheitis virus (ILTV), and
reovirus 24 [70,72–79]. These viruses could survive, from a few days to several weeks, inside
and on the external surfaces of both adult beetles and larvae [70,75–77,79] and could also
survive the metamorphosis of this beetle [74].

Only two insect viruses have been found in the lesser mealworm that parasitize
honeycombs: black queen cell virus (BQCV) and Israeli acute paralysis virus (IAPV) [80].
These viruses cause severe disease in honeybees, but no signs or symptoms of disease
have been noted in A. diaperinus, which appears to act only as a vector and reservoir for
honeybee viruses [80]. At the present time, neither human foodborne pathogens nor insect
viruses pathogenic for this species have been identified [81] but since the analyses involved
only a limited number of samples, more studies are needed.

3.1.2. Tenebrio molitor

The yellow mealworm Tenebrio molitor is one of the largest stored-product beetles,
which are widespread across the world [82]. This beetle is increasingly recognized as an
optimal alternative and sustainable nutrient source for animal feed and human food due
to its protein-rich content and low ecological footprint [65,66,83]. Furthermore, recent
studies have shown the ability of mealworm larvae to efficiently degrade polystyrene and
plastic waste [84]. Besides being authorized to be used for the production of processed
animal protein (PAP) for aquaculture feeds (EU Regulation No. 2017/893) [27], T. molitor,
in the form of dried larvae, has recently been declared a safe novel food pursuant to
Regulation (EU) No. 2015/2283 [22]. T. molitor can be infected by or harbor parasites,
entomopathogenic fungi, and viruses which reduce mealworm survival or reproductive
success [82]. To date, only three insect viruses, belonging to the Iridovirus and Densovirus
genera, were isolated from or tested against T. molitor and in one paper this insect was
used as an animal model. To date, no foodborne viruses have been detected in industrially
reared mealworm larvae [81].

Two species of Iridovirus can cause disease leading to death in T. molitor: invertebrate
iridescent virus 6 (IIV-6) and invertebrate iridescent virus 29 (IIV-29). IIV-6 causes paralysis
in T. molitor larvae 3 days after virus infection [85] and then death; the color of infected
larvae appeared to be darkened only after death. IIV-29, a tentative species of the Iridovirus
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genus [59], rarely encountered in mealworm larvae, produces a particular bluish iridescence
in pupae and adults, causing important mortality in T. molitor pupae [86,87] within a few
days. The third species of virus detected in healthy T. molitor larvae is Acheta domesticus
densovirus (AdDNV) [88]. Mealworms are not considered to be densovirus hosts but when
associated with cricket colonies in the same insect farm, they could mechanically transmit
AdDNV via their body surface or in the gut [22,88]. T. molitor was used as a bioassay
animal for Penaeus merguiensis densovirus (PmergDNV), which is particularly relevant
for aquaculture since it causes disease in crustaceans [89], but it did not appear to be an
optimal model for studying this virus.

3.1.3. Zophobas morio

Zophobas morio, also known as the super worm, is a large beetle originating in
South and Central America and introduced into other regions of Europe and Asia in
recent years [50,90,91]. Z. morio has been used as a protein source for small pets such
as birds, reptiles, and small mammals [92], but has the potential to become a promis-
ing nutrient source for food and feed [51]. Over the last decade the literature on Z.
morio as a nutrient source for food, livestock animal feed, and aquaculture has increased
considerably [51,93,94]. To date, Z. morio is not listed in Regulation (EU) No 2017/893 and
is therefore not officially authorized for inclusion in aquafeeds in the EU [27]. The main
strengths of this species are: large size compared to T. molitor, density independent can-
nibalism [95], increasing size and weight, formation of supernumerary larval instars that
do not pupate until death in crowded conditions [96], high dependence on isolation for
metamorphosis onset [97,98].

Little information is available on viral diseases in the super mealworm, with only
two reports available to date on virus infection in Z. morio larvae [99,100]. The first refers
to the collapse of a Z. morio colony in Hungary, where sudden large losses (80–90%) of
Z. morio larvae were observed by a breeder in Budapest. Larvae displayed less activity,
unusual behavior, and failed to pupate. Diagnostic methods detected densovirus in colony
larvae but no further identification was performed [99]. Tokarev and colleagues [100]
reported isolation of a densovirus in Z. morio larvae cultured in Russia; in one month,
middle-aged larvae developed symptoms of acute disease affecting the locomotion system,
inducing swirling, rolling and chaotic wandering of larvae, and within several days, up
to 90–100% of the colony had died. Prior to death the larvae showed no morphological
changes but after death the cadavers blackened quickly, were more intensively stained, and
the inner content was partially liquefied. Through biomolecular techniques the virus was
attributed to Densoviridae, with maximal similarity to two Blatella germanica densovirus-like
isolates from the bat [100]. One of these latter viruses could develop within vertebrate
tissue [101]. Thus, the hazard of vertebrate host infection with insect densoviruses cannot
be excluded [100].

Viruses detected in coleopteran edible species are listed in Table 2.

Table 2. Viruses detected in coleopteran edible species.

Coleopteran
Species Virus Family Virus Genus Virus

Species

Virus
Charac-
teristics

Type of
Infec-
tion

Vector
Status

Stage
Involved

Symptoms
or

Mortality
References

Alphitobus
diaperinus

Birnaviridae Avibirnavirus IBDV dsRNA N, E M adult no [70,73]
Coronaviridae Gammacoronavirus TCV dsRNA E M adult no [78]
Dicistroviridae Triatovirus BQCV ssRNA N M adult no [80]
Dicistroviridae Aparavirus IAPV ssRNA N M adult no [80]
Herpesviridae Iltovirus ILTV dsDNA N M adult/larva no [80]
Paramyxoviridae Avulavirus NDV ssRNA E M adult no [75]

Poxviridae Avipoxvirus FWPV ssRNA E M adult no [75]
Reoviridae Orthoreovirus AVR dsRNA N, E M adult/larva no [74,76,77]
Reoviridae Rotavirus dsRNA E M larva no [76]

Retroviridae Alpharetrovirus ALV ssRNA N M adult no [72]
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Table 2. Cont.

