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Abstract

The natural environment is dynamic and moving objects become constantly occluded,

engaging the brain in a challenging completion process to estimate where and when

the object might reappear. Although motion extrapolation is critical in daily life—

imagine crossing the street while an approaching car is occluded by a larger standing

vehicle—its neural underpinnings are still not well understood. While the engagement

of low-level visual cortex during dynamic occlusion has been postulated, most of the

previous group-level fMRI-studies failed to find evidence for an involvement of low-

level visual areas during occlusion. In this fMRI-study, we therefore used individually

defined retinotopic maps and multivariate pattern analysis to characterize the neural

basis of visible and occluded changes in motion direction in humans. To this end, par-

ticipants learned velocity-direction change pairings (slow motion-upwards; fast

motion-downwards or vice versa) during a training phase without occlusion and

judged the change in stimulus direction, based on its velocity, during a following test

phase with occlusion. We find that occluded motion direction can be predicted from

the activity patterns during visible motion within low-level visual areas, supporting

the notion of a mental representation of motion trajectory in these regions during

occlusion.
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1 | INTRODUCTION

In our daily life, we often miss critical input from our visual environ-

ment: simple eye blinks, occlusion of moving objects and other

internal and external disruptive changes may fragment part of the

incoming information. The human brain has evolved to make adequate

inferences about these missing inputs (for review, see e.g., Thielen

et al., 2019). For instance, when driving or crossing a street, we are
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able to estimate the time when a vehicle will reappear, after being

occluded by a bus, to plan our next action accordingly, indicating that

we can successfully infer the reappearance of a dynamically occluded

object (e.g., Coull et al., 2008; Dittrich & Noesselt, 2018). Although

such inference mechanisms underpin many actions of our daily life, lit-

tle is known about their exact neural representations and their infor-

mational content. In this study, we used brain imaging to identify the

low-level visual regions instrumental in the processing of dynamically

occluded objects. In particular, we use functional magnetic resonance

imaging (fMRI) and multivariate pattern analysis (MVPA) to compare

the encoding of occluded and visible information in individually

defined low-level visual regions.

Engagement of low-level visual areas in processes related to

motion prediction remain ambiguous. For instance, a recent fMRI

study (Ekman et al., 2017) on apparent motion reported that enhanced

fMRI-responses in V1 could be triggered by the sole presentation of

the first stimulus of a series of spatially distinct flashes. Remarkably,

V1 activity resembled the entire stimulus sequence even though the

subsequent visual input was not present; the activity pattern during

prediction was temporally compressed, suggesting that V1 anticipates

the presence of the expected targets. In the realm of continuous

motion extrapolation, behavioural studies also suggest the engage-

ment of V1 during dynamic occlusion of a moving object; and several

hypotheses have been proposed to account for the mechanisms

underlying motion prediction. One of the most common hypotheses

postulates that time-to-contact (TTC, DeLucia & Liddell, 1998) estima-

tion of the occluded object would engage early stages of visual pro-

cessing by using a mental representation of the visual trajectory

(Battaglini et al., 2014; De'Sperati & Deubel, 2006) and memory of

temporal information acquired during watching the visible trajectory

(Battaglini et al., 2013; Khoei et al., 2013; Makin et al., 2008, 2012;

Makin & Bertamini, 2014; Makin & Poliakoff, 2011). Additionally,

enhanced attentional resource allocation was already observed at

locations that contain temporarily occluded moving targets in beha-

vioural studies (Flombaum et al., 2008; Scholl & Pylyshyn, 1999); in

accord, an anisotropic distribution of representational enhancement

was found in the direction of predicted motion (Atsma et al., 2012;

Frielink-Loing et al., 2017; Verghese & McKee, 2002). Importantly,

such attentional extrapolation can usually only be observed with a

very low number of simultaneously relevant trajectories (Keane &

Pylyshyn, 2006; Vul et al., 2009; Zhong et al., 2014). These beha-

vioural studies all show modulations along a spatial gradient relative

to the location of the extrapolated object, thus pointing at an involve-

ment of retinotopically organized areas, that is, low-level visual cortex,

in motion extrapolation.

In contrast, previous fMRI-studies focusing on the neural under-

pinnings of occluded moving objects often failed to observe evidence

for the involvement of low-level visual areas and rather observed a

recruitment of parietal regions especially intraparietal sulcus (IPS),

(O'Reilly et al., 2008; Shuwairi et al., 2007); or reported decreased

fMRI-signals in these regions instead (Olson et al., 2004). An alterna-

tive hypothesis, in accord with this reduction of fMRI-signal in low-

level visual areas, would be that inference of predictable trajectories

reduce neural activity, similar to signal decrease in other highly

predictable environment in a variety of tasks (Alink et al., 2010; Krala

et al., 2019; van Heusden et al., 2019). This hypothesis is in line with

the hierarchical predictive coding model of Rao and Ballard (1999),

which postulates that feedback and feedforward connections convey

predictions to lower levels and error estimates to higher levels,

respectively, and that deviations from a predicted outcome would

lead to enhanced signalling in low-level areas. Another reason why

many of previous fMRI-studies on the neural basis of motion extrapo-

lation may have failed to observe the involvement of low-level visual

areas may be grounded in conceptual and methodological issues. The

exact anatomical location of functionally distinct visual areas is highly

variable across humans (Amunts et al., 2000; Greenlee, 2000), hence,

any effects may be diminished when using standard voxel-based

group mean analyses, as it was done by most previous investigations

(Olson et al., 2004; O'Reilly et al., 2008; Shuwairi et al., 2007). So far,

there are few studies which investigated dynamic occlusion used reti-

notopic maps to identify subject-specific regions of interest and

observed modulations of fMRI signal in low-level visual areas.

Recently, Erlikhman and Caplovitz (2017) used subject-specific retino-

topic mapping to identify subject-specific primary visual cortex

together with multivariate pattern analysis (MVPA) to test whether

differences in the shape of dynamically occluded objects moving along

a single trajectory are already decodable in low-level visual areas. The

authors reported enhanced activation in V1 during occlusion, but

failed to observe evidence for the objects' shape in the activity pat-

terns in this region. Earlier, Ban et al. (2013) reported, that the com-

pletion of the trajectory of an occluded object moving along a single

circular trajectory enhanced fMRI-responses in areas of V1 using tra-

ditional mass univariate fMRI-analysis.

To our knowledge, no study so far investigated whether the neu-

ral representation of extrapolated changes in trajectories rather than

the continuation of smooth motion trajectories can also be decoded

in low-level visual areas. To this end, we used distinct abrupt changes

in trajectories (upwards/downwards), after a stimulus had travelled

along a horizontal trajectory. Therefore, the main aim of this study

was to differentiate patterns of activity in individually defined low-

level visual cortex for different visible and occluded trajectories during

the presentation of dynamically occluded stimuli. In particular, we

employed a prediction motion paradigm (Battaglini & Ghiani, 2021;

Hecht & Savelsbergh, 2004), where participants learned specific

motion velocity-change in trajectory associations during an initial

familiarisation phase based on visible motion and had to judge time-

and point-of-contact during a test phase in which the motion was

dynamically occluded. We further employed a subject-specific ROI-

based multivariate pattern analysis investigating systematic BOLD

modulations within low-level visual cortex associated with the spatial

trajectory of occluded and visible targets. Focusing on V1, we tested

whether changes in the V1-activity pattern are predictive of the stim-

ulus trajectory during occlusion. In addition, we tested for similarities

in informational content during visible and occluded stimulation, not

only in V1, but also in neighbouring regions V2 and V3, plus within

regions which have been related to motion processing (V5) and object

identity (LO1, LO2) using probability maps of these regions. We

hypothesised that a spatially specific mental representation of
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different trajectories should result in an engagement of low-level

visual areas, especially V1, during the occlusion phase. We also

hypothesised that the activation pattern during the visible and dynam-

ically occluded stimulus motion periods should be similar in low-level

visual areas. Finally, we tested for the spatial layout in the modulated

subregions of low-level visual areas using receptive field mapping. To

anticipate, classification analyses yielded above chance accuracies for

decoding trajectory changes already in the primary visual cortex when

the classifier was trained on the visible data and tested on occluded

data. The patterns of predictive informational content were highly

similar to the pattern observed for visible trajectories and this result

was further corroborated by visual field mapping and comparison with

an independent functional localiser suggesting that the regions within

V1 which represent the stimulus trajectory share indeed informational

patterns for changes in trajectory across visible and occluded stimuli.

