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HIV type 1 (HIV-1) has a very narrow host range that is limited to humans and
chimpanzees. HIV-1 cannot replicate well in Old World monkey cells such as rhesus
and cynomolgus monkeys. Tripartite motif (TRIM)5a is a key molecule that confers potent
resistance against HIV-1 infection and is composed of really interesting new gene,
B-box2, coiled-coil and PRYSPRY domains. Interaction between TRIM5a PRYSPRY
domains and HIV-1 capsid core triggers the anti-HIV-1 activity of TRIM5a. Analysis of
natural HIV variants and extensive mutational experiments has revealed the presence of
critical amino acid residues in both the PRYSPRY domain and HIV capsid for potent HIV
suppression by TRIM5a. Genetic manipulation of the human TRIM5 gene could establish
human cells totally resistant to HIV-1, which may lead to a cure for HIV-1 infection in the
future. Copyright � 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction

Four host restriction factors capable of suppressing HIV-1
replication have been reported to date. First, ApoB
mRNA editing catalytic subunit (APOBEC) 3G was
found to modify the minus strand of HIV-1 DNA during
reverse transcription [1–3], but this activity could be
counteracted by the viral Vif protein [4–6]. Tetherin, also
known as BST2 or CD317 [7,8], is an interferon-
inducible membrane protein that inhibits the detachment
of virus particles from infected cells. HIV-1 overcomes
this restriction by expressing Vpu protein. The most
recently identified host factor is SAMHD1 (a cellular
protein sterile alpha motif and histidine/aspartic acid-
domain containing protein), which is a dendritic and
myeloid cell specific HIV-1 restriction factor counter-
acted by HIV-2/SIV Vpx [9,10]. These three factors are
degraded by the proteasome and their antiviral activity is
cancelled in the presence of viral proteins. In contrast,
HIV accessory proteins are unable to counteract the
fourth restriction factor tripartite motif (TRIM)5a. In
this review, we will focus on the impact of TRIM5a and
related proteins in vivo.
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Identification of TRIM5a as a restriction
factor against HIV-1 in old world monkey
cells

HIV-1 major subtypes are thought to have been
introduced into the human population from chimpanzees
[11] and have a very narrow host range that is limited to
humans and chimpanzees. Experimentally, HIV-1 fails to
replicate in activated CD4þ T lymphocytes obtained
from Old World monkeys (OWMs), such as rhesus
monkey (Rh) [12,13] and cynomolgus monkeys (CM)
[14,15]. In contrast, other lentiviruses including the
simian immunodeficiency virus isolated from sooty
mangabeys (SIVsm) and the simian immunodeficiency
virus isolated from African green monkeys (SIVagm)
replicate in their natural hosts cells [16]. The SIV virus
isolated from macaque monkeys (SIVmac), which
evolved from SIVsm in captive macaques, was used as
a simian AIDS model system in Rh [12,13].

Several earlier studies suggested that the block for HIV-1
replication in OWM cells occurs at a postentry step
[12,13,17] and appears to result from failure to initiate
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reverse transcription [13]. In 2004, Rh TRIM5a was
identified as a factor that confers resistance to HIV-1
infection [18]. There are wide variations in the spectrum
of viruses that TRIM5a from different monkey species
can restrict. Rh and CM TRIM5a restrict HIV-1
infection but not SIVmac [18,19]. In contrast, human
TRIM5a only weakly restricts HIV-1 and SIVmac, but
potently restricts N-tropic murine leukaemia viruses
(N-MLV). African green monkey TRIM5a restricts both
HIV-1 and SIVmac but not SIVagm (reviewed in ref.
[20]).
Structure of TRIM5a

TRIM5a is a member of the tripartite motif (TRIM)
family of proteins with really interesting new gene
(RING), B-box 2 and coiled-coil domains [21] (Fig. 1).
Because proteins with RING domains possess E3
ubiquitin ligase activity [22], TRIM5a is thought to
degrade the HIV-1 incoming core [23,24]. The coiled-
coil domain of TRIM5a is important for the formation
of homo oligomers [25–27], while the B-box 2 domain
mediates higher-order self-association of TRIM5a
oligomers [28–30] (Figs. 1 and 2).