Coleopteran
Species Virus Family Virus Genus Virus

Species

Virus
Charac-
teristics

Type of
Infec-
tion

Vector
Status

Stage
Involved

Symptoms
or

Mortality
References

Tenebrio
molitor

Iridoviridae Iridovirus IIV-6 dsDNA E B larva yes [85]
Iridoviridae Iridovirus IIV-29 dsDNA N, E B larva yes [86,87]
Parvoviridae Densovirus AdDNV ssDNA N M larva no [88]
Parvoviridae Densovirus PmergDNV ssDNA B Bi larva yes [89]

Zophobas
morio

Parvoviridae Densovirus ZbDNV ssDNA N, E B larva yes [100]
Parvoviridae Densovirus ssDNA N nd larva yes [99]

Legend: infectious bursal disease virus (IBDV); turkey coronavirus (TCV); black queen cell virus (BQCV); Israeli acute paralysis virus
(IAPV); infectious laryngotracheitis virus (ILTV); Newcastle disease virus (NDV); fowl pox virus (FWPV); avian reovirus (AVR); avian
leucosis virus (ALV); invertebrate iridescent viruses 6 (IIV6); invertebrate iridescent viruses 29 (IIV29); Acheta domesticus densovirus
(AdDNV); Penaeus merguiensis densovirus (PmergDNV); Zophobas morio densovirus (ZbDNV); single strain DNA (ssDNA); double strain
DNA (dsDNA); single strain RNA (ssRNA); double strain RNA (dsRNA); natural infection (N); experimental infection (E); bioassay animal
(Bi); mechanical vector (M); biological vector (B); not determined (nd).

3.2. Orthoptera
3.2.1. Acheta domesticus

The European house cricket, Acheta domesticus, is currently one of the most widely
farmed insects, particularly in North America and Europe, and constitutes a thriving
pet/reptile feeder insect market worldwide. This cricket also represents an emerging,
vibrant insect-based food industry due to its high protein content (about 70% by dry
weight), its short life cycle (around 5 weeks), and its prolificacy (females lay more than 1500
eggs) [2,102]. Nutritional and food safety aspects as well as the risk profile of this cricket
were extensively studied in recent years [35,103–106]. At the present time, A. domesticus has
been authorized for use as processed animal protein (PAP) for aquafeeds (EU Regulation
2017/893) [27].

Viruses affecting this species of cricket have been reported in several papers [16,35,42].
In a recent investigation, five different virus species were detected in commercially reared
house crickets from different Swedish retailers [107]. At the present time, the reported
viruses consist of insect viruses but no human foodborne viruses have been identified in this
specimen [81]. Today, the main virus affecting A. domesticus industry is Acheta domesticus
densovirus, which is able to decimate commercial mass rearings in just a few days, leading
to a fall in production and even extinction of local cricket populations [44,88,108–110].
This virus was first isolated from diseased A. domesticus from a Swiss commercial mass
rearing facility in 1977 [111]. In North America, the first report of a densovirus disease
in crickets was in 1991 [108] in a small epidemic outbreak. Almost twenty years later,
severe outbreaks were observed in commercial facilities in Canada and the United States,
causing an acute crisis in the pet food industry [88]. Symptoms of infection include a loss of
consistency, smaller dimensions, malnutrition (i.e., absence of contraction and completely
empty digestive caeca), inhibited growth, reduced fecundity, increasing sluggishness, less
activity, and lower jumping [88,108,109]. Crickets have been observed to lie on their backs
paralyzed for several days prior to succumbing to viremia. The highest mortality, of up to
100%, is observed in the last larval stage and in young adults [88,109]. AdDNV positive
tissues included the fat body, midgut, hypodermis, and Malpighian tubules [88].

Other viruses observed in cricket facilities are Acheta domesticus mini ambidensovirus
(AdMADV), a new ambisense densovirus, and Acheta domesticus volvovirus (AdVVV), a
single-stranded, circular DNA virus; but no further information is currently available on
these viruses [112–114]. A new iflavirus, Acheta domesticus iflavirus (AdIV), has recently
been isolated from both wild and commercially reared A. domesticus [107,115]. A. domes-
ticus is highly susceptible to both IIV-6 and its novel strain, cricket iridovirus (CrIV) [58].
CrIV was isolated in 1996 from A. domesticus nymphs and adults from colonies of a commer-
cial cricket producer in Europe. This virus, transmitted orally, led to unusual mortalities as
well as greatly reduced fecundity and life span [116]. The fat body was strikingly hyper-
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trophied and, on dissection, displayed a bluish iridescence, which is a typical sign of an
iridovirus infection [116].

Cricket paralysis virus (CrPV) was isolated from A. domesticus from dead crickets of
a commercial cricket farm in the United States of America [117,118]. A. domesticus is an
omnivorous scavenger which could ingest virus-killed insects, thereby simply becoming a
mechanical vector of other insect viruses, as Autographa californica multiple nucleopolyhe-
drovirus (AcMNPV) and two recombinant strains (AcMNPV.AaIT and AcJHE.SG AcM-
NPV), bait-cricket virus (BCV), and Solenopsis invicta virus 3 (SINV-3) [119–122]. The house
cricket has been used as an alternative bioassay model (i.e., in aquaculture) for viral
pathogens, with promising results [89,123,124].

3.2.2. Gryllodes sigillatus

The banded cricket (or tropical or Indian house cricket), Gryllodes sigillatus, is a cos-
mopolitan cricket that lives in close association with human dwellings [44]. Little infor-
mation is available on its biology, ecology, rearing, and processing requirements [125,126]
but it is one of the species authorized for use for the production of PAP in aquaculture
feed (EU Regulation No. 2017/893) [27]. G. sigillatus is sold in both US and European
pet food stores [44] and its nutritional aspects, functional properties, and microbiological
characteristics have recently been studied [125,127,128]. To date only Acheta domesticus
densovirus (AdDNV) has been detected in G. sigillatus but it is less susceptible to AdDNV
compared to other orthopteran species [44,81].

3.2.3. Gryllus assimilis

The Jamaican field cricket, Gryllus assimilis, was first described from Jamaica and
is widespread in the West Indies, Brazil, Central America, Mexico, and in five of the
southernmost U.S. States [44]. This cricket is used for animal feed in Brazil, is the third
orthopteran species authorized for PAP for aquafeeds (EU Regulation 2017/893) [27],
but limited literature exists on its application in food [94]. To date, three different insect
viruses have been detected in G. assimilis: cricket iridovirus (CrIV), Acheta domesticus denso-
virus (AdDNV), and a new volvolovirus named Acheta domesticus volvolovirus (AdVVV).
G. assimilis, especially its first instars, is highly susceptible to CrIV [58], but usually seems
to be infected with AdDNV to a much lower degree [44]. Furthermore, AdDNV-exposed
G. assimilis, reared to adulthood, were reported to produce large numbers of eggs that
hatched and developed without displaying signs of virus infection [88]. The novel
volvovirus responsible for mass house cricket die-offs in America [112] has been isolated
also G. assimilis in Japan but little is known about it [113].

3.2.4. Gryllus bimaculatus

Commonly called the two spotted cricket, Gryllus bimaculatus is apparently the most
widely distributed Gryllus species and is found at the tip of South Africa, in northern
Europe, and as far east as Thailand [129]. G. bimaculatus is commonly consumed as
food in different parts of the world [130,131]. Numerous studies have investigated its
dietary requirements for rearing procedures [132,133], and its utilization as a biowaste
consumer [134] and food and feed resource [130,135–137].