2 | MATERIALS & METHODS

2.1 | Participants

Twenty-two right-handed participants (mean age = 24.45, ±4.47,

14 women), with normal or corrected-to-normal vision, no history of

psychiatric or neurological disorders and no regular intake of medica-

tions known to interact with central nervous system functions were

recruited from the student community of Otto-von-Guericke Univer-

sität Magdeburg and gave informed consent to participate in the

study, which was approved by the ethics committee of the Otto-von-

Guericke-University. Participants could take part in the fMRI study

only after successfully performing a velocity threshold determination

task in a behavioural lab outside the scanner (see below for details).

Six participants were excluded either due to poor performance during

the main task (three with accuracy below 60%), absence on the last

day of experiment (two participants) or poor quality of retinotopic

mapping (one participant). The data of 16 participants (mean

age = 23.25, ±3.61, 12 women) were included in the final analysis.

2.2 | General overview of the study design

The volunteers of this experiment performed a total of eight tasks: a

threshold determination task outside the scanner, one inside the scan-

ner, twice familiarisation task with visible stimulation, twice prediction

motion task with dynamically occluded stimulation, one independent

functional localizer of the visual stimulation and a retinotopic mapping

task. Here, we first present the chronological sequence of each task

and below we describe the details of each paradigm. The first task

was a behavioural threshold determination performed on a day prior

to the scanning sessions, in which we ensured that participants could

reliably perceive two different motion velocities. On day 1 of the

scanning session, participants performed the same threshold determi-

nation task inside the scanner, to confirm the threshold of the previ-

ous session. This second threshold verification was followed by the

functional localizer, and the first part of the main experiment (one ses-

sion of familiarisation task followed by a session of the prediction

motion task). On day 2, participants performed the second part of the

main experiment (again one session of familiarisation followed by pre-

diction motion task), and the retinotopic and receptive field mapping.

2.3 | Behavioural threshold determination: Pre-
scan session

Participants were placed in a dark room, 70 cm from the monitor

(a 22-in., 120 Hz, LCD Screen, Samsung 2233RZ, recommended for

vision research; Wang & Nikoli�c, 2011). All tasks were programmed

using Psychophysics Toolbox (Version 3; Brainard, 1997) and run in

Matlab 2012b (Mathworks Inc., Natick, MA, USA). On each trial, a

white dot (1.24� visual angle) moved from the left to the centre (�6�

to 0�) of a black screen. First, we presented a standard velocity of

16�/s (duration = 300 ms) which was randomly followed by one of

the 11 possible velocities (t = t + t*0.05)1 including the standard

velocity. The two moving stimuli were separated by an interstimulus

interval (ISI) of 500 ms. Participants were instructed to keep their eyes

fixed on the fixation cross (0.2�), attend to the movements and, after

the disappearance of the second moving stimulus, to indicate whether

the velocity of the second stimulus differed from the standard one. A

total of 330 trials were presented divided in six blocks. The experi-

ment lasted approximately 18 min. After the completion of the

threshold experiment the data were fitted with a sigmoidal psycho-

metric function (Curve Fitting Toolbox, Matlab, Mathworks Inc.,

Natick, MA), and the time interval corresponding to 75% accuracy

was estimated. This first task served to confirm that subjects were

able to successfully discriminate velocities used in the main experi-

ment. The same task was again performed inside the scanner with the

same stimuli durations, but different screen settings, for example,

pixel density (resulting in �20�/s velocity), and the threshold deter-

mined within the scanner was used for all following prediction motion

tasks inside the scanner.

2.4 | Functional localizer: Delineating low-level
visual ROIs

The functional localizer was collected to identify areas in the visual

cortex which responded to the visual stimulation used in our experi-

mental runs and to later compare them with the location of the

MVPA-spheres instrumental in motion extrapolation. We presented a

high contrast checkerboard stimulus (1.6�) at seven different positions

along the trajectories used in the main experiment (�6.2�, �3:1�,

�0�), horizontally and �6:2� and �3.1� vertically up- and downwards,

while participants were asked to maintain fixation. The fixation cross

(0.26�) was placed 14.2� to the right side of the stimulus central

1The intervals used for slow stimulation were taken from the set of milliseconds: in degrees/

second: {16, 15.23, 14.51, 13.8, 13.16,12.53, 11.93, 11.37, 10.82, 10.31, 9.822}.
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position. Visual stimuli were flashed at each of the seven locations

over a period of 25 s (stimulus duration: 160ms). After each block of

25 s, another block of stimuli was presented at another location (ISI

between blocks: 2–6 s Poisson distributed). Participants were asked

to covertly attend the stimulation while keeping their eyes on the fixa-

tion cross. Fourteen blocks were separated in two runs, lasting in total

approximately 7min 20 s to complete the session.

2.5 | Visible phase: Association learning during
visible stimulation

During this initial association-learning phase, participants got

familiarised with the main task by passively observing a stimulus mov-

ing first horizontally and then vertically on the screen (see Figure 1a).

To this end, we used two velocities (fast = 300 ms, 20�/s or

slow = individual participant's threshold, on average 443.82 ms,

±24.20 ms or 14�/s) which were paired with two trajectories (upward

or downward), leading to a 2 � 2 design with four possible combina-

tions (order 1: up-fast, down-slow; order 2: down-fast, up-slow). The

moving object consisted of a white dot (1.6�) moving from the left

side of the screen to the centre (horizontal: 6.2� to 0�), then from the

centre to the bottom (vertical: 0� to �6.2�) or top (vertical: 0� to

+6.2�) of the screen. The stimulus was visible during the whole

motion (in contrast to the occluded phase, see below). On each day,

participants completed a total of 100 trials divided into five runs,

which in total lasted around 10 min. Per run two conditions (up-fast/

down-slow or vice versa) were presented in a randomized order. The

ISI varied from 2 to 6 s (Poisson-distributed). No information about

the velocity-direction association was provided to participants. The

order of velocity-direction change association (up-fast/down-slow

then up-slow/down-fast or vice versa) was reversed on day 2 and the

initial order of velocity-direction associations on day 1 was counterba-

lanced across subjects; hence four experimental conditions were

acquired for all participants.

Participants were instructed to just observe the moving stimulus

on the screen, with no further instruction for not priming them in any

way. After the second run, we asked them, first, whether they had

observed any regularities and, second, if they observed differences

related to the direction-velocity information. We expected them to

report the correct association (e.g., “when the dot moves fast it goes

upward and when it moves slowly it goes downward”, or vice versa).

If the participants did not report this relationship after the second run,

they would be asked again2 after the next run. All participants com-

pleted a total of five runs of familiarisation.

2.6 | Occluded phase: Prediction of dynamically
occluded stimulation

Experimental set-up during testing was identical to the visible with

the following exceptions: the moving stimulus was visible only during

the horizontal movement and a grey rectangle (28.4� in width and

35.6� in height) was displayed during the whole run occluding the

F IGURE 1 Display of the visual stimulation of the main experiment. (a) Visible phase: Sequence of two trials observed by the participants. A
white dot moved from the left side of the screen to the Centre, then upwards or downwards as indicated by the arrows. The direction of the
trajectory depended on the velocity of the dot here indicated by different types of line (solid and dashed). The full line represents fast movement
and dashed line, slow movement. The lines are put here for illustrative purposes only, but were not displayed during the task. (b) Occluded phase:
The horizontal trajectories remained visible while vertical trajectories were occluded by a grey rectangle present during the whole trial. The “X”
marks represented the stimulus final positions presented in the visible phase. Participants judged when and at which position the stimulus would
end using the velocity information during the visible horizontal movement. Trials of two conditions (up-fast/down-slow or vice versa) were
presented in a randomised order on 1 day and the inverted pairings (down-fast/up-slow or vice versa) were presented on the second day. Order
of pairings was counterbalanced across participants

2All participants were able to report the association after the third run. Some did not

understand exactly what they had to report after the second run. However, after observing

the third run, they all reported the correct association.
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vertical trajectories. The respective end positions of the occluded ver-

tical movements were marked by an “X” (1.6�) and the dot did not

reappear. Participants performed a time and point of contact, that is,

prediction motion task. For this they were asked to respond when the

moving stimulus would reach the top or bottom “X” mark (see

Figure 1b) and to indicate which of the two positions would be

reached by pressing one of two buttons with their right index and

middle finger. A total of 240 trials were presented divided in six runs.

