
1560  |   	﻿�  CPT Pharmacometrics Syst Pharmacol. 2022;11:1560–1568.www.psp-journal.com

Received: 6 May 2022  |  Revised: 13 September 2022  |  Accepted: 16 September 2022

DOI: 10.1002/psp4.12870  

M I N I - R E V I E W

Comparing the applications of machine learning, 
PBPK, and population pharmacokinetic models in 
pharmacokinetic drug–drug interaction prediction

Jaidip Gill1  |   Marie Moullet1  |   Anton Martinsson2   |   Filip Miljković2   |   
Beth Williamson3  |   Rosalinda H. Arends4  |   Venkatesh Pilla Reddy1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

1Clinical Pharmacology and 
Quantitative Pharmacology, Clinical 
Pharmacology and Safety Sciences, 
Biopharmaceuticals R&D, AstraZeneca, 
Cambridge, UK
2Imaging and Data Analytics, Clinical 
Pharmacology & Safety Sciences, 
Biopharmaceuticals R&D, AstraZeneca, 
Gothenburg, Sweden
3Oncology DMPK, Oncology R&D, 
AstraZeneca, Cambridge, UK
4Clinical Pharmacology and 
Quantitative Pharmacology, Clinical 
Pharmacology and Safety Sciences, 
Biopharmaceuticals R&D, AstraZeneca, 
Gaithersburg, MD, USA

Correspondence
Venkatesh Pilla Reddy, Clinical 
Pharmacology and Quantitative 
Pharmacology, Clinical 
Pharmacology and Safety Sciences, 
Biopharmaceuticals R&D, AstraZeneca, 
Cambridge, UK.
Email: venkatesh.reddy@astrazeneca.
com

Present address
Beth Williamson, DMPK, UCB, Surrey, 
UK

Rosalinda H. Arends, Bioinformatics & 
Data Science, Exelixis, Alameda, CA, 
USA

Abstract
The gold-standard approach for modeling pharmacokinetic mediated drug–drug 
interactions is the use of physiologically-based pharmacokinetic modeling and 
population pharmacokinetics. However, these models require extensive amounts 
of drug-specific data generated from a wide variety of in vitro and in vivo mod-
els, which are later refined with clinical data and system-specific parameters. 
Machine learning has the potential to be utilized for the prediction of drug–drug 
interactions much earlier in the drug discovery cycle, using inputs derived from, 
among others, chemical structure. This could lead to refined chemical designs 
in early drug discovery. Machine-learning models have many advantages, such 
as the capacity to automate learning (increasing the speed and scalability of pre-
dictions), improved generalizability by learning from multicase historical data, 
and highlighting statistical and potentially clinically significant relationships 
between input variables. In contrast, the routinely used mechanistic models 
(physiologically-based pharmacokinetic models and population pharmacokinet-
ics) are currently considered more interpretable, reliable, and require a smaller 
sample size of data, although insights differ on a case-by-case basis. Therefore, 
they may be appropriate for later stages of drug–drug interaction assessment 
when more in vivo and clinical data are available. A combined approach of using 
mechanistic models to highlight features that can be used for training machine-
learning models may also be exploitable in the future to improve the performance 
of machine learning. In this review, we provide concepts, strategic considera-
tions, and compare machine learning to mechanistic modeling for drug–drug 
interaction risk assessment across the stages of drug discovery and development.
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THE SIGNIFICANCE OF DRUG–
DRUG INTERACTION MODELING

With an aging population, polypharmacy has become 
widespread, with an average prevalence of ~32% in elderly 
adults across Europe.1 The direct impact is that patients 
are at increased risk of drug–drug interactions (DDIs). 
The affected drug is known as the “victim,” whereas the 
drug modulating a change in the other is known as the 
“perpetrator.” Pharmacokinetic (PK) DDIs are a type of 
DDI caused by shared absorption, distribution, metabo-
lism, or excretion (ADME) pathways, leading to changes 
in drug exposure.2 This altered effect can lead to negative 
consequences in health care. For example, the exposure 
may fall below efficacious levels. If the exposure increases, 
then there is an increased risk of adverse drug events 
(ADEs). Therefore, prediction of PK DDIs is important in 
preventing loss of efficacy and avoiding ADEs.