To date seven different viral pathogens have been described in reared G. bimacu-
latus [34,35,42] belonging to Iridovirus, Densovirus, Nudivirus and Cripavirus. G. bimac-
ulatus seems to be highly susceptible to iridovirus but resistant to densovirus [58,88].
Within the Iridoviridae family, invertebrate iridescent virus (IIV-6) and two variants or novel
strains of IIV-6—Gryllus bimaculatus iridescent virus (GbIV) and cricket iridovirus (CrIV)
could seriously damage G. bimaculatus mass production, causing colony collapse in two
weeks [58,116]. Invertebrate iridescent virus type 6 (IIV-6) is reported to be responsible for
bluish iridescence in the fat body, malformations i.e., distorted development of the wings
in patently infected crickets, and inability to complete ecdysis [60]. Cricket iridovirus
(CrIV), instead, caused fatal infections in this cricket species with mortality potentially
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exceeding 90% [116]; third instars had overt signs and symptoms of virus infection, as
swollen abdomens and a striking sluggishness. Gryllus bimaculatus iridescent virus (GbIV)
caused the death of all individuals of a colony by 14 days, showing clinically apparent
behavior as apathy, ataxia, and disorientation [57]. The fact that neither CrIV nor GbIV have
been observed in the ovarian cells of the insect host, suggests that transovarial transmis-
sion of these viral infections is unlikely [57] and could help in viral disease management
in an epidemic spot. An invertebrate iridovirus was isolated from several tissues of a
high-casqued chameleon (Cham_IIV). The pathogenicity of this isolate for G. bimaculatus
was tested, revealing mortality rates of between 20% and 35%, and the virus was then
re-isolated from several fat-body samples of the cricket [45]. These findings support the
hypothesis that IIV from insects can infect reptiles and amphibians via the insects on which
they feed [45,60,138,139]. Specifically, GbIV have been detected in three different species
of reptiles [138], while lizard-cricket iridovirus (Liz_CrIV), a new strain of CrIV, has been
isolated from crickets, reptiles and amphibians [60].

Gryllus bimaculatus nudivirus (GbNV) [140–142] can cause disease and mortality in
G. bimaculatus nymphs but has a chronic course in adult specimens. Infections are reported
to occur primarily during nymphal development, especially by cannibalistic feeding on
moribund or dead specimens [140]. Affected crickets are smaller and sometimes get
crippled. They may molt repeatedly while becoming progressively uncoordinated and
show lethargic behavior till they finally die, within weeks, often only in the final instar
stage. In the advanced stage of disease, crickets are often strikingly swollen, and harbor
an enormous amount of viscous, milky opalescent hemolymph, giving them a sticky
consistency [140]. As regards Acheta dometicus densovirus (AdDNV), while testing positive
at the lowest dilution, G. bimaculatus so far appears resistant [44,88]. Cricket paralysis virus
(CrPV), multiplying in the two spotted crickets, causes paralysis of the hind legs, especially
in young instars, and death in 8 to 9 days with a very high mortality [117,118,143].

3.2.5. Locusta migratoria

The African migratory locust Locusta migratoria is one of the insects responsible for
crop devastation in certain developing countries and among the most economically im-
portant locusts [58,144]. Viruses detected in L. migratoria belong to four families, i.e.,
Poxviridae, Baculoviridae, Iridoviridae, and Reoviridae [58,116,144–150]. L. migratoria is suscep-
tible, to varying degrees, to entomopoxviruses (EPVs), isolated from different orthopteran
species [144–146], and capable of causing disease and mass mortality in its natural pop-
ulation [144]. Usually the immature specimens (1st to 4th instars) are the most affected
and the disease leads to heavy mortalities, despite following a chronic course [145,146].
For example, the mortality of L. migratoria nymphs fed with entomopoxvirus occlusion
bodies isolated from Melanoplus sanguinipes reached 90% in the 60 days after virus inoc-
ulation [146] or caused entire colony death before maturation [145]. Arphia conspersa
entomopoxvirus displays lower pathogenicity, causing a mortality level of approximately
68% of the colony population within 60 days after virus inoculation [147].

L. migratoria can be infected with nucleolyhedrovirus of Spodoptera littoralis (SINPV-
type B), a Lepidopteran species [148,149]. This virus was reported to be involved in a
disease outbreak in immature L. migratoria, showing a disease pattern termed ‘dark cheeks’.
However, the viral amounts in the infected locusts were very low and the role of the virus
in generating the observed disease remained ambiguous [148]. A subsequent experiment
revealed the slow, gradual disappearance over time of viral DNA post infection while no
signs of disease were observed in the infected locusts, suggesting that SINPV does not
multiply in locusts and is not therefore pathogenic to L. migratoria instars [149]. A significant
increase in mortality in L. migratoria was recorded during cytoplasmic polyhedrosis virus
(CPV) infection [150]; to date, there is no further information about this virus. Young
nymphs of L. migratoria were heavily infected by the two virus isolates, invertebrate
iridescent virus (IIV-6) and cricket iridovirus (CrIV), with mortality as high as 100% [58].
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Iridoviruses can be transmitted perorally to L. migratoria, causing characteristic symptoms
and fatal disease [116].

3.2.6. Schistocerca gregaria

The desert locust Schistocerca gregaria, due its high reproductive potential, represents
another major pest in agriculture and, as other locust species, has been extensively studied
in previous years [58,144]. In 1968, a virus called “Schistocerca virus” was detected in 5th
instars of S. gregaria, showing signs of inactivity and a high death rate [151]. Spodoptera
littoralis nucleopolyhedrovirus (SINPV) was reported to be involved in a disease outbreak
in immature S. gregaria [149]. Entomopoxvirus in wild specimens of S. gregaria was detected
by Purrini and Rohde [152]. Younger instars of S. gregaria (L1–L3) could also be heavily
infected by the two Iridovirus: invertebrate iridescent virus (IIV-6) and cricket iridovirus
(CrIV) [58].

3.2.7. Schistocerca americana

Limited information exists on Schistocerca americana, commonly known as the Ameri-
can grasshopper [153]. In 1966, Henry and Jutila [154] isolated a polyhedrosis virus from
a grasshopper, M. sanguinipes, and infected S. americana. The latter species proved only
slightly susceptible: after a latent period of about 12 days, infected specimens exhibited
general torpor, a decreased rate of development, and eventual death. The fat body—the
only tissue invaded—became generally hypertrophic, changing from its normal glossy
yellow to a fluffy gray. Examination of sectioned tissues revealed that most of the fat-body
cells were filled with large numbers of polyhedral bodies [154]. Field-collected S. ameri-
cana specimens, showing symptoms and signs of disease, were found to be infected with
Melanoplus sunguinipes entomopoxvirus. Placed in a rearing facility, these specimens
spread the virus to other grasshopper species through horizontal transmission, apparently
by consumption of infected cadavers [147,155]. The crystalline-array virus (CAV), a small
RNA virus belonging to the picornavirus group, causes death or morbidity of 5th instars of
S. americana 6 days after intrathoracic inoculation [156,157].