The C terminal PRYSPRY domain is specific for the a-
isoform of TRIM5-splicing variants. The amino acid
sequences of the variable region 1 (V1) of TRIM5a
PRYSPRY domain have been shown to determine the
TRIM5α
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Fig. 1. Diversity of TRIM5 genes. (a) The RING, B-box2, coiled-coil
boxes. CypA domains in TRIMCyp are shown as gray squares. V1 re
(b) Alignment of partial amino acid sequences of V1 region of Afr
monkey (Rh), cynomolgus monkey (CM) and human (Hu) TRIM5a

AGM. A box indicates TFP and Q difference. Arrowhead shows t
aforementioned species-specific restriction of retrovirus
infection [19,31–38] (Fig. 1b). The PRYSPRY domain
recognizes the viral core proteins because TRIM5a
lacking this domain does not show antiviral activity.
Furthermore, overexpression of truncated TRIM5a
lacking the PRYSPRY domain shows a dominant
negative effect on antiviral activity of full-length
TRIM5a [27,39]. Because the interaction between
individual capsid (CA) monomers and TRIM5a is very
weak, CA recognition by TRIM5a is thought to be a
synergistic combination of direct binding interactions
with the PRYSPRY domain and lattice-like higher-order
assembly of TRIM5a [40] (Fig. 2). Although the precise
three-dimensional crystal structure of the PRYSPRY V1
region has not been resolved due to flexibility of the V1
loop, it is speculated that the PRYSPRY domain interacts
with more than one CA monomer within the assembled
core spanning the gap between CA hexamers to destroy
inter-hexamer interaction [41].
The impact of rhesus monkey TRIM5a on
simian immunodeficiency virus infections

To elucidate the impact of TRIM5a in vivo, the
polymorphism in Rh TRIM5a V1 region, threonine/
phenylalanine/proline (TFP) to glutamine (Q) at position
339 [42], has been attracting attention. Wilson et al. [43]
showed that Rh TRIM5a TFP restricted HIV-1 and
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he position of R332P substitution.
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Fig. 2. Proposed models of TRIM5a/TRIMCyp restriction. Lattice-shaped oligomerized TRIM5a/TRIMCyp recognizes the
incoming HIV-1 core. Subsequently, TRIM5a is poly-ubiquitinated, and ubiquitinated TRIM5a along with HIV-1 core complex
is degraded. Red, orange and blue circles denote RING, B-box2 and PRYSPRY domains, respectively. Green bars denote coiled-
coil regions.
HIV-2 but not SIVmac239, while Rh-TRIM5a Q
restricted HIV-1 but not HIV-2 or SIVmac239 using
TRIM5a-transduced cell lines. Furthermore, Kirmaier
et al. [44] reported that the Rh-TRIM5a TFP restricted
SIVsmE543 and SIVsmE041, although the Rh-TRIM5a
Q did not show any anti-SIVsmE543 or anti-SIVsmE041
activity. It should be noted that the anti-HIV-1 activity of
Rh-TRIM5a Q is still substantially stronger than the
anti-SIVmac239 and SIVsmE543 activities of Rh-
TRIM5a TFP [45]. SIVmac239 is a molecular clone
of a highly adapted emergent Rh virus generated in the
1980s by experimental passage of SIV-positive plasma
through several monkeys [46]. In contrast, SIVsmE041 is
a primary isolate from a sooty mangabey and SIVsmE543
was cloned after experimental passage of SIVsm through
two Rh individuals [47]. Comparison of SIVsmE543 CA
amino acid sequence with that of SIVmac239 revealed an
LPA-to-QQ change at positions 89–91 in the loop
between a-helix 4 and 5 (L4/5) and an R-to-S change at
position 97 in the a-helix 5 of CA, which are both critical
for resistance against the Rh-TRIM5a TFP allele [48,49]
(Fig. 3).