One approach to PK DDI prediction is mechanistic 
modeling.3 This approach can either be static (snapshot in 
time and incorporate in vitro data and predicted [or mea-
sured] clinical exposure) or dynamic (integration of drug-
dependent and system-dependent parameters over time). 
Currently, two of the standard approaches to dynamic 
modeling of DDIs are physiologically-based pharmacoki-
netic (PBPK) and population pharmacokinetic (Pop-PK) 
models. These use differential equations to describe drug 
PKs based on known biological processes. Another ap-
proach is machine learning (ML), which utilizes statisti-
cal relationships between variables to make predictions. 
The use of ML in drug development has increased over 
recent years and has already been applied to various parts 
of the drug discovery pipeline,4 such as target identifica-
tion and validation, small molecule design, biomarker dis-
covery, and pathology prediction. The two approaches will 
be compared in this review to determine their respective 
applications in DDI modeling.

PBPK/POP-PK MODELING

PBPK models predict the changes in PK profiles of a drug 
prior to clinical use, making it useful in identifying the 
key DDI risks before first use in humans. The input pa-
rameters describe properties which may be intrinsic to the 
drug (e.g., solubility, fraction unbound in the blood [fub], 
in vitro intrinsic clearance, and permeability) or extrinsic 
(e.g., patient renal impairment).3 These parameters are 
then used to make predictions on the PK characteristics of 
the drug, representing a mechanistic, bottom-up approach 
to modeling based on the underlying pharmacological 
properties of the drug. The parameters and predictions of 
the model can then be verified in the clinic and data from 

clinical studies can then be used to refine the model, rep-
resenting a middle-out approach.3

In contrast, Pop-PK models utilize a top-down ap-
proach, where sources of clinical data are required with 
the appropriate sample numbers to be able to understand 
the variability in PKs between and within target popula-
tions identified. For example, a clinical nested DDI study is 
typically evaluated using Pop-PK analysis.5 In some cases, 
the Pop-PK analysis plan for DDI assessment must be es-
tablished prior to conducting the clinical study. The DDI is 
investigated as a categorical covariate (e.g., comedication 
effect on drug’s clearance or volume of distribution). The 
categorical value can change over the time course of the 
DDI, so the status of the DDI over time must also be con-
sidered.6 The precision of a covariate effect depends on the 
number of subjects in the study. Both approaches enable 
simultaneous modeling of DDIs and other PK properties.

MACHINE-LEARNING MODELING

Supervised ML is an approach to create mathematical 
algorithms to predict an outcome based on input vari-
ables. In the context of PK DDI modeling, supervised 
ML is often utilized where the outcome label is exposure 
and the predictors are in vitro and in vivo ADME data or 
physicochemical properties. Features are the predictor 
(independent) variables, whereas the label is a dependent 
variable that we predict. These models can be separated 
into regression and classification models: regression mod-
els predict continuous labels; and classification models 
predict discrete labels. The key difference between ML 
and PBPK/Pop-PK is that ML models automatically re-
establish mathematical relationships between training 
samples with each data update, whereas PBPK/Pop-PK 
requires manual derivation of differential equations to re-
late different PK parameters.

ML modeling requires choosing a function/algorithm 
that connects the input features to the outcome of the data-
set, in this case, DDI ratios.7 For example, linear regression 
models define a linear function that calculates the labels 
(e.g., area under the drug concentration curve [AUC] and 
maximum drug concentration [Cmax]), in terms of the fea-
tures (e.g., drug chemical properties and system parame-
ters). On the other hand, decision trees can be used to make 
predictions for each input sample using rule-based decisions 
on the features to predict the label. In all cases, the model 
must be fit to the training data by selecting parameter val-
ues that lead to optimal performance. The optimal parame-
ters are those that lead to the lowest loss (prediction error). 
These algorithms also have hyperparameters – user-defined 
parameters. The choice of hyperparameters also depends 
on minimizing the “loss.”7 Therefore, the most accurate 
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prediction of DDIs depends partially on optimal selection of 
the parameters and hyperparameters used for a given ML al-
gorithm. The strengths/weaknesses of ML will be compared 
to PBPK/Pop-PK models below.