Viruses detected in orthopteran edible species are listed in Table 3.

Table 3. Viruses detected in orthopteran edible species.

Orthopteran
Species

Virus
Family Virus Genus Virus

Species

Virus
Char-

acteris-
tics

Type of
Infec-
tion

Vector
Status

Stage
Involved

Symptoms
or

Mortality
References

Acheta
domesticus

Baculoviridae Alphabaculovirus

AcMNPV,
AcM-

NPV.AaIT,
AcJHE.SG
AcMNPV

dsDNA E M adult no [119,120]

Dicistroviridae Cripavirus BCV ssRNA N M adult no [121]
Dicistroviridae Cripavirus CrPV ssRNA N B nd yes [117,143]
Iflaviridae Iflavirus AdIV ssRNA N B adult/nymph no [115]

Iflaviridae Iflavirus Chequa
iflavirus ssRNA E Bi nd no [124]

Iridoviridae Iridovirus CrIV dsDNA N, E B adult/nymph yes [58,116]
Iridoviridae Iridovirus IIV-6 dsDNA E B nymph yes [107]

nd nd AdVVV ssDNA N nd nd nd [107,112,113]
Parvoviridae nd AdMADV ssDNA N nd nd nd [114]

Parvoviridae Densovirus AdDNV ssDNA N, E B adult/nymph yes [44,88,107–
110,158]

Parvoviridae Densovirus PmergDNV ssDNA E Bi nd yes [89,123]

Phenuiviridae nd Bunya-like
virus ssRNA E Bi nd no [124]

Solinviviridae Invictavirus SINV-3 ssRNA E M adult/nymph no [122]
Nudiviridae Alphanudivirus GbNV dsDNA N B adult/nymph yes [107]

Gryllodes
sigillatus Parvoviridae Densovirus AdDNV ssDNA E B nd nd [44]



Viruses 2021, 13, 2280 11 of 31

Table 3. Cont.

Orthopteran
Species

Virus
Family Virus Genus Virus

Species

Virus
Char-

acteris-
tics

Type of
Infec-
tion

Vector
Status

Stage
Involved

Symptoms
or

Mortality
References

Gryllus
assimilis

Iridoviridae Iridovirus CrIV dsDNA B nymph nd [58]
nd nd AdVVV ssDNA N nd nd nd [113]

Parvoviridae Densovirus AdDNV ssDNA N, E resistant [44,88]

Gryllus
bimaculatus

Dicistroviridae Cripavirus CrPV ssRNA N B nymph yes [117,118]
Iridoviridae Iridovirus GbIV dsDNA N B adult yes [57,138]
Iridoviridae Iridovirus CrIV dsDNA N, E B adult/nymph yes [58,116]
Iridoviridae Iridovirus Liz_CrIV dsDNA E B nymph yes [60]
Iridoviridae Iridovirus Cham_IIV dsDNA E B nymph yes [45]
Iridoviridae Iridovirus IIV-6 dsDNA N, E B nymph yes [58]
Nudiviridae Alphanudivirus GbNV dsDNA N, E B adult/nymph yes [140,141]
Parvoviridae Densovirus AdDNV ssDNA N, E resistant [44,90]

Locusta
migratoria

Baculoviridae Alphabaculovirus SINV dsDNA E B nymph yes [148,149]
Iridoviridae iridovirus CrIV dsDNA E B adult/nymph yes [116]
Iridoviridae iridovirus IIV-6 dsDNA E B nymph yes [58]
Poxviridae Betaentomopoxvirus MsEPV dsDNA E B nymph yes [145,146]
Poxviridae Betaentomopoxvirus dsDNA N B nd yes [144]
Reoviridae Cypovirus CPV dsDNA E B adult/nymph [150]

Schistocerca
americana

Picornaviridae nd CAV ssRNA N, E B nymph yes [156,157]
Poxviridae Betaentomopoxvirus MsEPV dsDNA N B nymph yes [154,155]

Schistocerca
gregaria

Iridoviridae Iridovirus IIV-6 dsDNA E B nymph yes [58]
Iridoviridae Iridovirus CrIV dsDNA E B nymph yes [58]

nd nd Schistocerca
virus nd N nd adult nd [151]

Poxviridae Betaentomopoxvirus dsDNA N nd nd nd [152]

Legend: Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and two recombinant strains (AcMNPV.AaIT and AcJHE.SG
AcMNPV); Solenopsis invicta virus 3 (SINV-3); bait-cricket virus (BCV); cricket paralysis virus (CrPV); Acheta domesticus iflavirus (AdIV);
cricket iridovirus (CrIV); invertebrate iridescent viruses 6 (IIV6); Acheta domesticus volvovirus (AdVVV); Acheta domesticus mini ambidenso-
virus (AdMADV); Acheta domesticus densovirus (AdDNV); Penaeus merguiensis densovirus (PmergDNV); Gryllus bimaculatus iridescent virus
(GbIV); lizard–cricket iridovirus (Liz_Cr IV); chameleon iridovirus (Cham_IIV); Gryllus bimaculatus nudivirus (GbNV); Spodoptera littoralis
nucleopolyhedrovirus (SINV); Melanoplus sanguinipes entomopoxvirus (MsEPV); cytoplasmic polyhedrovirus (CPV); crystalline-array
virus (CAV); single strain DNA (ssDNA); double strain DNA (dsDNA); single strain RNA (ssRNA); double strain RNA (dsRNA); natural
infection (N); experimental infection (E); bioassay animal (Bi); mechanical vector (M); biological vector (B); not determined (nd).

3.3. Diptera
3.3.1. Hermetia illucens

The Black Soldier Fly (BSF), Hermetia illucens, is a saprophytic insect, which currently
has a cosmopolitan distribution in tropical and temperate areas [159,160]. H. illucens is one of
the most promising insect species for food and feed production, efficient bioconversion of
food waste, and biodiesel and fertilizer production [161–165]. The main aspects that make
the BSF easy to rear and a suitable tool to valorize waste and sustainable animal feed or
human food sources are: (i) the diversity of the substrates they can process and the efficiency
with which they do so may be highest among the flies [166]; (ii) their feed conversion ratios
are known to be superior to both crickets and mealworms [3]; (iii) prepupae instinctively
leave the substrate and move to a high, clean place, a behavior called “self-harvesting” which
removes an otherwise labor-intensive step from their farming [167].