Again, per run the two conditions (up-fast/down-slow or vice versa)

were presented in a randomized order. This experiment lasted approx-

imately 33min. More trials were presented here compared to the visi-

ble phase as we reasoned that the occluded trials might be noisier,

hence more trials would yield a more robust estimate. Note that this

should not directly affect the MVPA-results as we used run-wise aver-

ages as MVPA-input. Moreover, during pilot experiments, participants

reported having learned the association for visible trials already in the

second run, thus adding even more trials during the visible phase

might have reduced their compliance.

2.7 | Retinotopic mapping phase

Seventeen participants were scanned in two sessions (nine partici-

pants performed the session on separate days due to maximal scan-

ning time restrictions). The procedure used for measuring the

retinotopic maps was adapted from Warnking et al. (2002) and Bor-

dier et al. (2015). Stimuli were presented on a grey background. Visual

eccentricity was mapped using a checkerboard ring which slowly con-

tracted or expanded from the fixation dot. The speed of the expansion

and the contraction varied linearly with the eccentricity (Bordier

et al., 2015) and the ring reached a maximum diameter eccentricity of

6.6� and a minimum of 0.2�. When the maximum (expansion) or the

minimum (contraction) was reached, a new ring would start from the

original position. Polarity was mapped using one checkerboard wedge

(10�) slowly rotating at a constant speed. Specific stimulation parame-

ters were similar as the ones described by Warnking et al. (2002): the

checkerboard stimulation flickered at a frequency of 8 Hz, in 10 cycles

of 36 s each. The aspect ratio of the checkboards was kept constant

(1.09) by scaling the height linearly with the eccentricity. In order to

account for the effects of the hemodynamic signal, the wedges were

presented clock- and counter-clockwise, and the rings were presented

expanding annuli and contracting annuli (Warnking et al., 2002). In

total, eight functional runs were acquired, two for each modality and

direction, in 2 days, which in total lasted around 24min per day.

3 | APPARATUS & ACQUISITION

3.1 | fMRI experiment

The scanning sessions were conducted in a 3 Tesla Siemens PRISMA

MR-system (Siemens, Erlangen, Germany), using a 64-channel head

coil. The data of participants were acquired in 26 functional runs

divided into two sessions, that is, 210 volumes for the localization

phase, 550 volumes for the visible phase and 1920 volumes for the

occluded phase. Blood oxygenation level-dependent (BOLD) signals

were acquired using a multi-band accelerated T2*-weighted echo-

planar imaging (EPI) sequence (multi-band acceleration factor 2, repeti-

tion time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 80�,

field of view (FoV) = 100 mm, voxel size = 2.2 � 2.2 � 2.2 mm, no

gap). Volumes were acquired in interleaved order. Identical slice selec-

tion on both days was achieved using the Head Scout Localizer which

calculation is based on Autoalign (Siemens, Erlangen). Participants

were placed inside the scanner and performed all tasks described

above. Note that for threshold determination no fMRI data were col-

lected. All visual stimuli were displayed on a rear-projection screen

(302 � 170), approximately 350 mm from their eyes (±10 mm

depending on participant's head size). Participants were asked to fix-

ate on a cross (1.6�) and covertly attend to the stimuli. Fixation was

controlled online during the whole fMRI-experiment using a fibre-

optic camera (Kanowski et al., 2007), and no differential effects were

observed online. Accordingly, the pattern of fMRI-results of the differ-

ent experimental conditions showed a large overlap of activated vox-

els in low-level visual regions again indicating that eye movements did

not differ between experimental conditions.

In addition to the functional data a high-resolution three-

dimensional T1-weighted anatomical map (TR = 2500 ms,

TE = 2.82 ms, FoV = 256 mm, flip angle = 7� , voxel

size = 1 � 1 � 1 mm, 192 slices, parallel imaging with a GRAPPA fac-

tor of 2, and 8 min scan duration) covering the whole brain was

obtained using a magnetization-prepared rapid acquisition gradient

echo (MPRAGE) sequence. This scan was used as a reference image

to the EPI data during coregistration procedure and used as an overlay

for the retinotopic and functional maps after inflation.

3.2 | Retinotopy

Blood oxygenation level-dependent (BOLD) signals were acquired

using a multi-band accelerated T2*-weighted EPI sequence (multi-

band acceleration factor 2, TR = 2000 ms, TE = 30 ms, flip

angle = 90�, FoV = 128 mm, voxel size = 2.2 � 2.2 � 2.2 mm, no

gap). For each run, 180 volumes were acquired in interleaved order.

A high-resolution three-dimensional T1-weighted anatomical map

was obtained only for the occipital lobe (TR = 2500 ms, TE = 2.82 ms,

FoV = 256 mm, flip angle = 7�, voxel size = 1 � 1 � 1 mm, 192 slices,

parallel imaging with a GRAPPA factor of 2, and 8 min scan duration)

using a magnetization-prepared rapid acquisition gradient echo

(MPRAGE) sequence. This scan was used as anatomical reference to

the EPI data during the registration procedure.

4 | STATISTICAL ANALYSIS

4.1 | Behaviour

Subjects' temporal and spatial estimates of target stimulation were

measured by subjects' response time after stimulus occlusion and
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correct prediction of vertical direction (accuracy), respectively. Missed

trials, trials with RT smaller than 0.1 s and greater than the mean + 3

SD were excluded from the analysis. In addition, we calculated the

temporal estimation error by taking the difference between the

amount of time the stimulus travels behind the occluder and partici-

pants' response time. We used a 2 � 2 repeated measures ANOVA

(direction � velocity) for investigating differences in accuracy,

response time and temporal estimation error. All behavioral and uni-

variate group fMRI analyses were calculated using JASP (v. 0.15.0,

https://jasp-stats.org/). JASP was also used to compute post hoc tests

(simple main effects function) and effect size (partial ƞ2).

4.2 | Retinotopy

A three-dimensional reconstruction of the cortical sheet based on the

structural image of each of the 16 subjects was performed using the

recon-all function of Freesurfer (https://surfer.nmr.mgh.harvard.edu/).

Retinotopic maps along the polar and eccentricity dimensions were

calculated for each of the cortical surfaces using the “selxavg3-sess”
function of Freesurfer. The right-hemispheric low-level visual areas

V1, V2, V3 were delineated manually on the flattened cortical sheets

based on the boundaries of phase reversals within the polar angle

maps (Abdollahi et al., 2014). Delineation of borders were created

based on of Georgieva et al. (2009) and Kolster et al. (2010). Based on

these delineations, we created six masks of V1, V2 and V3 for upper

and lower visual areas, which later was used to identify region-specific

local maxima during the visible and occluded phase. Probabilistic maps

of MT and LOs as provided by Freesurfer parcellation for each subject

were included in the analyses. Freesurfer labels were converted to

volume ROIs based on Freesurfer mri_vol2roi function. LO masks

were separated in LO1 and LO2 using Georgieva et al. (2009) and Kol-

ster et al. (2010) delimitations. Results of the LO and MT ROIs can be

found in the supplementary material.