ML has previously been applied to DDI prediction using 
features describing chemical structure. For example, a deep 
neural network model used structural similarity profiles to 
predict 86 distinct types of DDIs, including the prediction of 
possible causal mechanisms for the DDI.8 Another method 
improved upon this by accounting for the mechanism of 
interaction between drugs, meaning the model represents 
DDIs as a function of the relevant functional groups rather 
than other overlapping substructures that are irrelevant for 
the mechanism of interaction. This was done by generating 
coefficients that represent the relevance of a substructure to 
a DDI.9 These methods can be applied in early drug discov-
ery due to being dependent only on chemical structure as 
an input. Their use-case may therefore be to aid in selecting 
drug candidates in early discovery by prioritizing drugs that 
have a limited chance of interaction with an established co-
medication based on structural similarity.

Structure-based approaches cannot describe the clin-
ical significance of the DDIs because they do not factor 
in dose. In addition, they do not utilize the extensive PK 
data generated later in development that could otherwise 
improve predictive accuracy. Therefore, ML models that 
utilize knowledge graphs have been developed for late-
stage drug development DDI prediction. These knowl-
edge graphs contain rich PK information for a given drug, 
which is utilized as features for DDI prediction. Such 
approaches have resulted in high classification accuracy 
and even the prediction of rare side effects caused by a 
DDI.10 Other models have demonstrated that combining 
structural and knowledge graph feature sets can enable 
improved performance than using either alone.11 The 
application of ML models to dose adjustment can be en-
hanced by the use of regression-based models that predict 
fold-changes in PK values. Development of such models 
has begun, with one model capable of predicting 94.8% of 
AUC fold-changes within two-fold of the observed AUC 
fold-change.12 This information could then be used by 
drug design, drug metabolism, and PK groups to deter-
mine whether the DDI risk should be further investigated, 
or later in development whether the co-administration of 
drugs should be avoided.

COMPARISON OF DATA 
REQUIREMENTS

PBPK models require in vitro experimental data (e.g., in-
hibition constants, plasma protein binding, and induction 
parameters) and predicted or measured clinical in vivo 

data. Their production efficiency for new drug candidates 
is therefore limited by the requirement to run these ex-
periments before the model can be refined and appropri-
ate for use.

In contrast, domain knowledge is used to select fea-
tures for an ML model but may not be subject to the same 
data requirements as PBPK/Pop-PK models. ML mod-
els can be trained on existing drug candidate using their 
known DDIs as label data, and relevant features available 
earlier on in the drug development cycle (Figure 1). The 
optimized and validated ML models can then be applied to 
new drug candidates without the need for later-stage drug 
development data. For example, non-experimental data, 
such as chemical descriptors, can be used as features avail-
able early in discovery. Transforming these basic chemical 
features into more advanced descriptors, such as similar-
ity profiles, may lead to even stronger results. For exam-
ple, feature vectors called structural similarity profiles 
have been derived from simplified molecular-input line-
entry system (SMILES),8 which represent chemical struc-
ture as a string. Scores for each combination of drugs were 
generated using the Tanimoto coefficient with extended-
connectivity fingerprints of the drugs. The structural sim-
ilarity profile feature vector for a drug was then built from 
an array of all the similarity scores for that drug with other 
drugs in the database. This model yielded scores of ~90% 
on different classification scoring metrics, outperforming 
the use of chemical descriptors as a feature set.8 Other 
models have been built on more expansive features sets, 
for example, drug pair DDI probability can be calculated 
based on similarity to known DDI-inducing pairs con-
sidering compound chemical structure, known protein–
protein interactions, and PK pathways.13 The model was 
built on a gold-standard DDI database, including infor-
mation on whether drugs were metabolized by the same 
CYP enzyme and returns the DDI-mediating CYP. Known 
interactions among drugs, enzymes, and transporters can 
also be represented as interaction networks. Such data 
have been leveraged for DDI prediction, because a DDI is 
more likely to occur if a putative perpetrator is structurally 
similar to drugs which bind to the enzymes/transporters 
interacting with a putative victim.14