In recent years, economic interest in this species has grown yielding abundant scientific
literature on its behavior, rearing, nutritional value, and industrial
applications [164,168–173]. According to current knowledge, no viruses have been re-
ported in this species, either at the larval stage or in the adult, despite it being a scavenger
and its life cycle being associated with polluted environments [174]. In one paper, BSF
larvae proved capable of efficient microbial load reduction in the substrate contaminated
with different pathogen microrganisms (Salmonella spp., Orthoreovirus, Mastadenovirus,
Teschovirus), but the analyses were performed only on the substrate and not on the lar-
vae [175].
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3.3.2. Musca domestica

The housefly, Musca domestica, distributed worldwide, is the most common species
of fly, living in close association with humans and domestic animals, making it one of the
most highly studied insect pests [176,177]. Besides being a source of irritation and spoiling
food, the house fly acts as a vector for many medical and veterinary pathogens [178].
The ability of M. domestica to reproduce quickly could be exploited to produce larvae
as a source of protein for animal feed [179–182]. Moreover, like H. illucens, larvae could
grow in different substrates making M. domestica a promising insect for organic waste
degradation [183–186]. An abundant literature already exists in relation to mass rearing
systems for M. domestica [180,187].

The housefly is known to carry more than 130 pathogens, including bacteria, viruses,
fungi and parasites, some of which can cause serious, life-threatening diseases in humans
and animals, or diseases in flies themselves [176,177]. M. domestica can harbor several
viruses pathogenic for both humans and livestock but, to date, only two insect viruses
that are pathogenic for the fly itself have been detected [188–191]. Flies have been shown
to mechanically transmit pathogens via their mouthparts, vomit, faeces, and whole body
surface [176,190]. Contrary to H. illucens, M. domestica adults are synanthropic and therefore
any pathogens being carried could easily be transmitted to humans, animals, and other
flies. Adult flies act only as mechanical carriers of human viruses after contamination by
infected human fecal material [191–193]. These potential passive contaminators are capable
of carrying and depositing the virus at a considerable distance from the point of original
contamination. Human viral pathogens mechanically transmitted by adult flies include:
coxsackieviruses, enteroviruses, rotaviruses, and poliomyelitis virus [190–197]. In addition,
one study demonstrated the ability of the housefly to carry the Ebola virus in laboratory
experiments but the role of the common fly in transmission of the virus remains to be
confirmed [198].

The main virus affecting adult M. domestica is Musca domestica salivary gland hy-
pertrophy virus (MdSGHV). It was isolated in 1993 [199] and then extensively studied.
MdSGHV has been detected in housefly samples from North America, Europe, Asia, the
Caribbean, and the southwestern Pacific [199]. Populations of M. domestica (only adults)
are naturally infected with MdSGHV but its incidence varies widely among farms and
at different times of the year [200], with the highest prevalence in summertime [200,201].
The virus causes symptomatic salivary gland hypertrophy (both nuclear and cellular), with
a characteristic white-blue color, in both genders of M. domestica flies (although males
seem more affected), in addition to suppressing ovarian development in infected females,
inhibiting egg production and resulting in female sterility [189,202–205]. Male reproductive
performance is also affected by virus infection [203]. Since sexual and vertical transmission
have been ruled out, this virus only spreads horizontally [201–204]. MdSGHV, produced
in the gland cells, is continuously shed during feeding, resulting in contamination of food
material; the deposition of oral secretions and excreta onto a shared food substrate is the
main route of natural MdSGHV transmission among adult house flies [199,206]. Typically,
in natural populations, this virus has not been observed to cause the widespread epizootics
characteristic of other insect viruses [200] and the introduction of MdSGHV-infected flies
into confined populations does not produce epizootics but results in a persistent, albeit
declining, prevalence of viral infection [207]. The virus was able to infect > 50% of newly
eclosed adults whereas older adults were highly resistant to infection (0–5%) [199]. Infected
male and female flies consumed significantly lower quantities of protein and sucrose than
control flies; this suggests that MdSGHV has a negative consumption effect (e.g., hunger,
starvation) on its host [203,208–210].

The second virus causing disease and mortality in M. domestica adults is a reovirus,
detected by Moussa in 1978 and now named idnoreovirus 3 (Idno-3) [188]. This virus,
multiplying in the hemocytes of infected flies, produced morphological alterations (i.e.,
swollen abdomen, enlarged, brownish midgut) and motor dysfunctions such as trembling
of wings and legs and total paralysis. Mortality began within the first 24 h after emergence
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of adults, causing colony collapse in 10 days [188,211]. No mortality was observed in early
larvae, but a few dead final instar larvae were found.

M. domestica has also been reported to mechanically transmit several types of vi-
ral pathogens to livestock including: avian influenza virus (AIV), both high and low
pathogenic strains [46,212–216], turkey coronavirus (TCV) [217], Newcastle disease virus
(NDV) [218–222], reticuloendotheliosis virus (REV) [223], porcine reproductive and respi-
ratory syndrome virus (PRRSV) [224–228], porcine circovirus genotype 2 (PCV2b) [229],
porcine epidemic diarrhea virus (PEDV) [230], African swine fever virus
(ASF) [231,232], Aujeszky’s virus (PRV-1) [233], senecavirus A (SVA) [234], Rift Valley
fever virus (RVFV) [235], Aleutian mink disease virus (AMDV) [236,237], and lumpy skin
disease (LSDV) [238,239].Viruses detected in dipteran edible species are listed in Table 4.
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Table 4. Viruses detected in dipteran edible species.

Dipteran
Species Virus Family Virus Genus Virus Species Virus

Characteristics
Type of

Infection Vector Status Stage Involved Symptoms or
Mortality References

Hermetia illucens none

Musca domestica

Arteriviridae Betaarterivirus PRRSV ssRNA N/E M adult no [224–228]
Asfarviridae Asfivirus ASFV dsDNA N M adult no [231,232]
Circoviridae Circovirus PCV2 ssDNA N/E M adult no [229]

Coronaviridae Alphacoronavirus PEDV ssRNA E M adult no [230]
Coronaviridae Gammacoronavirus TCV ssRNA E M adult no [213]

Filoviridae Ebolavirus EBOV ssRNA E M adult no [198]
Herpesviridae Varicellovirus PRV-1 ssDNA E M adult no [233]
Hytrosaviridae Muscavirus MdSGHV dsDNA N/E B adult yes [199,210,240]

Reoviridae nd Idno-3 dsRNA N/E B adult/larva yes [188,211]

Orthomyxovirdae Alphainfluenzavirus HPAIV H5N1;
LPAI H9N2 ssRNA N/E M adult no [212–216]

Paramyxoviridae Avulavirus NDV; ENDV ssRNA N/E M adult/larva no [218–222]
Parvoviridae Amdoparvovirus AMDV ssDNA N M adult no [237]
Parvoviridae Protoparvovirus MEV ssDNA E M adult no [236]