4.3 | fMRI preprocessing

Participants' data from both days were analysed using SPM12 (www.

fil.ion.ucl.ac.uk/spm, Wellcome Trust Centre for Neuroimaging,

London, UK). The first five volumes of each run were discarded to

allow for steady state magnetization. Functional images were slice-

timing corrected and spatially realigned (registered to the mean

image). Head motion parameters were later used as nuisance regres-

sors in the general linear model (GLM). Finally, the structural image

was coregistered (estimate and reslice) to first functional image of the

first run. Resliced images were smoothed with a Gaussian kernel

of 6 mm.

4.4 | fMRI data modelling

The participants' functional data of days 1 and 2 for each task were

modelled with a single general linear model (GLM, Friston

et al., 1995), which included the run-wise condition parameters, deriv-

atives, and six motion regressors as nuisance covariates. In particular,

regressors of each condition (up-fast, down-slow, up-slow, down-fast

or up-slow, down-fast, up-fast, and down-slow) were specified by

using canonical hemodynamic response function (HRF). Temporal and

dispersion derivatives of each regressor were added to the model in

order to account for variability in the onset response (Friston

et al., 1998). From the condition-specific maps of beta weights aver-

aged across runs of each participant, we extracted beta weights from

subject-specific V1, V2, V3 (see below for details of retinotopic analy-

sis) for the univariate group analysis using MarsBar 0.44 (Brett

et al., 2002). For direct comparison of activity pattern of direction tra-

jectory in different quadrants (upward trajectory in lower quadrant

and downward trajectory in upper quadrant), we performed pre-

planned pairwise Student's T test (up vs. down in upper and lower

visual field). Additionally, for a full, yet exploratory analysis, a

2 � 2 � 2 � 3 repeated measures ANOVA was calculated with the

factors: direction (upward, downward), velocity (fast/slow), visual

region quadrants (VQ; upper/lower) and visual regions (V1, V2, V3)

for both visible and occluded phases, followed by post-hoc analyses,

when necessary.

4.5 | Multivariate pattern analysis

In order to complement the univariate analysis, we executed a series

of multivariate pattern analyses, using CoSMoMVPA (Oosterhof

et al., 2016), designed to identify whether patterns of activity during

visible stimulation can be used to accurately classify the patterns of

activity during occlusion. To this end, we performed volume-based

searchlight analyses with a 4.4 mm radius (two voxels) using run-wise

beta weights (proportional to percent signal change), in native space

for each condition, as datasets (two beta-values per run: one for each

condition). Searchlight analyses were chosen to retain a high spatial

specificity. In particular, a linear discriminant analysis (LDA) classifier

was trained in the 10 runs of the visible phase (20 beta values), using

a leave-one-run-out approach, and tested in the 12 runs of the

occluded phase (24 beta values). This analysis is below referred to as

“Train Visible-Test Occluded”. As sanity checks, the classifier was also

trained and tested on the runs of visible only and occluded only, using

n fold partitions. Ahead, these analyses are referred to as “Train/test
Visible” and “Train/test Occluded”, respectively. As a further manipu-

lation check, the classifier was also trained and tested on motion

velocity (see supplementary material for this last sanity check).

We carried out one searchlight analysis per region of interest

(upper and lower V1–V3, etc.), to increase the spatial specificity to the

classification and to be able to draw conclusions per functional region

(see Porcu et al., 2020 for a similar approach). For each searchlight

sphere within a given region one accuracy value was obtained. We

focused the analysis on the specific spheres inside the ROIs which

contained informative voxels. This chosen searchlight approach inside

visual regions without further restrictions allows for spatially specific

conclusions. An alternative analysis approach would have been to

focus only on those voxels within V1 which showed an enhanced
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response during the independent functional localiser. However, this

theory-driven approach would not allow to draw any conclusions

about the potential informational content outside these preselected

voxels. Therefore, we used a data-driven approach and analysed all

voxels within each of the low-level regions. Each visual region con-

tained an average of 2632 voxels and each sphere accommodated an

average of 27 voxels. Note however, that spheres close to the edge of

a visual region contained less voxels. Hence, the analysis might be

more sensitive at the centre of a visual region where 33 voxels were

situated inside the searchlight spheres. To select the most informative

voxels within each visual region we adopted a thresholding procedure.

We applied a cut-off allowing only values above 0.5 to be in the anal-

ysis, excluding chance level spheres, as we predicted that only a

restricted number of searchlight spheres would contain meaningful

information, and computed the average of the 5% highest accuracy

values of the distribution. Hence, by using an information-based

rather than a visual-localizer based criterion, we ensured to have a

spatially unbiased selection criterion. We controlled that this approach

is bias-free by computing the overlap of train-visible-test-occluded

results with independent tests and data (train-visible-test-visible,

train-occluded-test-occluded plus the results from the independent

functional localiser). We reasoned that we should see an overlap

between informative spheres and the independent localiser if our

selection procedure would pick truly informative spheres rather than

some random noise (see also below next section 4.6. for an indepen-

dent assessment of this novel thresholding approach intro-

duced here).

To evaluate the statistical significance for each ROIs, permutation

tests were carried out within each subject separately (fixed-effects

analysis) and labels were randomly permuted within each run. Relabel-

ling was done within each permutation iteration in both training and

testing (Etzel, 2017), while keeping the same original dataset. The per-

mutation included 1000 iterations. For a spatially accurate compari-

son, we obtained the accuracy value from the same searchlight

spheres included in the 5% highest accuracy sample, for all 1000 sam-

ples for each individual person. The 5% maximum values were aver-

aged across spheres for the original and permuted dataset

permutation. For group level analysis, we also followed the Etzel

(2017) approach. The null distribution contained the average across

participants for each of the 1000 permutations with the addition of

the true-labelled group-level average, resulting in 1001 group-level

accuracies. The permutation p value was computed by taking the sum

of the permuted accuracies higher or equal to the true-labelled accu-

racy and dividing by the number of iterations plus 1.

4.6 | Projecting the spatial layout of MVPA-results
on visual field maps

By utilizing the well-established knowledge that low-level visual cor-

tex is spatially organised, we tested whether the searchlight spheres

with the highest decoding accuracy were overlapping across the inde-

pendent statistical tests (decoding of visual motion, occluded motion

and occluded motion by visual motion). The rationale behind that was

to confirm whether the regions inside each visual area, which encoded

trajectory information, were common across visible and occluded

phases. An overlap between the results from independent tests would

indicate that the voxel selection procedure does not produce unreli-

able results. To this end, statistical maps were first projected onto the

flattened cortical sheets. Based on the specific polar and eccentricity

maps, each vertex of the univariate and multivariate result maps could

be associated with a specific location within the visual field and later

be overlaid for comparison. Hence, in addition to showing flattened

anatomical maps, visual field maps were used as well for a standard-

ized projection of the results independent on individual cortical

sheets. We restricted this analysis to lower and upper V1, as these

regions contain neurons with the smallest receptive field size (Barbot

et al., 2021). An overlap of significantly modulated spheres would not

only confirm the validity of our voxel selection procedure but also

suggest at least a spatial proximity during the processing of the visible

stimuli and during visual extrapolation. To further corroborate these

findings, the univariate results of the functional localizer phase (con-

trast: up vs. down condition) were also overlaid, to confirm indepen-

dently that the regions containing patterns of significant MVPA-

results were in close proximity to the areas responding to visual stim-

ulation in the independent functional localizer.

5 | RESULTS

5.1 | Behavioural read-outs

Spatial Estimation (Where): After the visible phase, we expected the

participants to accurately indicate the motion direction according to

the velocity-direction association. Results corroborate our expecta-

tions, indicating that participants had very high-performance accuracy

(Figure 2a). Group averages for all occluded conditions were above

.92 accuracy (up-fast: mean (M)= .951, ±.035; up-slow: M = .969,

±.025; down-fast: M = .923, ±.070; down-slow: M = .952, ±.039).

Main effects of direction and velocity were not significant (F

(1,15) = 3.734, p = 0.072, ɳ2 = .199; F(1,15) = 3.851, p = 0.069,

ɳ2 = .204, respectively). No interaction between factors (F

(1,15) = .318, p = .581, ɳ2 = .021) was observed. These nonsignificant

differences across conditions observed here may suggest that the

association learning had the same level of difficulty independently of

direction and velocity.

