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A B S T R A C T

Environmental phenomena are always changing elsewhere in various scales depending on both natural phe-
nomenon and human interference. Land use/over change (LULC) is related to site specific factors such as inap-
propriate land use planning and the expansion of traditional agricultural practices in steep gradients have led to
soil erosion and consequent ecological changes. Thus, it is crucial to determine the trend, pattern, and drivers of
land use/land cover dynamics for sustainable natural resource management in Ethiopia. Therefore, we evaluated
the spatio-temporal LULC dynamics in different agroeclogies and slope gradients, and their drivers between 1985
and 2021 in the Zoa watershed of Omo-Gibe basin, Southwest Ethiopia. Landsat imageries, focus group discus-
sants, key informants, and field observations were used as source of data to analyze the spatio-temporal LULC
trajectories and their drivers. With total accuracies ranging from 87.55% to 91.14%, supervised image classifi-
cation using the Maximum Likelihood classifier technique was used to categorize five key LULC classes: bareland,
farmland, forestland, grassland, and shrubland. The results revealed that shrubland (41.87%) had the largest
share in 1985, but later declined to 23.98% in 2000, and 12.6% in 2021. Grassland has declined as well, from
17.15% in 1985 to 2.09% in 2021. In contrast, farmland increased at the fastest rate, from 29.09% in 1985 to
71.12% in 2021. The proportion of farmland exhibited an increasing trend in all agro-ecologies, while forestland
has increased only in highland agro-ecologies. Between 1985 and 2021, an extensive area of shrubland and
grassland were converted into farmland with a conversation rate of 1.05% and 0.58% per annum, respectively.
The expansion of farmland was observed towards moderately and steep rolling slopes which might exacerbate soil
degradation. This is due to rapid population increase and ongoing demand for agricultural land. The result of key
informant interviews and focus group discussions also revealed that expansion of farmland and settlement are the
major drivers of LULC dynamics due to rapid human population growth. Therefore, the regional government and
various stakeholders should work on redesigning effective management strategies through appropriate land use
planning to address the adverse effects of LULC dynamics.
1. Introduction

Land is a vital natural resource with several natural, social, and
economic applications (Hailu et al., 2020). Land use denotes how
humans use the land for various activities while land cover indicates the
biophysical attributes, which are of either natural and/or human origin,
covering the earth's surface (Jansen, 2010). LULC refers to both due to
natural and anthropogenic changes to land resources (Jacob et al., 2015;
Kidane et al., 2019; Tolessa et al., 2020). According to Regasa et al.
Gitima).
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(2021), LULC analysis is amongst the most typically used techniques for
determining how the land has been utilized in the previous time, what
varieties of investigations are expected to be conducted in the future, and
the causes and processes that are driving these changes.

Unmanageable changes in LULC are serious environmental challenges
in various regions of the world (Gashaw et al., 2017). The impacts of
LULC change have been linked at various scales including land degra-
dation, changes in biodiversity, intensification of climate change from a
global perspective (Omran, 2012) increased sedimentation of stream
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courses, changed land-atmospheric interaction patterns that may alter
the weather and climatic variability, and carbon balances at regional
scales (Auch et al., 2022). Local impacts include severe land resource
disruptions (Haregeweyn et al., 2015; Berihun et al., 2019; Degife et al.,
2019) upsurges soil erosion (Kidane et al., 2019), wetland shrinkage, and
declines in water quality (Xu et al., 2019) and diminishes sustainable
ecosystem services from agriculture (Hussain et al., 2022; Xu et al.,
2022). In contrast, the livelihoods of poor people are adversely disrupted
since they rely on land and natural resources due to expansions of
cultivated and grazing land turned into forests and grasslands in the
world (Lambin et al., 2003; Nkonya et al., 2012, 2016). In addition,
global cropland area increased by 11.5% between the 2000–2003 and
2016–2019 interval, and its largest net was increased in Africa, followed
by Asia and South America (Potapov et al., 2022). Similarly, agriculture
has increased by 57%, while the country has lost 5% of its woodland and
pasture land, and 16% of its forest acreage between 1975 and 2000 in
Africa and more than 50,000 km2 of natural vegetation has been lost per
year (Eva et al., 2006). The upsurge was basically intense with a decrease
in forest, bushlands, and grasslands in the Horn of Africa (Measho et al.,
2020). However, the directions, rates and intensities of LULC changes in
each land use type were not uniform in all parts of the world (MEA, 2003;
Haregeweyn et al., 2015; Gashaw et al., 2017).