When SIVsmE543 was inoculated into Rh monkeys,
viral replication was markedly diminished in Rh-
TRIM5a TFP/TFP homozygotes compared with Rh-
TRIM5a Q/Q homozygotes with a 2 to 3-log reduction
after intravenous or intra-rectal infection; those findings
are with the in-vitro results [44]. In low-dose repeated
mucosal challenge experiments, two groups reported
similar results using SIVsmE660, which has a CA sequence
closely resembling that of SIVsmE543 [50,51]. In contrast
to this clear effect of Rh TRIM5a genotypes on SIVsm
infection, the effect of Rh-TRIM5a genotypes on
SIVmac infection is subtle. Lim et al. retrospectively
analysed the plasma viral load in Rh individuals after
intravenous SIVmac251 challenge. They found that the Q
allele was associated with higher levels of plasmaviral RNA
at the time when the levels of viral RNA stabilized after the
period of acute infection (0.6 log median difference); this
finding was associated with a rapid loss of central memory
CD4þ T cells, and a higher rate of progression to AIDS
[45,52] compared with those animals with the TFP allele.
These results were consistent with the in-vitro obser-
vations; however, it should be noted that the suppression of
SIVsmE543 by Rh-TRIM5a TFP is more dramatic than
that of SIVmac251. Fenizia et al. [53] did not detect any
difference in susceptibility among Rh TRIM5 genotypes
following repeated rectal challenge with SIVmac251.

In conclusion, it is absolutely necessary to determine the
TRIM5 genotype of a specific Rh monkey when SIVsm
is used in experiments. It is also better to do so when
SIVmac is used.
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Fig. 3. HIV-2/simian immunodeficiency virus capsid sequence variations and restriction patterns of rhesus and cynomolgus
monkey TRIM5a/TRIMCyp alleles. ’Yes’ denotes restriction. ‘Weak’ denotes weak restriction. ‘No’ denotes no restriction. The
unique QQ sequence at the 89th–90th positions of SIVmac is shown in purple. Arginine 97 at the base of the loop between helices
4 and 5 is shown in blue. The glutamine and alanine residues at position 120 of GH123 or analogous positions of other HIV-2
strains are shown in green. The proline residue at position 120 of GH123 is shown in red. CM CypA(NE) and CM CypA(DK) denote the
minor and major alleles of cynomolgus monkey TRIMCyp, respectively.
TRIM5 and CypA fusion protein (TRIMCyp)
in monkeys

TRIMCyp is a very interesting example of gain-of-
function by retro-transposition in the TRIM5 gene in
several monkey species. In 2004, soon after the discovery
of TRIM5a, analysis of TRIM5 genes of owl monkeys in
the New World monkey species identified a long
interspersed nuclear element (LINE)-1 mediated retro-
transposition of cyclophilin A (CypA) between exons 7
and 8, resulting in expression of a fusion protein
designated TRIMCyp [54,55]. In 2008, another CypA
insertion was found in Rh, CM and pig-tailed monkeys
[56–59]. In these OWMs, the CypA gene is inserted at
the 30 end of the TRIM5 gene, which is totally different
from that of the owl monkey. This finding indicated that a
CypA retro-transposition into the TRIM5 gene in
OWMs occurred independently from that in New World
monkeys. A G-T transversion at the splicing acceptor of
TRIM5 exon 7 linked with CypA insertion causes
alternative splicing [56] and the resultant mRNA lacks
exons 7 and 8, and consequently, the PRYSPRY domain
is replaced with CypA (Fig. 1a).