Natural Language Processing (NLP) has also been uti-
lized to extract DDI information from existing literature. An 
approach in 2013 analyzed biomedical literature (DrugBank 
entries and MedLine abstracts) to build a model which clas-
sifies DDI with an F1-score of 0.65 (the harmonic mean of 
the precision and recall of the model),15 a score which was 
improved to 0.85 using the same dataset by implementation 
of deep neural networks in 2018.16 This rapid improvement 
in performance highlights how advances in neural network 
architecture from the graph ML space can yield improved 
predictive power when applied to DDI prediction. The 
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ability to extract DDI information from the literature using 
NLP could enable less established DDIs to be detected, and 
increase ML training dataset sizes without the additional 
cost of conducting new DDI studies.

The optimization of a diverse set of features, from 
chemical similarity to text-based literature, provides 
new use-cases for ML models across the entire drug de-
velopment pipeline, whereas PBPK/Pop-PK models are 
limited to when extensive in vitro and in vivo data is 
available (especially Pop-PK which requires clinical data). 
Additionally, PBPK/Pop-PK models only use experimen-
tal data pertaining to the specific drugs involved, whereas 
ML models can utilize experimental data from other DDIs 
to make predict new DDIs. However, ML models can 
show poor performance when predicting the effects of 
drug combination for novel drugs.17 A key consideration 
for ML models when investigating new drug combina-
tions is whether these interactions fall beyond the appli-
cability domain and the challenge of generalizing outside 
the current known chemical space. Regardless, ML mod-
els would still be of great practical value early to triage 

down DDIs with appropriate safety, which would later be 
consolidated by more case-focused mechanistic models.

ML models are vulnerable to the effects of biases and 
correlations in their training data. Correlations between 
features can lead to performance issues, so feature selec-
tion methods have long been developed to address this.18 
Data bias is another problem that can affect ML models. 
For example, classification models, which use samples that 
are labeled with a specific class, can show a prediction bias 
toward a specific class if it is over-represented in the data-
set compared with other classes.19 To address this, artificial 
sampling techniques have been developed to increase the 
number of samples of the minority class, such as synthetic 
minority oversampling technique.20 This has been applied 
in the neighboring field of drug-target interaction model-
ing leading to large improvements in performance upon 
balancing.21 Although this technique can address class 
imbalance in binary classification tasks, it shows poorer 
performance in multiclass problems.22 In the context of PK 
DDI modeling, this may mean that class imbalance can be 
resolved for binary tasks, such as prediction of whether a 

F I G U R E  1   A summary of features and labels for current machine learning models for DDI. The inputs (features) for prediction shown 
have been utilized in the literature for machine learning-based prediction of DDIs. They are grouped into colors based on whether they 
apply to the victim (purple), perpetrator (orange) or both (red). Chemical feature-based models would enable DDI prediction at the point of 
design, whereas models using ADME descriptors and physicochemical properties would require drug in vitro data. Most machine learning 
models developed for PK DDIs thus far have been classification-based, rather than regression, and so the example labels for regression are 
only speculative. These classification models can predict the cause of a DDI or the magnitude of a PK DDI using thresholds defined by the 
FDA.5 ADME, absorption, distribution, metabolism, and excretion; AUC, area under the drug concentration curve; Cmax, maximum drug 
concentration; CLint, intrinsic clearance; DDI, drug–drug interaction; ECFP, extended connectivity fingerprints; FDA, US Food and Drug 
Administration; fm, fraction metabolized; fu, fraction unbound in plasma; IC50,half maximal inhibitory concentration; Indmax, induction 
maximum; Kinact, maximum rate of enzyme inactivation.
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DDI will occur or not, but may remain a problem for mul-
ticlass tasks, such as classifying the DDI type (for example, 
classifying the magnitude of change in exposure). In these 
cases, the ML task can be turned into a regression approach 
if appropriate continuous labels can be assigned. Although 
mechanistic models avoid this problem as they are not clas-
sifiers, they may suffer from other biases (e.g., if the derived 
equations are trained and verified on only a specific subset 
of physiological conditions). Overall, ML models may be 
used to make predictions when experimental data may not 
have been produced yet, but care must be taken to ensure 
input datasets have minimal bias to achieve maximal per-
formance. However, when experimental data are available 
for a specific drug pair, PBPK models should be preferred to 
ML models due to their increased interpretability.