Ethiopia has experienced very rapid LULC changes due to human-
induced drivers like resettlement programs and population pressure as
well as natural-induced driving forces like the variability of climate
change, slope inclinations and agroecological categories (Regasa et al.,
2021). LULC change associated with land degradation processes is
currently increasing at an alarming rate, contributing a significantly large
amounts of soil loss. This is especially true in Ethiopia, where agriculture
is the pillar of the country's economy (Berihun et al., 2019). Recent LULC
change studies in various areas of the country observed disparate trends
through the increase of cropland at the detriment of forestland in many
areas (Gashaw et al., 2017; Minta et al., 2018; Betru et al., 2019; Degife
et al., 2019; Gessesse et al., 2019; Habte et al., 2021; Ogato et al., 2021).
However, an increasing trend in forest areas was detected due to new
plantation sites on degraded hill slopes in few areas of the countryside
(Bantider et al., 2011; Gebrelibanos and Assen, 2015; Nigussie et al.,
2016).

Spatio-temporal pattern of LULC changes is triggered by both bio-
physical and anthropogenic driving factors in various parts of Ethiopia
((Betru et al., 2019;Degife et al., 2019; Aneseyee et al., 2020;Dibaba et al.,
2020; Sisay et al., 2021). Biophysical factors, including slope categories
and agroecologies, have a significant impact on LULC extents, particularly
the rate and process of deforestation (Hishe et al., 2015). These factors
determine the heterogeneity of vegetation, climatic conditions, and land
cover types concerning socio-economic drivers (Birhane et al., 2019).
Moreover, the drivers of LULC trajectories are dynamic, and they vary
across counties depending on the social, economic, biophysical, and po-
litical factors (Yesuph and Dagnew, 2019; Dibaba et al., 2020; Ewunetu
et al., 2021; Ogato et al., 2021). However, driving factors of LULC changes
vary through time and space based on the country's distinct
human-environment characteristics (Kindu et al., 2015; Hailemariam
et al., 2016; Belay and Mengistu, 2019; Dibaba et al., 2020; Hailu et al.,
2020; Tolessa et al., 2020; Ogato et al., 2021). For instance, Berihun et al.
(2019) found that growth in population and shifting farming techniques
(e.g., cultivation of A. decurrens plantation) are the primary drivers of
LULC changes in western Ethiopia. On other hand, Betru et al. (2019)
found that small-scale subsistence and large-scale commercial agriculture
are the primary proximal drivers of LULC dynamics. In addition (Degife
et al., 2019), and (Ogato et al., 2021) studies in Ethiopia's Lake Hawassa
and Huluka watersheds, respectively, outlined biophysical factors, agri-
cultural expansion, infrastructure and urban expansion, forest clearing,
fast human population growth, rapid technology, and land tenure system
are the major drivers of the LULC changes.

Different scholars have studied spatiotemporal LULC dynamics in
various parts of Ethiopia (Belay and Mengistu, 2019; Betru et al., 2019;
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Degife et al., 2019; Gessesse et al., 2019; Hailu et al., 2020; Hishe et al.,
2020; Tolessa et al., 2020; Ogato et al., 2021; Sisay et al., 2021). Most of
these researchers found that LULC dynamics vary across the country in
terms of pattern, direction, and magnitude. However, most of the
aforementioned studies missed considering LULC dynamics across
agro-ecological zones and slope gradients concerning specific LULC
classes. In addition, the majority of these studies took place outside of the
research field. Moreover, the findings were contradictory, possible due to
heterogeneity in natural resource distribution, monitoring, and man-
agement systems (Ewunetu et al., 2021). The discrepancy in results could
be related to a variety of socioeconomic shifts as well as biophysical
factors such as agro-ecologies and rolling of slopes (Birhane et al., 2019;
Belay and Mengistu, 2019). Since Ethiopia experiences diverse
agro-ecologies, various slope categories and socioeconomic dynamics
(Ewunetu et al., 2021), timely site-specific study by integrating remote
sensing data with information from local land users can provide more
insight on LULC changes and their drivers of change for making sus-
tainable natural resource management decisions in the study area.

Zoa watershed is an important part of Gibe-III hydroelectric dam
within Omo-Gibe basin. However, in comparison to other parts of
Ethiopia, the watershed lacks multidisciplinary and independent
research. Understanding the spatiotemporal trajectories and patterns of
LULC changes in the context of a larger socio-ecological scheme and
slope gradients at the watershed level assists in comparing different
portions of the watershed and identifying those that are vulnerable to
change (Dibaba et al., 2020). In addition, investigating the dynamics of
LULC is an ever more important issue in the study of environmental
alteration to evaluate and determine the current state of resources and
planning choices for long-term resource management. Therefore, as part
of this research, the following particular objectives were determined (i)
to assess the spatio-temporal LULC trajectories in Zoa watershed of
Omo-Gibe basin over the periods of 1985 and 2021 with special attention
to agro-ecological zones and slope gradients. (ii) To evaluate the major
drivers of LULC dynamics in the study area using among other things
socioeconomic analysis.