It would be reasonable to assume that the retro-
transposition event occurred in a common ancestor of
the three macaques, but there is considerable variation
among the three monkey species in the frequency of
CypA insertion and amino acid differences in the CypA
domain of TRIMCyp resulting in a spectrum of antiviral
activities. In pig-tailed monkeys, TRIM5a mRNA is
absent. Pig-tailed monkey TRIMCyp restricted HIV-2
but not HIV-1 infection [56,60]. In Rh, the allele
frequency of TRIMCyp is 25% in an Indian monkey
population but completely absent from a Chinese
population [59]. In the case of CM, however, it is a bit
more complex. The TRIMCyp frequency in CM is
apparently higher than that in Rh. TRIMCyp frequency
tends to be higher in eastern than western Asia. There are
major and minor haplotypes of CM TRIMCyp with
single nucleotide polymorphisms in the CypA domain.
The major haplotype of CM TRIMCyp bears aspartic
acid (D) and lysine (K) at positions 369 and 446 [56,61],
while the minor haplotype encodes asparagine (N) and
glutamic acid (E) at these positions [62,63] (Fig. 1a).
N369 and E446 are also found in pig-tailed monkeys and
Rh TRIMCyps, and the CypA portion of the NE
haplotype of CM TRIMCyp has the same amino acid
sequence as that of Rh TRIMCyp. The major CM
haplotype (DK haplotype) of TRIMCyp can suppress
HIV-1 but not HIV-2, while the minor NE haplotype
suppresses HIV-2 but not HIV-1, similar to pig-tailed
monkeys and Rh TRIMCyp [63] (Fig. 3). It should be
noted that so far, there is no polymorphism at amino acid
position 339 of CM TRIM5a and all of the CM
TRIM5a alleles carry Q at this position [19], while Rh
TRIM5a has a Q-to-TFP polymorphism at position 339
[42]. Because the untranslated exon of both CM and Rh
TRIMCyp alleles has Q at position 339, the Q allele may
be an ancestor of these OWM TRIM5 genes. After
separation into Rh and CMs, selection pressure in CM
might have driven amplification and diversification in
TRIMCyp, while that in Rh might have driven
diversification of the PRYSPRY domain of TRIM5a.
TRIM5 gene and HIV-1 variants capable of
replicating in monkey cells

In order to establish a monkey model of HIV-1/AIDS,
various SIVmac and HIV-1 chimeric viruses (SHIV) have
been constructed and tested for their replicative capability
in monkey cells. The first SHIV was generated in a
genetic background of SIVmac with HIV-1 tat, rev, vpu
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Fig. 4. Structure of the N-terminal half of HIV-1 capsid monomer. The ribbons represent the backbones of NL4-3. The upper side
of the capsid monomer is supposed to be exposed to the outside of core structure. The positions of mutated amino acids of LNEIE
and LSDQ viruses are shown in green and red, respectively.
and env genes in 1991 [64]. After the discovery of several
host factors involved in HIV-1 restriction in OWM cells,
the opposite approach was used to construct HIV-1
variants capable of replicating in monkey cells with a small
segment of SIVmac that was necessary to counteract host
restriction factors [65].

As mentioned above, there are considerable inter and
intra-species variations in simian TRIM5 genes. The most
advanced monkey model of HIV-1 infection uses pig-
tailed monkeys because it lacks expression of functional
TRIM5a and pig-tailed monkey TRIMCyp fails to
restrict HIV-1. Hatziioannou et al. [66] constructed a
mutant HIV-1 that differs from the original HIV-1 only in
the vif gene. This virus leads to the development of AIDS
after several animal transfers with CD8þ T cell knocked-
down by anti-CD8 antibody injections [67]. Next to pig-
tailed monkey, chronic and persistent infection was
established in CM homozygous for the TRIMCyp allele
infected with a mutant HIV-1 [68]. Although a marked
increase in viral load was observed after injection of anti-
CD8 antibody, the viral load decreased within months.
This mutant HIV-1, MN4Rh-3, contains an additional
mutation in CA that includes escape from CM
TRIMCyp, and several mutations in the integrase and
envelope genes, which lead to increased growth capability
[69]. Although infected animals did not develop AIDS,
this is a good model of the asymptomatic period of HIV-1
infection. It may be possible to use this model to examine
factors that might trigger disease progression. In the case
of Rh monkeys, multiple regions of CA, including the
N-terminal region, L4/5 and amino acid at position
120, were shown to affect recognition by Rh TRIM5a
[70–74]. Unfortunately, the replacement of whole CA
with SIVmac was detrimental to viral growth [75]. Two
research groups independently performed extensive
mutagenesis of CA to obtain HIV-1 variants that escape
from Rh TRIM5a mediated restriction. Although the
mutant viruses designated LSDQ [76] and LNEIE [77]
had different amino acid substitutions (Fig. 4), both
variants were capable of replicating in the presence of
Rh TRIM5a TFP allele products. However, levels of
resistance to the Rh TRIM5a TFP allele of both HIV-1
variants were still lower than to CM TRIM5a/Rh
TRIM5a Q allele products [78]. Therefore, further
adaptation and/or genetic manipulation of HIV-1
variants is still required to establish an HIV-1 infection
model in Rh.
Polymorphisms in the human TRIM5 gene
and HIV-1 infection