To improve the interpretability of ML models used in 
DDI prediction, methods that explain how a model pre-
diction was made could be utilized. For example, “Shapley 
additive explanations” describe the feature importance of 
individual predictions made by a model (including more 
complex deep learning methods) in a manner that is con-
sistent with explanations made by humans.23 Therefore, 
the effect of features such as dose and important ADME 
parameters could be understood for each DDI prediction 
made, enabling pharmacologists to identify and trouble-
shoot poor predictions.

The predictions of models trained on preclinical data 
depends on the accuracy of input experimental data and 
outcome labels. Uncertainty around parameter estimates 
can be incorporated using Bayesian methods to describe 
parameters as being drawn from a distribution (rather than 
point estimates) and subsequently propagating this uncer-
tainty to model outputs. In ML, explainable artificial in-
telligence tools exist to describe uncertainty surrounding 
model predictions, such as probabilistic methods (which 
describe the posterior probability of a model output) or 
ensemble methods (which find the variability between 
multiple model predictions).24 An example from the field 
of protein-binding prediction showed that using both 
point estimates and their standard deviations for model 
training improves performance when there is high exper-
imental variability, especially for measurements close to 
categorization thresholds.25 These approaches could be 
extended to incorporate uncertainty around human PK 
parameters, which are extrapolated from preclinical data.

COMPARISON OF PERFORMANCE

Because ML models are founded on statistical patterns be-
tween inputs and outputs, they have an inductive capabil-
ity.26 This means they can identify patterns in observed data 
and use these patterns to build models that are predictive 

within the range of the training data. On the other hand, 
mechanistic models have deductive capability,26 so they 
can use the mechanistic relationships between variables to 
make predictions on data that may be outside of the range 
of data used to build the model, yet within the particular 
DDI case domain. This means that mechanistic models 
are much more suited to extrapolation of new data ranges 
when compared with ML models, because the statistical 
relationships are more likely to change outside of the train-
ing data range. Therefore, in the context of PK DDIs, mech-
anistic models may be more useful for modeling instances 
involving abnormal parameters, such as specific disease 
populations, because the statistical relationships observed 
in the average population may not be applicable to these 
niche populations. ML models could be generated for these 
specific subgroups, for example, by encoding the distin-
guishing features of the subgroups as additional features, 
but there may be insufficient data to build these more spe-
cific models (because ML models require large datasets),26 
whereas this is not a limitation for mechanistic models due 
to their lower sample size requirements.

The discussion so far has assumed the validity of the rela-
tionships described in mechanistic models. However, PBPK 
models utilize the extrapolation of in vitro experimental 
data to make predictions in vivo.2 Because in vivo conditions 
are different to in vitro, models built using in vitro data can 
fail to capture in vivo conditions. In contrast, ML models 
built using drug-inherent features (such as chemical struc-
ture) and outcome labels from human data can be applied to 
novel compounds in the absence of clinical data – the rela-
tionship between structure and DDI risk is not readily inter-
pretable but because the implicit relationship was learned 
on human data the implicit relationship between chemical 
structure and DDI risk still holds true. Because the reliance 
of PBPK models on in vitro data could limit the performance 
of PBPK models, it would be beneficial to utilize experimen-
tal data from models more representative of physiological 
conditions in humans. For example, organ-on-a-chip tech-
nology was used to produce a duodenum intestine-chip sys-
tem that more accurately models drug PK affects, such as 
changes in CYP activity compared with established in vitro 
methods (e.g., Caco-2 cultures).27 Of course, data from these 
systems could also be incorporated into ML models, with 
the potential to improve performance. The overall strengths 
and weaknesses for ML and PBPK/Pop-PK modeling ap-
proaches are summarized in Table 1.