2. Methods and materials

2.1. Study area description

This study was conducted in Zoa watershed of Omo-Gibe basin, which
is located in the Northwestern part of Dawuro zone, Southwest Ethiopia.
Astronomically, the watershed lies from 7�300000-7�1500000N Latitude and
37�200000E-37�2300000E Longitude within the Omo-Gibe basin (Figure 1).
It extends across five districts (Maraka, Tarcha Zuria, Gena, Zaba Gazo,
and Loma Bossa) of southwest Ethiopia at a distance of about 490 km
from Addis Ababa, the capital city of Ethiopia across Butajira-Hosana
road and 520 km through Jimma via Tarcha Road. The elevation of
Zoa watershed varies from 914 to 3011 m above sea level (Figure 1). The
watershed covers a total area of 599.018 square kilometers.

According to the MOA Ministry of Agriculture, 1998 classifications,
the agro-ecologies of the Zoa watershed are categorized as 28.43% is
lowland (Kola), with elevations ranging from 914 to 1500 m above sea
level, and 63.91% is midland (Woinadega), with elevations ranging from
1500 to 2300 m above sea level. The remaining 7.65% is classified as
highland (Dega) with an elevation of more than 2300 m above sea level
(Figure 2a).

Similar to other parts of the Dawuro zone, the topographic feature of
the Zoa watershed is diverse, which varies from an undulating landscape
to an extended, steep slope escarpment and mountains. It is characterized
mainly by strongly sloping and moderately steep slopes, which make the
area highly susceptible to soil erosion hazards. As a result, slope status is
one of the characteristics that indicate the pace of soil erosion and, one of
the indications of suitability for agricultural activities.

Slope form, steepness, and length influence the level of soil erosion
and runoff (Yesuph, 2020). After reclassifying DEM into six FAO (2006)



Figure 1. Map of the study area.

Figure 2. The classifications of agro-ecological zones (a) and slopes (b) of the watershed.
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slope classes, 8.85% of the Zoa watershed has flat to gently sloping (0–5),
whereas 20.9% and 21.5% of the total areas are categorized as sloping
(5–10) and strongly sloping (10–15) slopes, respectively (Figure 2b). The
remaining land area is classified as moderately steep (15–30), steep
(30–60), and very steep (>60), accounting for 36.58%, 12.02%, and
0.08%, respectively (Figure 2b). In comparison, the northwestern half of
the area has a flat to gently sloping landscape with little rugged terrain.
On other hand, the southwestern part and eastern margin of the water-
shed are dominated by rugged terrains, and very steep slopes with high
altitudes (Figure 2b).

Zoa watershed exhibits climatic variations from lowland to highland
(Gezmu et al., 2021). The watershed receives a total annual rainfall of
3

1398.8 mm, with mean minimum and maximum annual temperatures
ranging from 14.65 �C to 16.12 �C and 26.4 �C–29.3 �C, respectively
(Gitima et al., 2021). Temperature becomes intense in January, February
andMarch. The rainfall is a bimodal type in the watershed. March to May
is the short rainy season, while June to September is the long rainy season
(Gitima et al., 2021). The Zoa river is a tributary of the Omo-Gibe basin
that flows from the south east to the northwest, eventually reaching the
Gojeb river. Zoa River is permanently flowing with a lesser volume of
water during the drier (January to March) months. There is no fishing,
irrigation, or recreational usage of the river. The precious topsoil is
eroded and contributed to the ever-increasing sediment deposits in Gibe
III dam and Zoa river banks.



Table 1. The major LULC classes and their description in the study area.

S.
No

LULC classes
name

Description

1. Farmland The cultivated fields of farm households, as well as the
scattered rural villages that are inextricably linked to them.
Because it was difficult to distinguish scattered rural
settlements as a distinct LULC class in areas with the dispersed
farming areas, they were merged into one (Belay and
Mengistu, 2019; Ewunetu et al., 2021; Sisay et al., 2021).

2. Grassland Areas with temporary grass cover, are usually used for grazing
and land units are allocated as a source of animal feed (Belay
and Mengistu, 2019; Aneseyee et al., 2020).

3. Forestland Area is covered with dense trees, which include both natural
and plantation trees, with an area that exceeds 0.5 ha (Sisay
et al., 2021).

4. Shrubland Area is covered by sparely distributed bush trees and grasses
mixed with shrubs (Degife et al., 2019; Aneseyee et al., 2020).

5. Bareland Areas with little tree cover and a stony surface alongside the
flooding areas of local river valleys, over steep mountainsides
and gentle (Ogato et al., 2021).
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The majority of societies in the Zoa watershed (over 91 percent) live
in rural and rely on a mixed crop-livestock production system for their
livelihood (Gezimu et al., 2021). Cultivation of perennial crops is the
most common land use in the watershed including enset1 (Ensete ven-
tricosum), coffee (Coffea arabica), banana (Musa acuminate), mango
(Mangifera indica), avocado ((Persea americana), etc. In contrast, the
annual food crops include cereals such as maize (Zea mays), wheat
(Triticum vulgare), sorghum (sorghum Bicolor), teff (Eragrostis tef), pulses
lentil (Lens culinaris), beans (Phaseolus vulgaris), peas (Pisum sativum), and
root crop like yams, potatoes, sweat potatoes and, etc (Gitima and
Legesse, 2019). Even though the watershed has a lot of agriculture po-
tential; farmers use traditional means of production results very low
productivity. Furthermore, agricultural activity is primarily rain-fed, and
market access is limited, rendering farming households' livelihoods
extremely stagnant (Gitima et al., 2021). Farmland, grassland, forestland,
shrubland, and bareland are among the five major LULC classifications
identified in the research area (Table 1).