Several single-nucleotide polymorphisms (SNPs) in the
human TRIM5 gene have been studied for their
association with the rate of HIV-1 transmission and
AIDS progression (Fig. 5), and only modest effects were
observed. Sawyer et al. [79] reported an H-to-tyrosine (Y)
polymorphism at amino acid position 43 (H43Y,
rs3740996) of the human TRIM5 gene. This SNP is
located in the RING domain and greatly reduces
the ability of human TRIM5a to inhibit N-MLV
infection [79]. Several in-vitro studies have indicated that
the anti-HIV-1 activity of human TRIM5a with 43Y
was lower than that with 43H [79–81], although the
difference in anti-HIV-1 activity was very small. The
association of H43Y with the rate of progression to AIDS
has been tested in several studies, but with inconsistent
results [80–83]. Despite the lower anti-N-MLVand anti-
HIV-1 activities of TRIM5a with 43Y [79], Javanbakht
et al. [80] reported a paradoxical protective effect of
TRIM5a with 43Y against HIV-1 transmission in
African-Americans. Interestingly, we also observed that
the 43Y-allele was found less frequently in Japanese and
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Indian HIV-1-infected individuals than in ethnicity-
matched controls [84]. Furthermore, Liu et al. [85]
reported that the frequency of H43Y homozygotes was
higher in sero-negative intravenous drug users than in
HIV-infected drug users. The reasons for this discrepancy
between the epidemiological and functional effects of
H43Y remain to be elucidated. Pertel et al. [86] reported
that TRIM5a makes a major contribution to lipopoly-
saccharide signalling through Toll-like receptor 4. One
possible explanation is that the lower activation of innate
immunity by 43Yallele decreases the T-cell population in
which that HIV-1 prefers to replicate. It is noteworthy
here that an allelic dose-dependent decrease was observed
between H43Y and tumour necrosis factor-alpha (TNF-
a) secretion from peripheral blood mononuclear cells
obtained from children who received rubella vaccination
[87].

In Japan, we found a rare G-to-R substitution at position
110 of TRIM5a (G110R, rs146215995) in the B-box2
domain, and this 110R allele was observed more
frequently in HIV-1-infected individuals than in non-
infected individuals. Consistent with this epidemiological
observation, this substitution weakened the anti-HIV-1
and anti-HIV-2 activity in vitro [84]. Price et al. [88] found
that female Pumwani sex workers with the R136Q
polymorphism (rs10838525) were less likely to serocon-
vert despite repeated heavy exposure to HIV-1. The
B-box2 domain is important in higher-order oligomer-
ization, which is required to form the hexagonal lattice-
like structure to stabilize the interaction between TRIM5a
and CA [40] (Fig. 2). It is likely that the R136Q
substitution affects lattice formation of TRIM5a.

The G249D polymorphism in the linker region
(rs11038628) is common in Asian and African popu-
lations but rare in whites. It was initially speculated that
there was no functional effect of this SNP because it is
located outside of any functional domains of human
TRIM5a. Contrary to our expectation, however, we
observed attenuation of anti-HIV-1 and anti-HIV-2
activity associated with this G-for-D substitution in both
multiround replication and single-round infection assays.
Rahm et al. [89] also reported reduced anti-HIV-1
activity of TRIM5a carrying this mutation. Further-
more, we investigated the presence of the G249D
polymorphism in two ethnic populations, Japanese and
Indian, and found that the TRIM5a 249D-allele was
associated with an enhanced susceptibility to HIV-1
infection [90]. It is speculated that amino acid position
249 may affect the flexibility of the linker region and
facilitate the mobility of PRYSPRY domain. CEM,
HeLa, Jurkat and 293T cells were all homozygous for
249G, but MT4 cells established in Japan appeared to be
homozygous for 249D. This may explain why MT4 cells
are highly susceptible to HIV-1 infection [91].