COMPARISON OF CURRENT AND 
POTENTIAL APPLICATIONS

Integration of these methods can help accelerate drug 
development and support decision making across the 
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T A B L E  1   Comparison of PBPK/Pop-PK models and machine learning models used in pharmacokinetic predictions

Characteristic PBPK Pop-PK Machine learning

Methodology A type of PK modeling that 
models organs/tissues as 
compartments as well as the 
blood flow between them, 
utilizing a “bottom-up” 
approach to modeling built 
on in vitro data and in vivo 
data first. The model takes 
drug-specific and system-
specific specific parameters 
as input to make predictions 
for PK parameters. Plasma 
concentration curves and 
in vitro inhibition and 
induction parameters are 
used to predict the effects of 
perpetrators.

Also compartment-based, 
but utilizes a “top-down” 
approach where a descriptive 
model is built that fits 
the observed data first. 
Retrospective estimation of 
PK parameters is performed 
after population studies, 
used to make statistical 
adjustments to predictive 
models. DDI effects are 
described rather than 
predicted, using observed data 
from the victim drug in the 
DDI.

Mathematical algorithms that describe 
the statistical relationships and 
patterns between features and labels, 
and use these relationships to make 
predictions about new samples. 
These algorithms can either act as 
classifiers or regressors.

Data requirements 
for improved 
performance

In vivo mass balance data.
Incorporation of sensitivity 

analysis to factor in possible 
discrepancies between in 
vivo and in vitro parameters, 
such as the perpetrator Ki.

28

Longitudinal/time-varying 
investigation of DDI as a 
categorical covariate6

Large sample sizes for observed DDIs, 
especially for deep learning where n 
should be >1000 (ref)

Examples of software 
used

SimCYP, Monolix, R NONMEM Python (scikit-learn, TensorFlow, 
PyTorch), R (CARET)

Strengths Deductive capability, enabling 
extrapolation of predictions 
to data ranges outside of 
training data.

Can be implemented on smaller 
datasets.

Descriptive capability, enabling 
estimation of the sources of 
variability in PKs of a drug in 
a target population, such as 
concomitant drug use.

Inductive capability, enabling detection 
of unseen patterns and relationships 
in training data.

Less human intervention required when 
updating the model compared to 
PBPK/Pop-PK.

Can be implemented for predicting 
a variety of different tasks very 
quickly, as long as the required 
feature data is available.

Preclinical stage: Can estimate PK DDI 
risk at the point of design using 
chemical structure-based feature 
sets.

Postmarket monitoring stage: Could be 
used for cases where data limitations 
limit PBPK/Pop-PK accuracy (e.g., 
poor elimination characterization)

Limitations Requires a wide variety of 
experimental data.

Requires more time and human 
intervention to develop 
because the relationships 
must be explicitly described 
by the modeler themselves.

May perform poorly when 
used with less characterized 
drugs/enzymes.

Only descriptive – less 
appropriate for extrapolations 
compared to PBPK.

Initially requires large sample sizes and 
computational resources for good 
performance, which may not always 
be available.

Can be difficult to interpret (especially 
nonlinear models and neural 
networks).