2.2. Data sources, methods of acquisition and analysis

2.2.1. Remotely sensed data
To delineate the research area boundaries and to compute morpho-

metric characteristics of the watershed, a remotely sensed SRTM-DEM or
Shuttle Radar Topographic Mission (30*30m) was downloaded from the
United States Geological Survey (USGS). Since 1972, the USGS has pro-
vided free Landsat images to monitor changes on the Earth's surface
(Turner et al., 2015). As indicated in Table 2, three sets of longitudinal
time series satellite images such as Landsat TM (1985), Landsat ETMþ
(2000) and Landsat 8 OLI-TIRS (2021) were retrieved from the USGS
Earth Explorer (http://earthexplorer.usgs.gov). The year 1985 has been
purposefully selected to divide the study periods into three classes such
as 1985–2000, 2000–2021 and 1985–2021 images. The year 1985 was
taken as a benchmark since the Ethiopian government started the
resettlement programs in north, south, and southwestern Ethiopia which
might have a significant effect on LULC. The data quality layer indicates
the presence of atmospheric contamination including clouds, haze and
topographic shadows which determine the accuracy of satellite images.
To avoid data inconsistency and gaps in cloudy regions (where only a few
clear-sky observations per year are available in the study area during the
dry season) we implemented a gap-filling technique. Therefore, all im-
ages of data sets were obtained in the dry season (December to February)
with the lowest percent or less than 10% cloud cover to increase the
accuracy of land use type classifications. Furthermore, secondary data
such as a topographic map (scale1:50,000) of the study area was pro-
cured from the Ethiopian Geospatial Information Agency (EGIA) to
determine georeferencing process for LULC class verifications, training
sites, and to verify the quality of the 1985 satellite images. Furthermore,
training samples for the year 2000 image reference data using a temporal
slider image and for the year 2021 LULC classes and their accuracy as-
sessments were collected using Google Earth data sets.

2.2.2. Socioeconomic and field data
Focus group discussions (FGDs) and key informant interviews (KII)

were used to collect socioeconomic data to identify LULC change drivers.
Both FGDs and KIIs were selected by using a non-random sampling
method that was carried out from November to December 2021 to collect
the drivers of LULC dynamics in the watershed. Hence, eight (8) focus
group discussions were conducted in eight kebeles with a small number
of six to ten farmers as recommended by Marczyk et al. (2005) in each
group using a semi-structured checklist. In addition, 45 informants were
interviewed, including eight from development agents, five from
1 An herbaceous monocot banana like plant that grows 4–8 m in height which
grown as a food crop (Minta et al., 2018; Woldesenbet et al., 2020) in the study
area.
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non-governmental organizations, sixteen model farmers, and sixteen
elderly farmers from various communities of the watershed. The key
informants were purposively selected for their significant experience,
unique insight, and in-depth understanding of the topic under investi-
gation. Moreover, preliminary field data was acquired using GPS from
294 current ground control truth points in the watershed to identify the
actual LULC classes.
2.3. Methods of data analysis

To analyze time series datasets of LULC, this study adopted the
following methodological stages. (1), image pre-processing, (2) image
classification, (3) accuracy assessment, (4) LULC change detection
analysis, and (5) socioeconomic data analysis. The study's methodology
flowchart is depicted in Figure 3.

2.3.1. Image processing and LULC detection analysis

2.3.1.1. Image pre-processing. Geometric rectification, bad line detec-
tion, atmospheric correction, radiometric calibration and topographic
correction were all part of the pre-processing procedure (Tewabe and
Fentahun, 2020) in this study. Due to solar position and satellite cali-
bration, radiometric and geometric corrections were used to remove
sensor noise, haze, corrective data loss, and missed lines (Aneseyee et al.,
2020; Abdo and Prakash, 2020). Therefore, all Landsat images of the
watershed were projected to the World Geodetic System
(WGS_84_UTM_Zone_37N) and corrected geometrically using ground
control points. To enhance image quality, atmospheric adjustments such
as haze reduction was also prior performed. Furthermore, for radiometric
correction, raw DN (digital number) values were transformed into
reflectance values. All-time series satellite images were done by using
ERDAS Imagine 2014 software and were extracted or subset for covering
the watershed territory only.