Phenuiviridae Phlebovirus RVFV dsRNA E M adult no [235]
Picornaviridae Enterovirus Ento C ssRNA E M adult/larva yes [191–195]
Picornaviridae Enterovirus Coxs B ssRNA N M adult no [196]
Picornaviridae Enterovirus Coxs C ssRNA E M adult no [195]
Picornaviridae Senecavirus SVA ssRNA N M adult no [234]

Poxviridae Capripoxvirus LSDV dsDNA N M adult no [238]
Reoviridae Rotavirus SA11 dsRNA E M adult no [197]

Retroviridae Gammaretrovirus REV ssRNA N/E M adult no [223]

Legend: porcine reproductive and respiratory syndrome virus (PRRSV); African swine fever virus (ASFV); porcine circovirus 2b (PCV2); porcine epidemic diarrhea virus (PEDV); turkey coronavirus (TCV); Ebola
virus (EBOV); Aujeszky’s virus (PRV-1); Musca domestica salivary gland hypertrophy virus (MdSGHV); idnoreovirus 3 (Idno-3); avian influenza virus (HPAIV H5N1; LPAI H9N2); Newcastle disease virus (NDV)
and exotic Newcastle disease virus (ENDV); Aleutian mink disease virus (AMDV), Mink enteritis virus (MEV); Rift Valley fever virus (RVFV); poliomyelitis virus (Enterovirus C, Ento C); coxsackievirus B (Coxs
B); coxsackievirus C (Coxs C); senecavirus A (SVA); lumpy skin disease virus (LSDV); Simian rotavirus 11 (SA11); reticuloendotheliosis virus (REV); single strain DNA (ssDNA); double strain DNA (dsDNA);
single strain RNA (ssRNA); double strain RNA (dsRNA); natural infection (N); experimental infection (E); mechanical vector (M); biological vector (B).
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3.4. Lepidoptera
3.4.1. Achroia grisella

The lesser wax moth, Achroia grisella, is a species closely related to Galleria mel-
lonella [241]. As compared to the greater wax moth, the lesser wax moth is less destruc-
tive and less common [242,243]. To date in the literature no virus has been detected in
this species.

3.4.2. Galleria mellonella

The greater wax moth (GWM), G. mellonella, is a ubiquitous pest of field-based honey-
bee colonies and stored combs due to the destructive feeding habit of its larvae [241,244].
Recently, this pest has garnered greater attention as a promising food and feed resource
and as an infection model organism. G. mellonella has been available as pet food and bait
for many years in several European countries and in the USA [42]. This moth can be easily
reared, standardized protocols already exist for its breeding and diets [245–249], and it has
high nutritional value [19]. G. mellonella is a reliable model organism to assay pathogenicity
of human, animal and insect pathogens (i.e., bacteria, fungi and viruses) as well as to test
the effectiveness and toxicity of antimicrobial compounds [250–253]. A few studies have
collected information on viral diseases involving both insect and mammal pathogenic
viruses in G. mellonella [42,250], but viral infections have been detected or tested in larval
stages only. Regarding animal pathogens, only one paper has to date studied the immune
response of G. mellonella infected with bovine herpes simplex virus-1 (BHSV-1) [254]. In the
wax moth larvae, BHSV-1 stimulates both cellular and humoral immune response in a
dose-dependent manner in G. mellonella larvae, but no mortality was detected [254].

Nodamura virus, an insect picornavirus that can also infect vertebrates, is able to
infect and kill greater wax moth larvae [255,256]. The infected larvae manifest paralysis
of the last 5 or 6 segments four to six days after inoculation of the virus. The paralysis
progressively spreads to the other segments, leading to death 15 to 20 days after infec-
tion [256]. Replication of Nodamura virus takes place in the interfibrillar spaces of the
sarcoplasm in close association with the mitochondria in the infected muscles, causing
aggregation and shape modification of numerous mitochondria (elongation, interdigitation,
and vesiculation) [257]. At a later stage, degenerated, dilated mitochondria show clear
assembling of virus particles on their outer membrane and occasionally on some inner
membranes [257].

Many insect viruses have been detected in G. mellonella larvae. They belong to Denso-
virus, Iridovirus, Baculoviruses, Cripavirus and Triatovirus genera and can lead to patent and
asymptomatic infections or severe symptoms and mass mortality. For example, Galleria mel-
lonella densovirus (GmDV) can cause the death of the entire colony while Acheta domesticus
densovirus (AdDNV) cannot even infect the colony [90,258]. Galleria mellonella densovirus
(GmDV) is the most highly studied and described densovirus in this moth species [42,259].
GmDV is highly virulent for young larvae, the most susceptible being third instar larvae,
where it seems to replicate more successfully compared to older instars [258]. The mortality
rate in infected larvae can reach up to 100% in an average period of 10 days. Infection of
prepupae also causes abnormal or absent pupation with no adults emerging [258]. Nu-
cleopolyhedrovirus has been isolated from both G. mellonella specimens and other insect
species (i.e., B. mori, H. virescens, M. franconicum). All said viral isolates have been shown to
be pathogenic especially for G. mellonella larvae [260–265].

Galleria mellonella nucleopolyhedrovirus (GmNPV) is highly pathogenic for G. mel-
lonella, particularly in the preimaginal stages (third instars) [262,265–267]. This virus
multiplies in insect cells causing hypertrophy of the nuclei with the formation of virus-
containing inclusion bodies (polyhedra), while non-occluded virus (NOV) particles can be
seen in diseased tissues. After 8–10 days, cell destruction causes the release of polyhedra
in the infected tissue [268]. During viral infection, the amount of potassium dramatically
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drops causing severe acidosis, and higher sulfur levels are present compared to healty
larvae [261]. G. mellonella larvae infected with Bombyx mori nucleopolyhedrovirus (BmNPV)
ceased to feed and began to wilt after 17 days. Mortality occurred during between 19 and 27
days. Some infected insects did not die until entering the pupal stage [263]. The Malacosoma
franconicum nucleopolyhedrovirus (ManeNPV-T3) caused 25% mortality in third instars of
G. mellonella [264].