Temporal Estimation (When): Participants showed a high consis-

tency in their time estimation (Figure 2b): Average response times

(RT) were consistent with physical stimulus velocity, that is, the time-

to-contact in the slow condition was estimated to be later than the

fast condition (up-fast: M = .528, ±.154; up-slow: M = .694, ±.244;

down-fast: M = .566, ±.114; down-slow: M = .654, ±.247). Accord-

ingly, a main effect of velocity (F(1,15) = 8.704, p = .010, ɳ2 = .367)

was observed. No significant main effect was found for direction (F

(1,15) = .003, p = .957, ɳ2 = .000), as well as no interaction between

factors (F(1,15) = 1.059, p = .320, ɳ2 = .066).
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Temporal Estimation Error: Figure 2c shows similar estimation

errors across all conditions (up-fast: M = .228, ±.154; up-slow:

M = .250, ±.241; down-fast: M = .266, ±.114; down-slow: M = .211,

± .243). In accord, no significant main effect for direction (F

(1,15) = .003, p = .957, ɳ2 = .000) or velocity (F(1,15) = .157,

p = .698, ɳ2 = .010), and also no interaction (F(1,15) = 1.059,

p = .320, ɳ2 = .066) was observed.

The results above indicate that, at the behavioural level, partici-

pants accurately estimated the stimulus end position, as well as time-

to-contact, the latter with a certain yet consistent bias from the reality

across all conditions (temporal overestimation).

5.2 | Univariate activation mapping

5.2.1 | Subject-specific results

In the first analysis step, we identified modulations in fMRI signal for

each individual participant using univariate analysis. Comparisons of

the trajectories (upward vs. downward) revealed significant patterns

of activity in regions representing upper and lower visual quadrants

contralateral to the stimulated hemifield, as expected (see Figure 3 for

an exemplary subject; all other subjects can be found in the

Figure S1). In contrast, the comparison of speed levels (fast vs. slow)

did not yield any significant modulations of fMRI signals in low-level

visual areas.

5.2.2 | Group results

Statistical comparison of univariate modulations during visible & occluded

phases: From all low-level regions of each individual participant based

on retinotopic masks, we extracted beta weights during the visible

phase from the local maxima and averaged them across participants

(Figure 4a). To test—in a first manipulation check—if we would be able

to differentiate upward and downward trajectories of visible stimuli in

V1–V3, we then statistically compared these beta weights. During the

presence of the target moving upward in the visible phase, lower V1,

V2 and V3 showed enhanced fMRI-signals compared to downward

movements (lower V1-upward: M = 8.376, ±3.845 vs. downward:

M = 2.985, ±2.818; V2-upward: M = 7.081, ±3.880 vs. downward:

M = 1.868, ±2.092; V3-upward: M = 6.450, ±3.165 vs. downward:

M = 1.998, ±2.010), as shown by the paired one-tail Student's t-tests

(upward > downward: t(15) = 7.534, pholm < .001; t(15) = 6.655,

pholm < .001; t(15) = 5.998, pholm < .001, respectively). During down-

ward movements in upper V1 compared to upward movements the

analysis revealed similar results (upper V1-downward: M = 11.797,

±5.845 vs. upward: M = 3.773, ±3.738; V2-downward: M = 9.418,

±4.229 vs. upward: M = 1.749, ±2.251; V3-downward: M = 7.788,

±3.162 vs. upward: M = 1.381, ±2.457), (V1-; V2-; V3-), as revealed

by the paired one-tail Student's t-tests (downward > upward: t

(15) = 7.944, pholm < .001; t(15) = 6.902, pholm < .001; t(15) = 8.653,

pholm < .001, respectively). Together, these findings show that the

visual stimulation was salient enough to elicit differential fMRI-signals

in accord with motion direction.

The identical locations independently identified during visible

stimulation (see above) were then used to analyse activation patterns

during occlusion. During the occluded phase, a pattern similar to the

visible phase was present for the lower VQ (Figure 4b): When partici-

pants were asked to temporally and spatially estimate upward move-

ments, enhanced fMRI-signals compared to downward movements

were observed in lower V1 (lower V1-upward: M = 16.834, ±6.225

vs. downward-: M = 15.696 ± 6.428; V2-upward: M = 13.057,

±7.234 vs. downward: M = 11.806, ± 6.725; V3-upward: M = 10.283,

F IGURE 2 Behavioural results: In all bar graphs (from left to right), light green bar (1st bar) depicts fast condition, darker green (2nd bar) slow
condition in upward direction, light blue bar (3rd bar) depicts fast condition and dark blue bar (4th bar) slow condition in downward direction. Red
dots superimposed on each bar represent behavioural results of all individual subjects. (a) Group average accuracy for spatial estimation. (b) Group
average reaction times for temporal estimations. (c) Group average reaction times for temporal estimation error (difference between physical
stimulus displacement time and estimated time)
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±6.777 vs. downward: M = 8.997, ±6.381). Statistical analyses

revealed significant differences in all three regions (upward > down-

ward: t(15) = 2.261; pholm = .040; t(15) = 1.990, pholm = .040; t

(15) = 2.919, pholm = .015, respectively). Unexpectedly, higher

response during upward movements was also registered in the upper

V1 (upper V1-upward: M = 21.027, ±11.401 vs. downward:

M = 20.435, ±10.059); however, this difference was not significant

(downward > upwards: t(15) = �0.851; p = .796). In contrast, we

found the hypothesised pattern for upper V2 (upper V2-upward

M = 14.174, ±5.896 vs. downward: M = 14.891, ±5.061) and V3

(V3-upward: M = 12.426, ±8.558 vs. downward: M = 12.986,

±8.072). Yet, these results were not significantly different (downward

> upwards—upper V2: t(15) = 1.023, p = .161; upper V3: t

(15) = �0.677, p = .254).

Unfolding interaction between factors: While the t-tests above

were pre-planned to directly test our main hypothesis, below we

extend our analysis by including the factor velocity, visual area (V1,

V2, V3) and visual quadrant (upper VQ = upper V1–V3; lower

VQ = lower V1–V3) using repeated measures ANOVAs. In the visible

phase statistical analysis revealed significant interaction between

direction and VQ (F(1,15) = 131.862, p < .001, ɳ2 = .898), plus veloc-

ity and direction (F(1,15) = 5.582, p = .032, ɳ2 = .271) and velocity

and VQ (F(1,15) = 30.566, p < .001, ɳ2 = .671). Post-hoc tests con-

firmed that fMRI-responses, due to downward direction, were higher

F IGURE 3 Univariate results of an
exemplary participant during (a) visible
phase and (b) occluded phase, for contrast
between upward (warm colours)
vs. downward (cold colours) projected on
the individual flat map. Retinotopic map
delimitations are indicated by stars
(central visual field), plus white and black
full and dashed lines indicating borders

between visual fields (Abdollahi
et al., 2014)

F IGURE 4 Univariate beta weights (proportional to percent signal change) during visible phase (upper row) and occluded phase (lower row).
Green bars depict average beta weights for downward trajectories, while purple bars average beta weights for upward trajectories. Stars indicate
significance between conditions inside each region on interest
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than upward direction in the upper VQ (MD = �7.367, SE = .672,

t = �10.962, pbonf < .001) and responses due to upward directions

were higher in the lower VQ compared to downward direction

responses in these regions (MD = 5.019, SE = .672, t = 7.468,

pbonf < .001), confirming the above t-tests. In addition, slow motion

resulted in significantly higher fMRI-signals in upper relative to lower

visual quadrant; while no such effect was seen for fast motion

(VQ *velocity � slow in upper VQ vs. slow in lower VQ: MD = 5.940,

SE = 0.589, t = 4.991, pbonf < .001) and the slow motion also differed

for upward vs. downward direction, while no such effect was

observed for fast motion (direction*velocity: up-slow vs. down-slow:

MD = �2.185, SE = .586, t = �3.726, pbonf = .005). Finally, the dis-

tinct pattern of responses yielded main effects for direction (F

(1,15) = 8.575, p = .010, ɳ2 = .364), VQ (F(1,15) = 5.744, p = .030,

ɳ2 = .277), and visual areas (F(1,15) = 9.327, p < .001, ɳ2 = .383) with

higher responses for the downward vs. upward direction, higher

responses for upper VF field than lower VF and enhanced responses

in V1 compared to V2 (MD= 1.704, SE= .558, t= 3.053, pbonf = .014)

and to V3 (MD = 2.328, SE = .558, t = 4.172, pbonf = <.001).