2.3.1.2. Image classification and accuracy assessment. In this study, we
used two important LULC dynamics image classification algorithms.
Firstly, an unsupervised classification technique was used to identify the
primary LULC classes using the visual interpretation method. Secondly, a
supervised classification procedure was preferred for all satellite images
to acquire a signature for each LULC class. The main image classifications
were done, including visual interpretation of images to identify the major
LULC classes using the Maximum Likelihood classification algorithm and
change detection comparison techniques. The maximum likelihood
classifier is the most extensively used parametric classification technique,
and it accounts for the spectrum information of LULC classes using a per-

http://earthexplorer.usgs.gov


Table 2. Details of remote sense data for the study.

No. Sensors ID and types Acquisition year Spatial Resolution (m) Path/row Sources

1 Landsat 5 TM 1985 30 * 30 169/055 USGS

2 Landsat 7 ETMþ 2000 30 * 30 169/055 USGS

3 Landsat 8 OLI-TIRS 2021 30 * 30 169/055 USGS
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pixel manner (Teferi et al., 2013). Hence, the supervised classification
with a maximum likelihood classifier, which assigns each pixel to the
class with the highest probability was used in this study (Degife et al.,
2019; Sisay et al., 2021). The LULC classifications from the three Landsat
images of the watershed depended on the nature, purposes and resolu-
tion of the satellite images (Ewunetu et al., 2021). For example, we
classified settlements as farmland determined by the following reasons.
Firstly, the year 1985, most dwellings roofs were built from lawns and
straws, and they look noticeably like farmland in the images. On other
hand, in 2021, most of the dwellings were built from corrugated iron and
thus do not have similar reflectance as the 1985 dwelling types as
indicted in a previous study (Belay and Mengistu, 2019; Ewunetu et al.,
2021; Sisay et al., 2021). Secondly, the watershed is predominantly rural;
most dwellings' are scattered and small in size, and they are almost
surrounded by farmland. This makes it problematic to identify settle-
ments from farmland at a 30-m resolution in Landsat images.

By comparing the classified maps with reference maps, the accuracy
assessment procedures were employed to estimate the accuracy of image
classifications. As a result, the Kappa coefficient was used to investigate
producer accuracy and overall accuracy as part of the full accuracy
assessment (Tewabe and Fentahun, 2020). The entire number of
randomly generated error matrix reference values divided by the sum of
correctly classified values (diagonals) equals overall accuracy (Lillesand
et al., 2004). In comparison to reference data, the Kappa coefficient in-
dicates the difference between actual classified map agreement and
chance agreement of random classifier (Minta et al., 2018). Hence, the
Kappa coefficient was calculated as follows (Eq. 1):

Khat ¼N
Pr

i¼1Xii �
Pr

i¼1ðXiþ*XþiÞ
N2 �Pr

i¼1ðXiþ*XþiÞ (1)

where; Khat refers to the Kappa coefficient, N refers to the total number of

values, N
Pr
i¼1

Xii refers to observed accuracy and
Pr
i¼1

ðXiþ*XþiÞ refers to

chance accuracy.

2.3.1.3. LULC change detection and trend analysis. Change detection is
used to determine the extent of changes that occur over time and to
categorize changes so that appropriate decisions can be made in various
LULC classes (Berihun et al., 2019; Belete et al., 2020). Therefore, LULC
change detection analysis throughout three time periods (1985–2000,
2000–2021, and 1985–2021) was done for the study site. The analysis of
LULC change detection was compared after classification, as this method
is commonly used to compare maps from multiple sources and gives
extensive from-to-change class information (Teferi et al., 2013). The
outcome of matrix analysis is best expressed by matrix diagram, which
generate a theme layer with a different class for each class overlap be-
tween two layers. The columns and rows of the matrices are represented
by the classes of the two input layers (Hailu et al., 2020). The output of
land use classifications was assigned based on how closely whatever two
input classes matched. According to Minta et al. (2018), the magnitude of
changes among time scales was computed using percent and rate changes
of distinct LULC classes. The magnitude of change of each land use type
was computed as the following equations (Eqs. (2) and (3)):

RΔð%Þ¼
�
T2 � T1

T1

�
*100 (2)
5

Rate of change ha year¼ T2 � T1

J
(3)
� � � �

where; RΔ (%) represents the change of one type of LULC in percentage
between the initial period (T1) and the subsequent period (T2) of a LULC
class in hectares and J represents the time interval between T1 and T2 in a
study year.

Furthermore, according to Sisay et al. (2021), the percentages of
"conversion loss to" or "conversion gain from" according to Eqs. (4) and
(5) relate to the overall loss or gain within every LULC class from 1985 to
2021. In change matrix A, for LULC class i,

PlossðiÞ; j ¼
�
Pi;j �Pj;i

� � ðPci �PriÞ*100; i 6¼ j (4)

PgainðiÞ; j ¼
�
Pj;i �Pi;j

� � ðPci � PriÞ*100; i 6¼ j (5)

where; PlossðiÞ; j is the proportion of the total "conversion loss" of a class
row that is taken up by LULC class j i; PgainðiÞ; j represents the percentages
of the entire "conversion gain" of class row i that is acquired by class j; Pi; j
and Pj; i represent the specific entries in a particular change matrix; Pci is
the total of class column i; and Pri is the total class of row i.