G. mellonelIa is highly permissive, with different levels of magnitude, to many Iri-
doviruses (IVs) isolated from insect species belonging to different orders [50,61,88,159,269–273].
However, in some cases, IIVs causing patent disease in certain insect species do not repli-
cate in G. mellonella larvae [274]. Invertebrate iridescent viruses cause pupal malformation
and patches of translucent cuticle in the area between the abdomen and ventral thorax
through which the iridescent color of the insect can be viewed [270,271]. The viruses cause
patent infection with a prevalence of up to 75%; in the case of high-level infection, all
insects became patently infected; mortality started 10 days after infection and larvae failed
to reach adulthood [271,275]. Cricket iridovirus (CrIV) caused fatal infections in larvae
of the greater wax moth [61,116]. Tipula iridescent virus (TIV) can infect and multiply in
hemocytes of G. mellonella larvae [269,276–280]. Tipula iridescent virus was consistently
infectious and caused complete mortality among G. mellonella, with the average period to
death occurring at about 14 days after injection [269]. Wax-moth larvae inoculated with
TIV and reared at 23–25 ◦C died from virus infection, but at 30 ◦C and higher temperatures,
most of them survived to become adults [281]. Apis cerana iridescent virus (AIV) failed
to multiply in G. mellonella larvae [282]. Seriscethis iridescent virus (SIV), isolated from
Sericesthis pruinosa, develops in G. mellonella plasmatocytes and adipohemocytes leading
to visible alteration (hypertrophy) in these cells within 24 h of virus inoculation [283–285].
Cricket paralysis virus caused mortality in G. mellonella larvae [286]; specifically, mortality
occurred within 5 days in infected penultimate instar larvae [287]. Honeybee viruses, Israeli
acute paralysis virus (IAPV), and black queen cell virus (BQCV), have been detected in wax
moth larvae but no data are available on their possible pathogenicity in this species [288].

Mycoviruses are a specific group of viruses that naturally infect and replicate in fungi
and are able to alter fungal growth. Accordingly, a lower initial concentration of spores can
still become lethal post infection. Infection of A. fumigatus with A78 mycovirus caused a
significant increase in radial growth and virulence in a moth model [289]. Other reports
of viruses detected in G. mellonella concern a small spherical virus, Galleria free virus
(GFV), isolated from G. mellonella [290]. The Galleria mellonella cell line virus (GmclV),
apparently persistently infects the G. mellonella cell line (GmclV) and can be efficiently
induced to replicate by the introduction of other insect viruses, causing complete death
of the colony in 5 days [51]. The last two viruses reported in G. mellonella—Pariacoto
virus and Heteronychus arator virus—show striking similarities to Nodamura virus [291].
Pariaocto virus, isolated in Peru from the Southern armyworm (Spodoptera eridania), is able
to multiply in G. mellonella larvae [292,293]. Fourteen days post infection, Heteronychus
arator virus renders G. mellonella larvae inactive, flaccid, unresponsive to touch, and
paralyzed. Mortality reaches 50% in 20 days after infection [294] and the midgut seems to
be the primary target tissue.

Viruses detected in lepidopteran edible species are listed in Table 5.
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Table 5. Viruses detected in lepidopteran edible species.

Lepidopteran
Species Virus Family Virus Genus Virus Species Virus

Characteristics Type of Infection Vector Status Stage Involved Symptoms or
Mortality References

Achroia grisella None

Galleria mellonella

Baculoviridae Alphabaculovirus NPVs dsDNA E B larva yes [261,262]
Baculoviridae Alphabaculovirus BmNPV dsDNA E B larva yes [263]
Baculoviridae Alphabaculovirus GmMNPV dsDNA N, E B larva yes [265–268]
Baculoviridae Alphabaculovirus HNPV dsDNA E B larva yes [260]
Baculoviridae Alphabaculovirus ManeNPV-T3 dsDNA E B larva yes [264]

Baculoviridae Alphabaculovirus AcMNPV
CIV-MMPs dsDNA E B larva yes [295]

Dicistroviridae Aparavirus IAPV ssRNA N nd larva nd [288]
Dicistroviridae Triatovirus BQCV ssRNA N nd larva nd [288]
Dicistroviridae Cripavirus CrPV ssRNA E B larva yes [286,287]
Herpesviridae Simplexvirus BHSV-1 dsDNA E Bi larva no [254]

Iridoviridae Iridovirus IIV-6 dsDNA E B larva yes [61,270,271,274,
275]

Iridoviridae Iridovirus AgIIV dsDNA E B larva yes [270]
Iridoviridae Iridovirus IIVs dsDNA E B larva yes [50]
Iridoviridae Iridovirus SIV dsDNA E B larva yes [283–285]
Iridoviridae Iridovirus TIV dsDNA E B larva yes [269,276–281]
Iridoviridae Iridovirus CrIV dsDNA E B larva yes [61,116]
Iridoviridae Iridovirus AIV dsDNA E resistant larva [282]
Iridoviridae Iridovirus MIV dsDNA E B larva yes [272,274]
Iridoviridae Iridovirus IIV-29 dsDNA E B larva no [88]
Iridoviridae Iridovirus IIV-6 recombinant dsDNA E B larva yes [275]

nd nd GFV dsDNA N nd larva nd [290]
nd nd HaV small RNA E B larva yes [291,294]
nd nd Mycovirus A78 nd N, E nd larva yes [289]

Nodaviridae Alphanodavirus NoV ssRNA E larva yes [255–257]
Nodaviridae Alphanodavirus PaV ssRNA E Bi larva yes [292,293]
Parvoviridae Densovirus AdDNV ssDNA E resistant larva no [90]
Parvoviridae Densovirus GmDNV ssDNA E B larva yes [258]

Picornaviridae nd GmclV RNA E B larva yes [51]

Legend: nucleopolyhedrovirus (NPVs); Bombyx mori nucleopolyhedrovirus (BmNPV); Galleria mellonella nucleopolyhedrovirus (GmMNPV); Heliothis virescens nucleopolyhedrovirus (HNPV); Malacosoma
franconicum nucleopolyhedrovirus (ManeNPV-T3); Autographa californica multiple nuclepolyhedrovirus containing invertebrate iridescent virus metalloproteinases (AcMNPV CIV-MMPs); Israeli acute paralysis
virus (IAPV); black queen cell virus (BQCV); cricket paralysis virus (CrPV); bovine herpes simplex virus-1 (BHSV-1); invertebrate iridescent virus type 6 (IIV-6); Anticarsia gemmatalis invertebrate iridovirus
(AgIIV); invertebrate iridescent viruses (IIVs); Seriscethis iridescent virus (SIV); tipula iridescent virus (TIV); cricket iridovirus (CrIV); Apis ceranea iridescent virus (AIV); mosquito iridescent virus (MIV); Tenebrio
molitor iridescent virus 29 (IIV-29); invertebrate iridescent virus expressing an insect specific neurotoxin (IIV-6 recombinant); Galleria free virus (GFV); Heteronychus arator virus (HaV); Nodamura virus (NoV);
Pariacoto virus (PaV); Acheta domesticus densovirus (AdDNV); Galleria mellonella densovirus (GmDNV); Galleria mellonella cell line virus (GmclV); single strain DNA (ssDNA); double strain DNA (dsDNA); single
strain RNA (ssRNA); double strain RNA (dsRNA); natural infection (N); experimental infection (E); bioassay animal (Bi); mechanical vector (M); biological vector (B); not determined (nd).
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4. Prevention, Control and Management of Viruses in Edible Insect Mass-
Rearing Facilities