The artificial substitution of arginine (R) at position 322
of human TRIM5a to proline (P) conferred potent
restriction ability against HIV-1 [37,38]. Position 332 is in
the V1 region of the PRYSPRY domain (Fig. 1b) and,
therefore, is supposed to be critical for species-specific
recognition of viral CA by TRIM5a [37,38]. There is no
equivalent human SNP in this position except for a rare
null allele 332X, in which R332 is substituted with a stop
codon in Baka pygmies at an allele frequency of 0.02. This
rare allele encodes a truncated form of TRIM5a-lacking
part of the PRYSPRY domain and shows a dominant
negative effect against authentic TRIM5a in vitro [92].

Taken together, the anti-HIV-1 activity of human
TRIM5a may affect HIV-1 transmission, although it is
apparent that TRIM5a itself cannot protect humans from
an HIV-1 pandemic. Table 1 summarizes characteristics
of the genetic polymorphisms in human and monkey
TRIM5 genes.
Human TRIM5a and HIV-2 pathogenesis

In contrast to HIV-1, several HIV-2 strains showed an
ability to grow in OWM cells such as baboon, Rh and
CM cells [93–97]. We investigated viral sensitivity to CM
TRIM5a and showed that the CM TRIM5a-sensitive
viruses had proline (P) at position 119 of CA in the ROD
strain or at position 120 in the GH123 strain, while the
CM TRIM5a-resistant viruses had either alanine (A) or
glutamine (Q) at the same position (Figs. 3 and 6).
Replacing the P of a CM TRIM5a-sensitive HIV-2
molecular clone GH123 with A, Q or glycine (G)
changed the phenotype from sensitive to completely
resistant to CM TRIM5a [98,99]. Similar results,
although to a lesser extent, were observed when human
TRIM5a was used [98]. It has been speculated that HIV-
2 might have been transferred to humans from a sooty
mangabey infected with SIVsm as a result of a zoonotic
event [100]. Almost all SIV isolates in the Los Alamos
database contain Q at the position corresponding to
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Table 1. Polymorphisms in human and monkey TRIM5 gene.

Species Mutation Phenotypes associated with the mutation

Human H43Y Reduced anti-N-MLV activity
Slightly reduced anti-HIV-1 activity
Reduced risk of HIV-1 acquisitions in African-Americansa

Reduced levels of TNF-a secretion after rubella vaccination
R136Q Reduced risk of HIV-1 acquisition in Pumwani, Kenya
G249D Reduced anti-HIV-1 and anti-HIV-2 activities

Increased risk of HIV-1 acquisition in India
Rhesus monkey TFP to Q Increased sensitivity to SIVsm infection

TFP to Cyp Loss of anti-HIV-1 activity
Cynomolgus monkey Q to Cyp Increased sensitivity to monkey tropic HIV-1

DK to NE in CypA Loss of anti-HIV-1 activity

aInconsistent with the in-vitro observations.
position 119 of HIV-2 CA. In contrast, HIV-2 strains
possess a mixture of Q, A, P and G at the corresponding
position. The 119th or 120th position is located in the
loop between a-helices 6 and 7 (L6/7). Previously, a
single amino acid substitution at the 110th position of N-
MLV CA has been shown to determine viral susceptibility
to mouse restriction factor, Fv1 [101]. The 3-D structure
of MLV CA [102,103] revealed that the 110th position of
N-MLV CA is located at a position in the surface-exposed
loop analogous to the 119th or 120th position of HIV-
2 CA.