To generate a pair of grid cells that swap any grid cell that gains with a
grid cell that loses, the number of swaps of land class (Sj) were computed
as two times the minimum of the gain and loss (Yesuph and Dagnew,
2019; Ewunetu et al., 2021). Swap specifies a simultaneous gain and loss
of a land-unit type on the landscape and accounts for location change. It
was computed as the following mathematical equation (Eq. 6):

Sj¼2 *Minimum *
�
PgainðiÞ; j ; PlossðiÞ; j

�
(6)

The category of exchange, or the percentage of a specific class that
transfers while the total land area remains the same, is known as the swap
(Sj). The term "swap" refers to the fact that a lack of net change in the
watershed does not always imply a lack of LULC change (Yesuph and
Dagnew, 2019).

In addition, to analyze LULC trends (scales and directions) by using
distributions of LULC data during the study period between 1985 and
2021, the linear regression analysis was carried out using MS-excel
software 2016 version and the scatter plot technique. This method is
used to predict change itself or project future rates and directions from
the current values of LULC classes. It is also clarifying some indication of
the potential state of the watershed should observed trends continue in
the future. The trend analysis is visualized using a scatter plot. The uphill
line of scatter plot indicates an increasing trend while the downhill line of
the scatter plot shows a decreasing trend of LULC classes. The scatter
plot's direction is calculated using the coefficient of determination, which
could be positive or negative (Naikoo et al., 2020).

2.3.1.4. Derivation of agro-ecologies and slope gradients. Agro-ecologies
and slope gradients were spawned from DEM (30-m resolution) using Arc
GIS10.8. To analyze LULC dynamics and their patterns across agro-ecologies
and slope gradients, the three agro-ecologies and six slope categories that
consider elevation and slope rolling derived from DEMwere delineated and
extracted from LULCmaps of the three reference study periods (1985, 2000
and 2021) in the watershed. This is necessary for presenting thematic in-
formation showing the relationship between variations in each category of
land use type within topographic characteristics and agro-ecological zones.
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2.3.2. Method of socioeconomic data analysis
Data collected through FGDs (8) and KIIs (45) were identified to rank

the major drivers of LULC dynamics in the study area. We obtained
population data for the study area from the Central Statistical Agency
(CSA) of Ethiopia. Also, data obtained from KIIs were tallied and changed
to percentages. Moreover, qualitative data collected from FGDs were
analyzed through qualitative methods such as narrations and a thematic
analysis approach which similar themes on particular aspects of the
studies were grouped and interpreted based on theoretical concepts and
underpinning the research objectives. Finally, all results were triangu-
lated with quantitative information such as satellite images.

3. Result and discussion

3.1. Accuracy assessment

The percentages of user and producer accuracies of the classified
LULC classes were computed for the three reference years. The classified
LULC images for 1985, 2000, and 2021were created using the supervised
Maximum Likelihood technique. The total accuracies of LULC classified
images were determined to be 87.55%, 91.14%, and 89.79% in 1985,
2000, and 2021, respectively. The overall Kappa statistics for LULC im-
ages from 1985, 2000, and 2021 were found to be 83.72, 88.39, and
86.07, respectively. As a result, the overall accuracies and the Kappa
Figure 3. Methodological
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statistics in this study show a strong agreement of classified LULC images
for the years 1985, 2000, and 2021, as recommended by Viera and
Garrett (2005). This demonstrates that the LULC images were correctly
classified in this study.

3.2. Spatio-temporal distributions of LULC

In this section, the distributions of spatio-temporal LULC dynamics
were analyzed by using three satellite images and field data between the
periods of 1985 and 2021. During these periods, five LULC classes were
identified including bareland, farmland, forestland, grassland and
shrubland. Analysis of satellite image showed the landscapes was
dominantly covered by shrubland (41.87%) and farmland (29.09%)
followed by grassland (17.15%), forest (10.19%) and bareland (1.7%) in
1985. In 2000, the proportions of farmland, shrubland and forest area
were 51.46%, 23.98% and 11.97%, respectively. The remaining shares of
the study area were under bareland (6.59%) and grassland (6%). The
dominant land use types in 2021 were under farmland, shrubland and
forest which accounted for 71.12%, 12.6% and 7.3%, respectively. The
remaining proportions of the watershed were bareland (6.89%) and
grassland (2.09%) during the same year.

