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Abstract

Background: Bupivacaine, an amid-type local anesthetic, is widely used for clinical patients especially in pregnant
women. In addition to neurotoxicity effect of bupivacaine, it can cross the placenta, accumulates in this tissue and
retained in fetal tissues. Nevertheless, whether bupivacaine can cause neurotoxicity in fetus remains unclear. Hence,
this study was design to investigate the effects of maternal bupivacaine use on fetus hippocampal cell apoptosis
and the possible related mechanism.

Methods: On day 15 of pregnancy, sciatic nerve of pregnant wistar rat (180–200 g) were exposed by lateral incision
of the right thigh and 0.2 ml of bupivacaine was injected. After their delivery, we randomly selected one male
offspring of every mother. On day 30 after of their birth, the rat’s hippocampi were isolated for molecular studies.
Western blotting was used to examine the expression of cleaved caspase-3, caspase-8 and p-Akt in fetal
hippocampus.

Results: Our results showed that maternal bupivacaine use caused a significant increment of cleaved caspase-3 and
caspase-8 expression in fetal hippocampus compared with the sham group. In addition, maternally administered
bupivacaine could significantly decrease hippocampal P.Akt/T.Akt ratio which was concurrent with an increment of
cleaved caspase-3 and caspase-8 expression.

Conclusion: Our data suggest that maternal bupivacaine use increases fetal hippocampal cell apoptosis markers
such as caspase 8 and cleaved caspase 3, at least in part, via inhibiting the Akt activation.
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Background
Bupivacaine, an amid-type local anesthetic, is widely
used for spinal and epidural anesthesia, peripheral nerve
blockade, sympathetic nerve block and postoperative an-
algesia in clinical patients, especially in pregnant patients
by providing excellent sensory anesthesia [1, 2]. How-
ever, local anesthetics may have potential neurotoxicity

and induce nonreversible neurological complications [1,
3–5]. In this regard, a growing body of data indicates
that bupivacaine triggers a complex cascade response
leading to neuronal apoptosis [6–9]. It has been reported
that disruption of calcium homeostasis, reduced mito-
chondrial membrane potential, ROS generation and
DNA damage in the neuronal population are implicated
in the pathogenesis of bupivacaine-induced neurotoxicity
[3, 10, 11]. The exact mechanisms by which bupivacaine
induces apoptosis have not been elucidated entirely.
However, different studies have reported that several
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signaling pathways such as the PERK [12, 13], IRE1 [3],
glycogen synthase kinase-3 (GSK3) [14], MAPK [15, 16]
and Akt [4, 12] might be responsible for bupivacaine- in-
duced apoptosis.
Although the placenta is proposed as a protective bar-

rier, there are mechanisms of drug transport across this
tissue that expose the fetus to drugs taken by pregnant
women [17–19]. It has been a general finding that the
placenta does not limit the fetal transfer of local anes-
thetics [20–22]. By using a human placental model in
rats, it is revealed that bupivacaine accumulates in the
placenta and is retained in fetal tissues [22, 23]. Some
animal studies have shown that bupivacaine has an ad-
verse effect on the fetus so, according to the US FDA,
bupivacaine is a pregnancy category C drug. While,
based on the Australian categorization system for pre-
scribing medicines in pregnancy, bupivacaine is a cat-
egory A drug that is widely used in pregnant women
and has no reported direct or indirect harmful effects on
the fetus [2, 22]. Because of controversial reports, further
research is required to determine the possible neurotoxic
potency of maternal bupivacaine use on the fetus and
newborn. Therefore, our main purpose in the present
study was to investigate the effects of maternal bupiva-
caine use on fetus hippocampal apoptosis and the pos-
sible related mechanism.

Methods
Laboratory animals and experimental procedures
All procedures were approved by the ethics committee of
Shahid Beheshti University of Medical Sciences (IR.SB-
MU.RETECH.REC.1398.031) which followed Guidelines
of ethical standards for the care and use of laboratory ani-
mals for animal research [24]. The animals were obtained
from Laboratory Animal Center, Shahid Beheshti Univer-
sity of Medical Sciences. They were housed in polypropyl-
ene cages under standard environmental conditions (22 ±
2 °C, humidity 60–70%, and 12 h light/dark cycle) and
allowed standard water and food intake. Adult female
Wistar rat weighting 180–200 g was used for mating.
Pregnant rats on day 15 of pregnancy randomly divided
into three groups as follows (a) Control group (sciatic
nerve was exposed but no drug was administered), (b)
Sham+ vehicle group (sciatic nerve was exposed and saline
was injected) and (c) Bupivacaine group (sciatic nerve was
exposed and blocked with bupivacaine administration)
(n = 6 / each group).