HIV-1 and HIV-2 infections have distinct natural
histories, levels of viremia, transmission rates and disease
associations despite high levels of sequence homology
between the two viruses [104]. Although some HIV-2-
infected patients progress to AIDS as rapidly as HIV-1-
infected patients, virus replication is controlled in the
majority of HIV-2 patients [105,106] and those with low
viral load achieve much longer survival than those with
high viral load [107]. Detailed sequence analysis of HIV-2
CA variations within a large community cohort in
Guinea-Bissau composed of both high and low viral load
patients indicated that CA from viruses in low viral load
Side view Overview

Fig. 6. Structure models of the HIV-2 GH123 CA hexamer.
The space-filling model of CA hexamer from the side and the
top is shown. Positions of HIV-2 CRF01_AB-specific amino
acid substitutions, which are required for strong resistance
against human TRIM5a, are shown in purple. Loops between
helices 4 and 5 and position 120 are shown in green and red,
respectively.
patients had P residues at position 119, but in patients
with higher viral load, position 119 was frequently
occupied by Q, A or G residues. Stratification of the
individuals according to the presence or absence of P at
position 119 showed a three-fold difference in the median
viral load of the two groups. These results indicate that
HIV-2 replication in infected individuals can be linked to
CA variation and human TRIM5a sensitivity [108].

In addition, Lelignowicz et al. [109] reported that HLA-
B�3501 was associated with HIV-2 with P at position 119
in the same community cohort as described above. The
cytotoxic T-cell NY9-epitope (NPVPVGNIY) was
located two amino acids downstream of position 119.
It is thus possible that viruses were forced to change Q
(coded as CAA or CAG) to P (CCA or CCG; underlines
denote single nucleotide changes) at position 119 to
escape from HLA-B�3501 specific immune responses,
even though this substitution caused the virus to become
more sensitive to human TRIM5a. After transmission to
individuals lacking HLA-B�3501, viruses may have
evolved from a P to an A (GCA or GCG) at position
119 to revert to being resistant to human TRIM5a.

Moreover, several patients with HIV-2 who had a high
viral load and rapidly developed AIDS were identified in
Japan. Sequence analysis of viruses isolated from these
patients indicated that they carried G at position 119.
These patients were infected with an A/B inter-group
recombinant designated CRF01_AB [110]. Notably,
HIV-2 CRF01_AB CA showed potent resistance to
human TRIM5a. The nature of the genetic code suggests
that the G virus (GGA or GGG) was derived from the A
virus (GCA or GCG), implying that the viruses with G
are highly adapted. The emergence of a possible highly
pathogenic HIV-2 strain is an ongoing concern, given
that retroviruses can easily evolve to evade host defenses.
In addition to the previously identified role of amino acid
119 of the CA N-terminal domain, CRF01_AB-specific
amino acid substitutions in the CA C-terminal domain
(CTD) were also necessary for strong resistance to human
TRIM5a [111]. It is interesting to note that this region of
the CTD overlaps with the region that affects partial
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resistance to another anti-HIV-1 host factor MxB [112].
These amino acid substitutions in the CA CTD may be
exposed to and accessible from the outside of the viral
core (Fig. 6).
Conclusion

The case of the ‘Berlin patient’ who was functionally
cured of HIV-1 infection by receiving a haematopoietic
stem cell transplant from a homozygote of CCR5 delta 32
allele presented an attractive strategy for curing HIV
infection. Gene therapy including genome editing of the
CCR5 gene in CD4þT cells or haematopoietic stem cells
to create HIV-1 resistant cells have both been tried.
Although human TRIM5a does not block HIV-1
infection, it is possible that restriction can be acquired
by modifying the human TRIM5 gene through mutations
in the V1 region or insertion of a CypA gene as found in
monkeys. As described above, a study comparing human
and Rh TRIM5a showed that a single change from R to
P at position 332 of human TRIM5a (R332P) conferred
potent restriction ability against not only HIV-1 but also
SIVmac239 [37,38]. However, further studies are
necessary to examine the feasibility of human TRIM5a
manipulation in achieving a cure for HIV-1 infection.
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