The trends of LULC changes varied evidently between land use types
during three reference study periods. The proportion of bareland
increased by 288.5% or 7.8% year-1 from 1985 to 2000 and 305.9% or
flowchart of the study.
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8.27% year�1 from 2000 to 2021 owing to the expansion of marginal
area cultivations and overgrazing in the outlet area of the watershed. It
was slightly expanded from the northwest to the south part of the
watershed. Similarly, farmland showed growing tendencies by 76.89% in
1985–2000 and 144.5% or 3.9% year�1 between 2000 to 2021 as rain-
fed agriculture is the major source of livelihood (Figure 4 and Table 3).
Similar results were reported in various parts of the globe. For instance,
agriculture expanded due to increasing demand for food products in
Brazil, Africa, Central Asia, Eastern China and Southeast Asia (Hu et al.,
2021). Likewise, Potapov et al. (2022) found that the largest net cropland
expansion was in Africa, followed by Asia and South America. This
expansion is emblematic in Sub-Saharan Africa in general and east Africa
in particular due to a growing demand for food is forcing an agricultural
rise in formerly less developed savannas and woodlands (Bullock et al.,
2021). Also, other recent LULC change studies in different parts of the
country witnessed the expansion of farmland to the detriment of shrub-
land and forest land (Gashaw et al., 2017; Minta et al., 2018; Belay and
Mengistu, 2019; Betru et al., 2019; Degife et al., 2019; Gessesse et al.,
2019; Abera et al., 2020; Hailu et al., 2020; Ogato et al., 2021; Sisay et al.,
2021). For instance, Gashaw et al. (2017) conducted a study in the
Andassa watershed showed the cropland increased from 62.7 to 76.8%
during 1985–2015. On the other hand, shrubland, grassland and forest
experienced a declining rate during 1985–2021 in the
watershed-induced expansion of farmland, deforestation and population
growth. During these periods, shrubland, grassland and forest area
exhibited a decreasing rate of �1.89%, �2.37% and �0.77% year�1,
respectively (Figure 3 and Table 3). However, such trends of these land
use types decline is not uniform throughout the country signifying LULC
dynamics are site-dependent, socioeconomic and cultural activities
(Birhane et al., 2019). In comparison, the reduction was largest for
grassland followed by shrubland, this is due to various encroachment of
natural associated drivers, human activities and continued increase in
livestock. Similarly, the declining tendencies of grassland, forest and
shrubland were reported in different parts of Ethiopia: Agidew and Singh
(2017) in Teleyayen sub-watershed; Betru et al. (2019) in the Assosa
zone; Belay and Mengistu (2019) in Upper Blue Nile basin; Dibaba et al.
Figure 4. Three reference periods (1985, 2000
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(2020) in Finchaa Catchment; Tolessa et al. (2020) in Didessa sub-basin
and Ogato et al. (2021) in Huluka watershed.

3.3. Spatio-temporal conversions and trajectories of LULC change between
1985 and 2021

In LULC studies, transformations of LULC dynamics from one cate-
gory to another are quite common (Gashaw et al., 2017). The LULC
matrix showed how the extent and direction of LULC categories changed
over time. Table 4 and Figure 5 show the results of a conversion matrices’
analysis among the LULC classes in the Zoa watershed from 1985 to
2021.

During these periods, significant LULC conversations have been
observed with a remarkable LULC conversion index (Table 5 and
Figure 5). About 59.71% of the land use types were converted to one of
the LULC classes, whereas 40.29% of the LULC categories were left un-
altered. Accordingly, the majority of shrubland (1646.35 ha) and forest
(784.68 ha) were converted into bareland, while some shares of farmland
(738.53 ha) and grassland (588.33 ha) were changed into bareland. Also,
a notable amount of shrubland (16,607.43 ha) and grassland (9277.52
ha) were converted into farmland, while some amount of forest (1112.20
ha) and bareland (648.90 ha) during these periods. In line with this
study, Hailemariam et al. (2016) found that a large ratio of shrubland
was converted into farmland between 1985 and 2016 in the Bale
Mountain Eco-Region of Eastern Ethiopia. In comparison to the rest of the
LULC classes in the watershed, a large amount of forest area was con-
verted from shrubland (960.08 ha) and grassland (33.75 ha). Whereas,
very small proportions of farmland (22.91 ha) and bareland (1.19 ha)
were converted into the forest area. An extensive area of grassland was
converted from farmland (936.60 ha) and shrubland (192.48 ha), while a
very small amount of bareland (5.52 ha) and forest area (2.12 ha) were
converted into grassland in the watershed. During 1985–2021, a
considerable area of farmland (939.13 ha), forest (909.69 ha) and
grassland (356.88 ha) was converted into shrubland, while a very small
proportion of bareland (3.66 ha) was converted into shrubland in the
watershed. During the transition period between 1985 and 2021,
and 2021) of LULC maps of the study site.



Table 3. Spatio-temporal distributions of LULC classes in hectares during 1985–2021.