Surgery and drug administration
On day 15 of pregnancy, the pregnant rats became
anesthetized with intraperitoneal injection of Keta-
mine 100 mg/kg and Xylazine 10 mg/kg mixture.
Then, the sciatic nerve of the rat’s right thigh was
isolated and based on previous studies [25, 26], 0.2 ml

of Bupivacaine 0.5% (Astra Zeneca, Austria), in Bupi-
vacaine group, and 0.2 ml of Normal Saline 0.9%, in
the Sham+vehicle group, was injected beneath the
clear fascia surrounding the sciatic nerve but outside
the perineurium. After performing nerve block, we
sutured the muscles and skin by Vicryl 6–0 and
Nylon 4–0 sutures. After recovery, all rats were
returned to their places and were cared at the time of
their delivery. Then, we randomly selected one male
offspring of every mother and kept under standard
condition until the 30th day after of their birth. All
offspring in control, sham and bupivacaine group
have no significant difference in birth weight and
weight gain during the study. In day 30, the rats (n =
6 per each group) were anaesthetized by CO2 inhal-
ation then decapitated. The hippocampi were immedi-
ately isolated on the ice and kept in liquid nitrogen
for 24 h and then stored in − 80 °C until molecular
analysis. All animals used in the present study, finally
were anaesthetized by CO2 inhalation then scarified
by decapitation.

Western blotting
The hippocampi were homogenized in the cold RIPA
lysis buffer (50 mM Tris-HCl, pH 8.0; 150 mM NaCl; 1%
Triton X-100; 0.5% Na-Deoxycholate; 0.1% SDS (sodium
dodecyl sulfate)) supplemented with protease and phos-
phatase inhibitors cocktail (was purchased from Pierce).
Bradford method was used to quantify the protein con-
tent of each sample. Then, the equal amounts of pro-
teins (40 μg) were separated using 12% polyacrylamide
gel electrophoresis, transferred to a activated PVDF
membrane (Roche Diagnostics, Indianapolis, IN, USA),
blocked with blocking buffer (5% BSA) 1 h in room
temperature and incubated at 4 °C overnight with
primary anti-rabbit antibodies against phospho-Akt
(Ser473) (1:3000, cell signaling #4060), Akt (1:3000, cell
signaling #4685), caspase-3 (1;3000, ab184787), caspase-
8 (1;3000, cell signaling #4790) and β-actin (1:15000, cell
signaling #4970). After washing with TBST, the mem-
branes incubated for 1:30 h with secondary HRP-
conjugated anti-rabbit antibody (1:20000, cell signaling
#7074) at room temperature, visualized by Amersham
ECL select Western Blotting Detection Kit (RPN2235),
and exposed to radiography films (Kodak). All mem-
branes were stripped and incubated with primary anti-
body against β-actin. Finally, the radiographic films were
scanned and blot quantification of protein bands density
was calculated by Image-J software.

Statistical analysis
Statistical analyses of data and drawing charts were per-
formed using the GraphPad Prism 7.01. For comparison
of variables between the groups, one-way analysis of
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variance (ANOVA) followed by Post hoc Tukey’s test
was used. All data have been shown as means ± S.E.M.
In all statistical comparisons, P < 0.05 is considered as a
significant difference.

Results
Maternal bupivacaine administration increases the level
of fetal hippocampal cleaved caspase-3
Activation of caspase-dependent apoptosis was assessed
through western blot analysis of cleaved caspase-3.
Caspase-3 play a main role in apoptosis and its cleavage
represents its activation [27]. There was no significant
difference in caspase-3 activity between the control and
sham group while, maternal bupivacaine use caused a
significant increase in cleaved caspase-3 expression in
the fetal hippocampus compared with the sham group
(P < 0.001) (Fig. 1).

Overexpression of fetal hippocampal caspase-8 after
maternal bupivacaine use
To test the role of maternal bupivacaine use on fetal hip-
pocampal cell apoptosis, caspase-8 expression was also
assessed by western blotting. The data showed that there
was no significant difference in caspase-8 expression be-
tween the control and sham groups. One- way ANOVA
followed by Tukey’s test showed that maternal bupiva-
caine use could increase hippocampal caspase-8

expression in the bupivacaine group compared with the
sham group (P < 0.001) (Fig. 2).

Phosphorylation of Akt decreases after maternal
bupivacaine use
PI3K/Akt pathway plays a regulatory role in different
biological processes such as proliferation and cell sur-
vival [28–30]. Western blot was done to investigate the
effect of maternal bupivacaine use on fetal hippocampal
P.Akt/T.Akt ratios. Our results revealed that maternal
bupivacaine use significantly decreased hippocampal
P.Akt/T.Akt ration in the bupivacaine group compared
with sham group (P < 0.001) (Fig. 3).

Discussion
Pregnancy is a unique experience in the lifetime of women.
The mother’s health is directly connected to the fetus’s
health. Therefore, it is essential to maintain the health of
pregnant women. Since, local anesthetics are commonly used
for surgical procedures in the pregnant women [31–33], it is
necessary to understand the effects of maternally adminis-
tered local anesthetics on the fetus. For this purpose, this
study aimed to elucidate the adverse effects of maternal bupi-
vacaine use on fetus hippocampal cell apoptosis and the
possible related mechanism. To assess the activation of
caspase-dependent apoptosis pathways in fetal hippocampal
following maternally administered bupivacaine, we measured
activation of caspase-3 and caspase-8. It is revealed that