At present there is no treatment for viral infections in edible insects and therefore
prevention and control measures are pivotal for insect mass rearing systems. Mass rearing
strategies must focus on defining and standardizing Good Farming Practices (GFP) [35].
First of all, avoiding the entry of insect viruses into highly intensive rearing facilities must be
considered paramount. For this purpose, regular analyses must be performed on products
entering the rearing systems, including both feeding substrates and new individuals for
inbreeding avoidance. Since horizontal (oral) transmission is the main route for the spread
of insect viruses, attention should be paid when new breeders (from the same or different
facilities), are added to older ones in the reproduction sector, or when eggs and deposition
substrates are introduced into the production sector. High attention should be paid also
to operator handling hygiene. In addition, stressful conditions (i.e., feeding imbalances
or high density) must be avoided to reduce the spread of infection associated with the
cannibalistic behavior of certain insect species. It is crucially important in commercial
large-scale production to avoid high breeding densities because they increase cannibalism,
which in turn enhances the transmission of microbial agents [296]. It is equally necessary
to develop efficient protocols that permit early detection of viruses [158]. For example, at
the present moment it is possible to perform a qualitative PCR-based detection of AdDV in
different substrates, i.e., whole body, body parts or fecal material [44,88,158].

5. Discussion

The retrieved literature reveals that many viruses, belonging to 22 different families,
have been observed in edible insect species (Tables 2–5). However, there are no reports
at present on virus detection for two species (A. grisella and H. illucens), while reports on
others are sometimes very limited in size or old. Among the insect orders considered,
orthopteran seems to be the one most affected by viral pathogens belonging to seven
families (i.e., Dicistoviridae, Parvoviridae, Nudiviridae, Iridoviridae, Baculoviridae, Poxviridae,
and Picornaviridae); the most concerning viruses affecting Orthoptera are species belonging
to Iridoviridae and Densoviridae families. The Lepidoptera order (represented by G. mellonella)
seems heavily affected by virus species belonging to Baculoviridae and Iridoviridae families,
while Densoviruses are rarely reported; other virus species reported to affect G. mellonella
are member of Dicistoviridae, Parvoviridae and Picornaviridae families. Two iridoviruses and
one densovirus are reported to cause mortality in the coleopteran order while only two
insect viruses have been described as pathogenic for Diptera.

In the retrieved literature, viruses detected in edible insects can be divided into three
major categories: (i) viruses that neither multiply nor cause disease in edible insect species;
(ii) viruses that multiply and cause disease and mortality in edible insect species; (iii) viruses
that multiply but do not cause disease or decrease performance in edible insect species
(asymptomatic). In the first case, those viruses are casually associated with edible insects
that act only as a mechanical vector without affecting their productivity or prolificacy (for
example: viruses reported from wild caught M. domestica). In the other two cases (viruses
that multiplied in edible insect species), edible insects act as a biological vector. In the
investigated edible insect species, different patterns of viral infection can occur ranging
from asymptomatic to highly pathogenic, or even lethal [31]. These distinct outcomes exist
in a variable range and can be classified into three main groups namely: acute, persistent,
and latent. Acute infections, characterized by high levels of viral replication, are limited
in time due to the death of the host or clearance of the virus by the host immune system.
Persistent infections, characterized by low viral replication, do not affect host fitness even
when they last for longer periods. Abundant covert infections have also been reported
from several host insect species [297]. Covertly infected insects appear healthy and the
infection is not lethal. Latent infections consist of the presence of a viral genome in the
host, without viral particle production, but virus reactivation is possible [31,298].
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Viruses that pose the highest risk for the collapse of mass insect rearing systems
are those causing acute and high mortality because they can decimate commercial mass
farms or entire colonies within a few days [44,88,100,258]. Another threat for edible insect
producers are viruses that do not cause mortality but bring about a drastic decline in
growth in the juvenile stages and in adult reproductive performance, with total collapse
of the colony taking longer [190,204]. Finally, attention should be paid to latent viruses
which can reactivate when insects are subject to stressful conditions (i.e., a change in
diet or environmental conditions) or concomitant infections, starting with viral particle
production and visible effects on reared insects [31,299]. Some viruses affect only the adult
stage (MdSGHV in adults of M. domestica or Invertebrate iridovirus 29 in T. molitor pupae
and adults) with no consequences for larvae, representing the valuable edible part, while
other viruses affect only larvae (Galleria mellonella densovirus in third instar G. mellonella).
Greater attention must therefore be paid to these viruses in the production sector of
insect facilities.

In heterometabolic insects, all stages can be infected by viruses but the juvenile
stages are usually the most affected (i.e., cricket iridovirus in nymphs and adults of
A. domesticus) [58,116]. The same virus could affect different insect species with different
degrees of severity. A. domesticus is highly susceptible to Acheta domesticus densovirus
while G. assimilis usually seems to be infected with AdDNV to a much lower degree;
G. sigillatus is less susceptible to AdDNV compared to other orthopteran species and
G. bimaculatus so far appears resistant [44,47,90]. For this reason, G. assimilis, G. sigillatus,
and G. bimaculatus have been proposed as the best replacement crickets to avoid heavy
losses in commercial production [44,81]. Besides causing losses in insect mass rearing
systems, insect viruses can infect vertebrate hosts [45,63] and the fact that invertebrate
viruses may be transmitted to vertebrates further increases the importance of screening
measures for commercially produced prey insects [45].

To date, only one article has investigated the presence of foodborne viruses in three
species of industrially reared insects for food [81], yielding negative results for the presence
of detectable quantities of hepatitis A virus, hepatitis E virus, and norovirus genogroup II.
The possibility that human viruses could infect and multiply within edible insects is unclear,
but it seems unlikely [35,298]. At the present day, the risk of transmitting foodborne viruses
to humans via edible insects (T. molitor, A. diaperinus and G. sigillatus) is considered low.
Foodborne viruses could be introduced through rearing substrate or operator handling
and transferred beyond primary production. This prompts the need to carry out more
studies and experimental infections to produce more evidence of the low safety risk from
foodborne viruses.

6. Conclusions

The retrieved literature revealed that the number of viruses detected in edible insects
is high, with more than 70 species listed and 36 able to cause disease and mortality.
Viruses could be more or less species-specific and could infect edible insects at different life
stages. Only insect-specific viruses could be a matter of concern in mass-rearing systems
as they actively replicate and persist on the target species. Viral infection could have
different consequences on mass rearing systems ranging from asymptomatic infection to
the entire collapse of the colony. Since to date there is no cure for viral infections in edible
insects, preventative measures are the only affordable strategy available. Thus, biosecurity
is pivotal for insect mass rearing systems.

To enable edible insects to become a safe nutrient source for animals and humans in
the Western world, more investigations are warranted to better understand the effective
impact of both insect and vertebrate viruses in industrialized rearing systems.
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