Abbreviations: DDI, drug-drug interaction; PBPK, physiologically-based pharmacokinetic; PK, pharmacokinetic; Pop-PK, population pharmacokinetic.
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drug-discovery pipeline. PBPK and Pop-PK models are al-
ready extensively used in the DDI-risk assessment process, 
but ML is not. An overview showing how the addition of 
ML could be used in addition to PBPK and Pop-PK mod-
els for DDI assessment is shown in Figure 2. The ability 
of ML models to make DDI predictions based on shared 
chemical structure would allow potential risks to be iden-
tified before the compound is synthesized, reducing the 
number of design-make-test-analyze cycles and prioritiz-
ing progression of drugs with no chemical basis for a po-
tential DDI. Models incorporating different possible doses 
could be applied later on when initial dose estimates are 
available, enabling prediction of the clinical effects of po-
tential DDIs. This would then enable regression-based es-
timation of PK DDI effects and dose adjustment.

More generally, predictions made during drug dis-
covery would allow project teams to benchmark against 
the competitive landscape. As a compound progresses 
through lead optimization and data are generated to 
profile the compound, the use of mechanistic models in 

addition to ML models would provide a more comprehen-
sive early risk assessment for target patient populations. 
Accuracy improvements should also be explored for later-
stage PK DDI risk-assessment by testing ML models that 
incorporate in vivo and clinical feature data. ML could 
also be used to detect DDIs in the postmarket monitor-
ing stage if certain PK data is poorly established (e.g., in-
complete characterization of elimination of the victim or 
perpetrators that target the enzyme/transporter involved).

COMBINING ML AND PBPK/POP-PK

Finally, whereas we have so far considered clinical phar-
macology and ML as two distinct and parallel approaches, 
the two methods may also be combined to complement 
each other. The experimentally derived parameters used 
in PBPK models may be difficult to measure. For exam-
ple, in vitro estimates of Ki can differ by 10-fold compared 
to the in vivo Ki of inhibitors.28 Therefore, ML models 

F I G U R E  2   Potential workflow for DDI assessment. ML has potential to be used for PK DDI risk assessment across the drug 
development timeline. (1) In preclinical stages, chemical and physicochemical features could be used to classify DDI risk at the point 
of design of a new drug when used in combination with an established co-medication. (2) ML can be used to predict PK/ADME 
parameters required for PBPK/Pop-PK modeling in the cases where such parameters are hard to determine (e.g., fu gut) using chemical 
and physicochemical features (as well as any other PK features that are available for a given drug). (3) After appropriate experiments 
are performed, additional PK parameters and dosing data could be used to more precisely estimate DDI risk using regression-based ML 
models, but before the more time consuming PBPK and Pop-PK models are utilized. This could aid in the decision to filter out drugs with 
high DDI risk. (4) In the postmarket stage, ML can be used to predict DDI risk between established drugs in cases where there is limited 
knowledge of parameters required for PBPK modeling. ADME, absorption, distribution, metabolism, and excretion; AUC, area under 
the drug concentration curve; DDI, drug–drug interaction; fu, fraction unbound in plasma; IC50,half maximal inhibitory concentration; 
Indmax, induction maximum; Kinact, maximum rate of enzyme inactivation; M&S, modeling and simulation; ML, machine learning; PBPK, 
physiologically-based pharmacokinetic; PK, pharmacokinetic; Pop-PK, population pharmacokinetic.
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are being developed to predict such parameters with im-
proved accuracy. For example, a neural network approach 
enabled prediction of Ki, Kd, and half-maximal inhibitory 
concentration (IC50) of protein-ligand complexes with 
high accuracy using chemical structures.29 Therefore, de-
velopment of ML models that predict individual ADME 
parameters may aid in building PBPK-based prediction of 
DDIs involving reversible inhibitors.

Conversely, PBPK models could be used to generate 
additional parameters that could be used as input features 
for the ML model. The algorithms could then detect these 
previously unseen patterns and information from the mech-
anistic model output and thus be used to make better pre-
dictions.26 To our knowledge, this type of modeling is yet 
to be explored in the DDI space. Further research into hy-
brid models, along with the application of traditional ML 
models into appropriate parts of the drug discovery pipeline 
could result in a more efficient drug discovery process.
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