Fig. 1 Maternally administered bupivacaine, significantly increase
cleaved caspase-3 expression in the fetal hippocampus.
Representative cropped western blot of cleaved caspase-3 (19 kDa)
which is normalized to beta-Actin. Data are represented as mean ±
SEM (n = 6 rats/group). ***P < 0.001: comparison of cleaved caspase-
3 protein band intensity between different groups. Full-length blots
are presented in Supplementary Fig. 1

Fig. 2 Maternal bupivacaine usage, significantly increased cleaved caspase-
8 expression in the fetal hippocampus. Representative cropped western
blot of cleaved caspase-8 (18 kDa) which is normalized to beta-Actin. Data
are represented as mean± SEM (n=6 rats/group). ***P<0.001: comparison
of cleaved caspase-8 protein band intensity between different groups. Full-
length blots are presented in Supplementary Fig. 2
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caspase-3 play a key role in apoptosis and its cleavage repre-
sents its activation [27, 34]. Caspase-3 is activated during
both extrinsic and intrinsic apoptosis pathways [27, 35]. Also,
caspase-8 is the initiator caspase that play a critical role in
the extrinsic apoptotic signaling pathway. Our result revealed
that maternal bupivacaine use could increase apoptosis-
related proteins, cleaved caspase-3 and caspase- 8 expres-
sions in the hippocampal of the fetus compared with the
sham group.
A growing body of researches in the last years, both la-

boratory and clinical settings, reported that, although hap-
pened in rare-event situations, local anesthetic reagents,
like bupivacaine, ropivacaine, lidocaine and mepivacaine,
might induce severe neurological injury in both animal
and humans [14, 36–38]. In this regard, Yu et al. (2017)
shown that in neuronal population, bupivacaine could sig-
nificantly increase apoptosis and induce much severe
neurotoxicity than other local anesthetics, such as mepiva-
caine or procaine [10]. In addition, another study showed
that bupivacaine could induce neural apoptosis and neur-
ite degeneration in DRG neurons [11]. Available evidences
shows that local anesthetics have systemic absorption, and
placenta does not limit the fetal transfer of maternally ad-
ministered amide-linked local anesthetics, such as bupiva-
caine [19, 20, 39]. It is revealed that bupivacaine crosses
the placenta, accumulates in this tissue and is retained in
fetal tissues [18, 21, 22]. Bupivacaine enters in the fetal
liver through umbilical venous blood perfused in this

organ. The 3-hydroxybupivacaine can remain detectable
in the fetus liver up to 4 h. This suggesting that bupiva-
caine can metabolize in the fetal liver [22]. The fetus elim-
inates the bupivacaine by diffusing it into the maternal
compartment through the placental membrane. Although
the majority of the bupivacaine metabolites are more
polar, and it is unlikely that the placental membrane
crosses these metabolites back into the maternal compart-
ment, possibly resulting in the accumulation of metabo-
lites in various fetal tissues. The half of the fetal
circulation directly reaches the heart and brain, thus it is
possible that reduced fetal ability to remove drugs can
cause prolonged adverse effects on these tissues [40, 41].
Although there are no adequate and well-controlled stud-
ies about the adverse effect of maternal bupivacaine on
the fetus, our results for the first time suggest that, mater-
nally administered bupivacaine, could have an adverse ef-
fect on fetal brain and induce hippocampal cell apoptosis.
The exact mechanism by which bupivacaine induces

apoptosis have not been elucidated entirely. However
different studies have reported that several signaling
pathways, such as PERK [12, 13], IRE1 [3], GSK3 [14],
MAPK [15, 16] and Akt [4, 12], might be responsible for
bupivacaine- induced apoptosis. In exploring the signal-
ing mechanism; we focused on Akt, which is a well-
known anti-apoptosis molecule. Our results showed that
maternal bupivacaine use markedly decreases the phos-
phorylation levels of Akt. A number of studies have
demonstrated that Akt, a key kinase downstream of the
PI3-kinase, plays a crucial role in cell survival and death
pathway of neurons [12, 29, 42, 43]. Recent studies have
confirmed that Akt-signaling pathway involves in the
bupivacaine-induced apoptosis in adults [44, 45]. In this
regard, Fan et al. (2016) reported that bupivacaine-
induced neurotoxicity in SH-SY5Y cells is mediated
thorough inactivating Akt signaling pathway [1]. In con-
sistent with previous studies, we observed that bupiva-
caine decreased the phosphorylation levels of Akt in the
fetal hippocampus, which was concurrent with an incre-
ment of apoptotic markers.

Conclusions
Taken together, our data suggest that maternally admin-
istered bupivacaine increases fetal hippocampal cell
apoptosis markers such as caspase 8 and cleaved caspase
3, at least in concurrent with inhibition of the Akt
activation.
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1186/s12871-020-01143-2.
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Fig. 3 Maternal administration of bupivacaine significantly decreased
Akt activity in fetal hippocampus. Representative cropped western blot
of P. Akt (60 kDa) which is normalized to T.Akt. Data are represented as
mean ± SEM (n = 6 rats/group). ***P < 0.001: comparison of P. Akt
protein band intensity between different groups. Full-length blots are
presented in Supplementary Fig. 3
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