During the occlusion phase, statistical analysis again revealed

interactions between direction and VQ (F(1,15) = 5.331, p = .036,

ɳ2 = .262), supporting the t-test results, direction and velocity (F

(1,15) = 32.746, p < .001, ɳ2 = .686), velocity and visual areas (F

(1,15) = 5.371, p = .010, ɳ2 = .264), plus a triple interaction between

direction, velocity and visual areas (F(1.22,18.4) = 19.087, p < .001

(Greenhouse–Geisser-corrected), ɳ2 = .560). A Post-hoc comparison

for the hypothesized interaction indicated marginally significant

results for downward motion in the lower visual quadrant compared

to upper visual quadrant (MD = 3.938, SE = 1.412, t = 2.788,

pbonf = .077). In addition, post-hoc tests for interaction of direction

and velocity revealed that fast motion led to enhanced responses

compared to slow motion in the upward direction (MD = 5.129,

SE = 1.280, t = 4.006, pbonf = .003), while no significant effect for

fast vs. slow motion was observed for the downward direction. Post-

hoc tests of velocity*visual area interactions revealed that fast

responses compared to slow response were most prominent in V1,

whereas the triple interaction with direction revealed that this eleva-

tion in V1 was highest for upward motion, while significant differ-

ences for downward motion was seen only in V1 compared to V3 for

fast condition (see Figure S2). Finally, main effects revealed results

similar to the visible phase with upper visual regions eliciting higher

responses than lower visual regions (F(1,15) = 5.439, p = .034,

ɳ2 = .266). Moreover, V1, V2 and V3 again expressed differential

effects (F(1,15) = 16.534, p < .001, ɳ2 = .524). Comparisons showed

that V1 presented higher beta values than V2 (MD = 5.016,

SE = 1.302, t = 3.851, pbonf = .002) and V3 (MD = 7.325,

SE = 1.302, t = 5.624, pbonf < .001).

Together, the univariate results indicated that low-level visual

regions were modulated by direction at least in one of the VQ during

occlusion phase, thus they do in part support our hypothesis. How-

ever, the absence of significant effects in one quadrant might be due

to the lower sensitivity of univariate analysis approaches as it is well

known that multivariate pattern analysis has a higher sensitivity than

traditional univariate analysis (e.g., Li et al., 2009). Moreover, MVPA

allows for drawing conclusions about the representational content

within activation patterns (Anzellotti & Coutanche, 2018). To test our

research question even more thoroughly, we performed run-wise

GLM analysis and used the resulting beta values as input to multivari-

ate pattern analysis.

5.3 | Multivariate pattern analysis

A series of volume-based MVPA analyses was applied to test for pat-

tern similarity between visible and occluded stimulation periods. Here,

we will present the crucial results focusing on direction changes

(pooled over the two levels of velocity), for results focusing on veloc-

ity (please see the supplementary material).

Classifying Direction Patterns of Visible from Occluded Phase: This

classification analysis was most crucial to test our hypothesis for a

common engagement of low-level visual cortex during the presenta-

tion of visible and dynamically occluded motion (“train-Visible-test-
Occluded”—the classifier was trained in visible phase data and tested

in the occluded phase data). It was performed with the main purpose

of decoding similar activation patterns for visible and occluded phases

in upper and lower V1–V3. For these multivariate analyses, maps of

beta weights for upward and downward motion were calculated run-

wise separately for visible and occluded phase and used as input.

Results (Figure 5 and Table 1a) show that direction-specific infor-

mational patterns from the visible phase could be used to decode

informational patterns in the occluded phase in the lower AND upper

V1, V2 and V3 significantly extending the results from the univariate

analysis by showing the similarity in spatial layout of the informational

content of these two phases (see below for a more thorough descrip-

tion of the spatial layout within V1).

Classifying Direction Patterns from Visible & Occluded Phase: As

manipulation checks, we performed MVPAs separately for the visible

and occluded phase to check for reliability of the classification (“train/
test Visible only” and “train/test Occluded only”—the classifier was

trained and tested separately on visible or occluded phase data). For

both phases we found direction-specific informational patterns of

activity predicting motion trajectory. For these two separate analyses,

we also expected accuracy values to be higher when the classifier was

trained and tested in the visible phase, once the stimulus was all the

time present. Indeed, results (Table 1b) indicated higher accuracy

values for visible phase compared to the cross-phase analysis and to

the occluded phase analysis, and higher values of the latter compared

to the cross-phase analysis (Figure 5). These results further confirmed

that the classifier decoded the relevant direction-specific information

and that the information was somewhat diluted during occlusion com-

pared to visible stimulation.

Above, we used averaged scores of accuracies across participants.

For maximal transparency and to give the reader an impression of the

interindividual variability, Figure 6 shows the average decoding accu-

racies for each ROI, for every subject. We observed a higher interindi-

vidual variability in decoding accuracy during the occluded phase,
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compared to the other phases. The number of spheres included in the

5% sample of most informative voxels adopted also varied across sub-

jects, following a heterogeneous pattern, but did not show a bias

towards one analysis. The average of spheres across the three ana-

lyses is 84.21 (±30.08) spheres.

Spatial layout of significant spheres across classification analyses:

The projection of location of the significant spheres map for each

analysis onto the retinotopic maps was carried out to verify their

exact anatomical location. Comparing the overlap of spheres maps

across analyses will tell us where, within the visual field, the map can

be found and what their exact spatial layout would be, that is, scat-

tered or concentrated. This, in turn, allows us to draw firm conclusions

regarding their representational content, especially if they are concen-

trated in a portion within the visual field which encodes the visible

stimulus. For this, we focused in V1 which contains neurons with the

highest spatial acuity and projected retinotopic maps on visual field

representations (Duncan & Boynton, 2003; Song et al., 2015). More-

over, we also included the results from the univariate functional

F IGURE 5 Decoding accuracies for all
classification analyses in upper and lower
V1–V3. Dashed line depicts the
theoretical chance level, though note that
the chance level used for statistical testing
was derived from permutations tests.
Purple bars show average accuracies for
the classification analysis trained on
visible data and tested on occluded data

(train visible-test occluded). Blue bars
show the accuracies for the classification
analysis with training and testing the
visible phase only (train-test visible only)
and green bars depict average accuracies
for the analysis using occluded data (train-
test occluded only) also during both
training and testing

TABLE 1 Decoding accuracies for (a)
training on visible, testing on occluded

classification analysis and (b) separate
train/test visible and train/test occluded
classification analyses, in upper and
lower V1–V3

Direction Quadrant ROI Accuracy SE Permutation p

(a)

Train: visible

Test: occluded

Lower V1 0.602 0.005 <.001

V2 0.611 0.006 <.001

V3 0.611 0.006 <.001

Upper V1 0.607 0.009 <.001

V2 0.597 0.006 <.001

V3 0.608 0.007 <.001

(b)

Train: visible

Test: visible

Lower V1 0.862 0.022 <.001

V2 0.817 0.020 <.001

V3 0.804 0.022 <.001

Upper V1 0.863 0.019 <.001

V2 0.857 0.020 <.001

V3 0.837 0.015 <.001

Train: occluded

Test: occluded

Lower V1 0.651 0.009 <.001

V2 0.660 0.009 <.001

V3 0.671 0.010 <.001

Upper V1 0.668 0.013 <.001

V2 0.681 0.013 <.001

V3 0.673 0.013 <.001
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localiser as a further manipulation check. For the visual fields subject-

specific density maps were computed signifying the concentration of

significant spheres within specific regions of the visual field. Figure 7

(top) shows visual field maps of an exemplary subject, in which we

observed overlapping density maps for the different statistical tests,

thereby confirming the validity of our voxel selection approach as the

independent tests reveal a large overlap across tests. Across partici-

pants, overlap of the functional localiser (green line) with significant

spheres from the visible phase (blue line) was observed for 13 partici-

pants in lower V1 and for eight participants in upper V1, which indi-

cates a robust reliability, once the stimulus is physically present even

across multivariate and univariate methods. For visible and occluded

phases, the overlap was observed for all 16 in both upper and lower

V1, while for visible and visible-occluded, we observed the overlap for

14 participants in the upper V1 and 15 for the lower V1. Finally, for

occluded and visible-occluded phases, the overlap was found for 13 in

the upper V1 and 14 participants in lower V1. It should be noted,

however, that for some subjects we find that parts of the density map

fall outside the stimulated visual quadrant. This scattering was most

likely caused by the quality of the polarity maps which was not high

enough in all parts of visual cortex to allow for an errorless transfor-

mation, though note that the delimitation of different visual fields was

not affected by these local variations in polar maps. Importantly, when

inspecting the location of significant spheres in anatomical space

overlaid onto the curvature, polarity and eccentricity maps (see

Figure 7, bottom), we could confirm that the significant clusters were

located in the upper and lower lip of V1, respectively.

We interpret our findings as evidence that different types of

information can be found in similar regions of the visual field within

primary visual cortex. Results for different analyses of spheres, selec-

tive for different types of visual stimulation, converge within topo-

graphically organized regions within the early visual cortex.

Importantly, it should be noted that this pattern of results is unbiased

as the different analyses were spatially unrestricted within visual

regions and carried out with independent data sets from different

runs, at least for the analysis of the functional localiser, the train/test

visual data only and train/test occluded data (train/test occluded) only

MVPAs. That confirms that the information-based searchlight selec-

tion criterion did not randomly pick arbitrary voxels within the visual

cortex. Rather, the selection reflected the spatial selectivity of cortical

regions representing the very same stimulus throughout different con-

ditions, even during occlusion.

6 | DISCUSSION

Our study tested the involvement of low-level visual regions in con-

tinuous motion extrapolation by comparing visible and occluded stim-

ulus trajectories. Our behavioural results demonstrate that

participants were highly accurate in judging the target's direction and

time of arrival. The general overestimation of time intervals that we

observed seems to be related to our specific stimulus settings. Here,

short intervals (around 250–800 ms) were employed which are often

overestimated (Benguigui et al., 2003; Bennett et al., 2018; Vicovaro

et al., 2019). Remarkably, univariate fMRI-results showed that, to

some extent, activity in low-level visual regions was tied to estimated

motion trajectories. The more sensitive MVPA-analysis revealed that

the activity pattern in V1 evoked by visible motion was indeed infor-

mative about the direction of the trajectory during occlusion. Finally,

the location of informative spheres was consistent across several

independent classifications, strongly suggesting that the sub-regions

within low-level visual areas, coding the stimulus trajectory, were

selectively engaged; and this claim was further supported using fMRI-

based receptive field mapping of the informative regions.

6.1 | Univariate fMRI-results

Our univariate fMRI-analysis compared velocity and directional

changes in low-level visual areas. During the occlusion phase,

F IGURE 6 Violin plots of accuracy distribution. Average decoding accuracies of each participant are represented by the coloured dots, in
each of the 6 ROIs. The left plot depicts the results of the classification analysis trained on visible data and tested on occluded data (train visible-
test occluded), middle plot shows the classification analysis with training and testing on the visible phase data only and right plot depicts the

analysis using occluded data also during both training and testing phases
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participants were required to make a judgement based on two estima-

tions: one temporal and one spatial, and the spatial estimate was

dependent on the perception of velocity as well. FMRI-results

revealed that velocity did not consistently modulate fMRI-signals in

any low-level visual areas, while the motion trajectory selectively

modulated neural activity during the visible phase and partially during

occlusion. We attribute this outcome to the dominance of spatial esti-

mation over temporal estimation, which might be due to the well-

known higher spatial acuity of the visual system (Klein et al., 2018;

Welch & Warren, 1986). Our motion direction results indicate that

low-level visual areas were engaged during the occlusion of the target,

thereby extending previous observations on the involvement of pri-

mary visual cortex in apparent motion (Ekman et al., 2017) to continu-

ous motion extrapolation. In particular, the vertical visible trajectory

elicited responses in the upper visual area for downward direction

and in the lower visual area for upward direction, as expected. During

the dynamic occlusion of the stimulus, similar patterns of activation in

the lower quadrants of the visual regions were observed, partly sup-

porting particular theories about the mechanisms of motion extrapola-

tion, which posit that a visual representation of a non-visible object is

maintained during occlusion. These results are also in line with previ-

ous mental imagery findings which investigated imagery using retino-

topic mapping and found activation in both striate and extrastriate

cortex for imagined objects (Slotnick et al., 2005).

However, this similarity in univariate activation patterns was less

pronounced for the upper visual areas (lower visual field), rather an

overall higher activation in upper V1 relative to lower V1 was

observed regardless of visual trajectory. Asymmetry in the upper

vs. lower visual quadrants has been previously reported and one pos-

sible explanation might be the distribution of “near-preferring” neu-

rons, which tend to be more frequent in lower VF compared to upper

VF (Karim & Kojima, 2010; Nasr & Tootell, 2018, 2020). In general,

psychophysiological studies demonstrated that lower visual field

seems to be more thoroughly engaged in tasks from different

domains, such as motion (Danckert & Goodale, 2001; Lakha &

Humphreys, 2005; Levine & McAnany, 2005), colour discrimination

and hue sensitivity (Levine & McAnany, 2005). This difference

between lower and upper visual field is known as vertical meridian

asymmetry which is more pronounced at larger eccentricities (Barbot

et al., 2021; Carrasco et al., 2001). Visual field asymmetries have also

been reported for the crowding phenomenon (He et al., 1996), the

spatial resolution of attention (Intriligator & Cavanagh, 2001), distribu-

tion of receptive field properties and orientation preference (Merkel

et al., 2020) and may be further amplified by reading habits (Rinaldi

et al., 2014). Finally, there might have been an evolutionary advantage

preferring downward over upward movements, that is, for catching

things falling down than flying away, similar to the preference for

looming vs. receding stimuli (e.g., Tyll et al., 2013), which could explain

the asymmetry observed for the univariate results.

In addition to the upper vs. lower VF asymmetry observed during

the comparison between visible and occluded vertical trajectories, we

also observed overall enhanced fMRI-signals during partially occluded

F IGURE 7 Significant decoding accuracy maps projected onto retinotopic maps and derived visual field maps of one exemplary subject. Top:
Visual fields of lower V1 and upper V1. Black curvatures and dots depict the localization of the vertices with significant accuracies for the visible-
occluded (train in visible and test in occluded phase) classification. Blue and red curvatures and dots represent the localization of the vertices with
significant accuracies for the visible (train and test in visible phase) and occluded (train and test in occluded phase) classifications, respectively.
Green lines and dots represent the same, but here results from the univariate functional localizer was used. Dots which spread to other quadrants
could indicate scattered representations, but might be partly reflect the quality of retinotopic mapping itself. Bottom: Significant decoding
accuracy maps overlaid on flattened anatomical maps of occipital cortex (right), the retinotopic eccentricity (middle) and polarity maps (left). This
figure suggests that occluded motion prediction and visual motion perception) processes converge in similar parts of those low-level visual areas
of the brain which represent the motion trajectory

AGOSTINO ET AL. 1401



relative to the visible phase. Note that participants passively observed

the stimulus travelling on the screen during the visible phase, whereas

during the occluded phase, they actively had to be engaged with the

task. This latter task set may have required a higher level of attention

(Klein et al., 2014; Zuanazzi & Noppeney, 2020). On the theoretical

level, this difference may be explained in the light of the Rao and Bal-

lard (1999) predictive coding model. In the visible phase, once the

stimulus became predictable, less error-correction signals might have

been exchanged between lower and higher visual areas, reducing the

height of the neural response (Alink et al., 2010). On the other hand,

the lack of visual information during the occluded phase might have

intrinsically decreased the predictability level, leading to higher activ-

ity due to the need of prediction. On a mechanistic level, the activity

in V1 during occlusion may have also been primarily caused by

feedback projections from higher cortical regions which terminate in

supragranular and infragranular layers, whereas during passive viewing

feedforward projections predominantly to the granular layer may have

been primarily engaged (e.g., Felleman & van Essen, 1991). Accord-

ingly, fMRI-responses in supragranular layers were recently found to

be enhanced relative to lower cortical layers during experimental con-

ditions which required feedback from higher cortical regions

(de Hollander et al., 2021).

The origin of feedback could have been in several regions: As in

apparent motion studies (Edwards et al., 2017; Muckli et al., 2005;

Sterzer et al., 2006), low-level visual regions in our study may also

have received feedback projections from higher visual areas, such as

V5, containing information about the extrapolated trajectory. The

causal influence of V5 over V1 was recently reported, in a double-

pulse TMS-study (Vetter et al., 2015). There, Vetter and colleagues

demonstrated that during the presentation of predictable and unpre-

dictable stimuli in an apparent motion context, TMS over V5 could

impair the ability to detect predictable targets. Accordingly, Sterzer

et al. (2006) used directional connectivity analysis, dynamic causal

modelling, and observed that activity in V1 related to apparent motion

processing was modulated by feedback activity from V5. Others, how-

ever, have pointed to a role of LOC in occlusion-completion

(Kourtzi & Kanwisher, 2001; Lerner et al., 2004), though note that the

decoding accuracies in LOC were the lowest in our study. Finally, sig-

nal changes in low-level visual areas during occlusion could have also

been due to enhanced connectivity with even higher-level areas in

prefrontal cortex (e.g., Summerfield et al., 2006). Finally, it should be

noted that feedback from higher-level to lower-level visual areas

might not be restricted to occluded stimuli but also may occur with

visible stimulation (e.g., Noesselt et al., 2002; Wolf et al., 2022).

Potentially, the decoding algorithm might have picked up the common

feedback-induced signal change when training on visible data and

testing on occluded data. Future studies could use high-resolution

fMRI to investigate the cortical layers most involved in visible and

occlusion-related processing.

In contrast to our univariate results, previous fMRI studies often

failed to reliably observe the recruitment of low-level visual areas dur-

ing motion prediction (Shuwairi et al., 2007). Olson et al. (2004)

observed high engagement of inferior parietal sulcus and also

reported a strong decrease in fMRI-signal in V1/V2 during occlusion.

Our contradictory results could be attributed to the use of techniques

such as retinotopy, which allowed us to precisely identify low-level

visual areas individually in each participant, targeting the specific low-

level visual regions, while accounting for inter-individual anatomical

variability (Amunts et al., 2000; Greenlee, 2000). In accord with our

results, Ban et al. (2013) used subject-specific retinotopic mapping to

compare visible and occluded moving stimulation along a smooth tra-

jectory. The authors observed that even during occlusion, the target

could be topographically represented in V1 and V2. Additionally, two

recent studies which based their analysis on subject-specific retinoto-

pic mapping were also able to observe effects in low-level visual cor-

tex during imagery of motion (Emmerling et al., 2016) and shape

predictions again along a smooth trajectory (Erlikhman &

Caplovitz, 2017). Both studies also used multivariate pattern analysis,

which allows to draw conclusions not only on correlative brain-

behaviour relationships but on the informational content represented

within brain regions.

6.2 | Multivariate fMRI-results

Our MVPA results further extend our findings by showing that the

patterns of activity in upper vs. lower visual field representations

could be used to predict changes in motion trajectories during visible

stimulation and during occlusion on their own. Most importantly, the

data from visible trajectory processing could also be used for training

to predict invisible motion during occlusion. It should be noted that

these results significantly extend the univariate results during the

occlusion phase by showing that the pattern of activity in low-level

visual areas shows some commonalities during visible motion changes

and occlusion. These results are also in line with a recent study which

suggests that even with no stimulation in these regions, it is possible

to decode information based on continuous perception (van

Kemenade et al., 2022). Additionally, the successful prediction does

not depend on the difference in activation height for upward versus

downward tasks, as the lower visual regions did not show enhanced

fMRI-signals for occluded upward vs. downward motion in the univar-

iate analysis. Therefore, the pattern of activity, rather than an overall

difference in response-amplitude most likely accounts for the results

in V1 and also in V5 (see supplemental material), which did not show

significant univariate results (see also Wang et al., 2014 for similar

results), but yielded significant classification accuracies for motion

direction and velocity during occlusion using MVPA. Despite the simi-

larities in activation pattern, which led to the significant prediction

accuracies, it should also be noted that there were some differences

in MVPA-results between occluded and visible conditions: group aver-

aged accuracy values were systematically higher for visible classifica-

tion than occluded classification. This difference may attribute to the

fact that the classifier was capturing a more reliable response with vis-

ible stimulation compared to a dynamically stimulus occlusion.

Remarkably, the projection of significant spheres onto the retino-

topic maps suggested that the location of the most informative voxels
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overlapped across the three independent classification analyses (visi-

ble and occluded stimuli, plus across category) plus the univariate

functional localizer. This overlap of visible and occluded informative

activity patterns in the visual field may suggest that shared computa-

tional circuits in primary visual cortex do exist, supporting both pro-

cesses. However, layer-specific fMRI and/or single-cell studies are

needed to further corroborate this interpretation. The spatial layout

of our results also confirms the plausibility of our sphere-selection

approach, since overlapping results were found across different ana-

lyses. However, it is worth-mentioning that our MVPA-approach of

using searchlights inside a small region leads to a lower number of

voxels in spheres close to the edges of any visual region, thereby

potentially reducing the robustness of the MVPA estimates there.

While this might have reduced the significance of spheres at these

other approaches (i.e.) including some voxels from neighboring regions

would have reduced the functional specificity of the analyses. More-

over, while our approach might have been conservative towards a

region's edges we still find informative spheres across our indepen-

dent tests.

Our subject-specific approach was necessary once the target

regions show considerable interindividual anatomical variability, thus

differing from the standard fMRI-group analysis, which is traditionally

based on the assumption of spatial commonalities across participants

after spatial transformation of individual brains to a standard refer-

ence brain. Furthermore, by performing our analysis using the voxels

selected from visible phase rather than the functional localizer, we

unconstrained our tests and characterized the spatial overlap. We

believe that such a data-driven approach can give an unbiased picture

of the underlying processes as it holds fewer prior assumptions and

allows to draw conclusions about regions within low-level visual areas

which did not code the visible stimulus. Using this unrestricted analy-

sis approach, we observed the overlap of significant spheres for

occluded and visible motion processing and the visual field projections

of significantly modulated spheres indicate that these spheres include

receptive fields along the motion trajectory.

Finally, a remarkable outcome from this study is that our results

were similar to mental imagery studies (e.g., Albers et al., 2013), despite

the fact that no explicit instruction was given to the participants to

imagine the stimulation. Instead, we aimed to investigate whether low-

level visual cortex would engage during the presentation of occluded

stimulation without the participant having previous knowledge about a

specific strategy for performing the task. Future studies could explicitly

instruct participants to imagine occluded trajectories and observe if

the observed effects vary as a function of task instruction.

To conclude, we investigated the neurobiological processes

underlying motion extrapolation for abrupt trajectory changes as

indexed by patterns of activity in low-level visual regions during the

presentation of visible and dynamically occluded trajectories. Our

results demonstrate that temporal information can aid spatial predic-

tions at the neural level and that these effects occur in low-level visual

regions. Most importantly, our data support the notion that virtually

identical regions inside lower and upper V1, V2 and V3 represent

information about visual stimulus trajectories in the absence of visual

stimulation and suggests that shared neural circuits may be utilized

when processing visible and extrapolated trajectories.
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