LULC 1985 2000 2021 1985–2000 2000–2021 1985–2021

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Bareland 1017.1 1.7 3951.27 6.59 4128.69 6.89 2,934.17 288.5 177.42 4.5 3111.59 305.9

Farmland 17425.7 29.09 30823.99 51.46 42604.2 71.12 13398.29 76.89 11780.2 38.2 25178.5 144.5

Forest 6104.03 10.19 7168.34 11.97 4372.21 7.3 1064.31 17.4 �2796.13 �39.0 �1731.82 �28.4

Grassland 10273.16 17.15 3593.93 6.0 1251.38 2.09 �6679.23 �65 �2342.55 65.2 �9021.78 �87.8

Shrubland 25081.8 41.87 14364.26 23.98 7545.32 12.6 �10717.54 �42.73 �6818.94 �47.5 �17536.5 �69.9

Total 59901.8 100 59901.8 100 59901.8 100 - - - - - -

Table 4. LULC change transition matrices in hectare between 1985 and 2021 in Zoa watershed.

To 2000 Bareland Farmland Forest Grassland Shrubland Grand Total Loss

From 1985 Bareland 398.6 310.93 40.21 216.77 50.53 1,017.04 401.67

Farmland 1718.09 12026.86 255.67 823.32 2604.26 17,428.2 5,401.34

Forest 34.63 601.28 3830.58 623.68 1014.46 6,104.63 2,274.05

Grassland 664.15 7039.63 275.18 592.91 1702.38 10,274.25 9,681.34

Shrubland 1134.93 10848.67 2762.48 1336.81 8994.76 25,077.65 16,082.89

Grand Total 3950.4 30,827.37 7,164.12 3593.49 14366.39 59,901.77 -

Gains 3,551.8 18,800.51 3,333.54 3,000.58 8,371.63 - -

Swap 2,034.08 10,802.68 4,548.1 6,001.16 16,743.26 - -

Net change 3,150.13 13,399.17 1,059.49 �6,680.76 �7,711.26 - -

NP 7.9 1.11 0.28 �11.27 �0.86 - -

To 2021 Bareland Farmland Forest Grassland Shrubland Grand Total Loss

From 2000 Bareland 721.52 3112.46 6.68 99.65 49.38 3989.69 3268.17

Farmland 894.67 27856.83 144.65 1065.62 1162.92 31124.7 3267.86

Forest 814.28 1495.13 3356.25 1.22 994.17 6661.05 3304.8

Grassland 1408.42 1825.15 291.31 52.7 49.7 3627.28 3575.66

Shrubland 286.25 8313.69 573.14 34.54 5291.44 14499.06 9207.62

Grand Total 4125.14 42603.26 4372.03 1253.73 7547.61 59,901.78 -

Gains 3,403.62 14,746.43 1015.78 1201.03 2256.17 - -

Swap 6,536.34 6,535.72 2,031.56 2,402.06 4,512.34 - -

Net change 135.45 11,441.63 �2,559.88 �2,374.63 �6,951.45 - -

NP 0.19 0.41 �0.76 �45.06 �1.31 - -

To 2021 Bareland Farmland Forest Grassland Shrubland Grand Total Loss

From 1985 Bareland 367.79 648.90 1.19 5.52 3.66 1027.06 659.27

Farmland 738.53 14957.64 22.91 936.60 939.13 17594.81 2637.17

Forest 784.68 1112.20 3354.96 2.12 909.69 6163.65 2808.69

Grassland 588.33 9277.52 33.75 116.87 356.88 10373.35 10256.48

Shrubland 1646.35 16607.43 960.08 192.48 5336.58 24742.92 19406.34

Grand Total 4125.68 42603.69 4372.89 1253.59 7545.94 59901.79 -

Gains 3,757.89 27,646.05 1,017.93 1,136.72 2,209.36 - -

Swap 1,318.54 5,274.34 2,035.86 2,273.44 4,418.72 - -

Net change 3098.62 25,008.88 �1,790.76 �9,119.76 �17,196.98 - -

NP 8.4 1.67 �0.53 �78.03 �3.2 - -

Between 1985 and 2021, the bold diagonal elements show the areal extent in hectares of each LULC class that remained constant (persisted). *Net change¼ Gain – Loss.
**NP ¼ net change/diagonals of each class. ***Swap ¼ Minimum value of gain or loss multiplied by two.
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extensive areas of shrubland and grassland were converted into farmland
with a conversations rate of 448.85 ha (1.05%) and 250.74 ha (0.58%)
per annum, respectively as compared with the transformations of further
LULC classes. Agriculture expansion mainly happened at the expense of
forest, shrubland and grassland, and essentially took place in many world
regions, such as Central and Eastern Asia, US, South America, and Central
Africa due to increasing demand for food products (Hu et al., 2021).
Likewise, the highest agricultural conversion rate occurred in East Africa
threatening critical ecosystems and declining biodiversity (Bullock et al.,
2021). Only a small share of bareland was converted to forest and
shrubland over the study period.
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3.3.1. Net change, gains, losses, swap and persistence ratio of LULC
Between 1985 and 2021, the magnitude and direction of LULC dy-

namics were more imperative. The net change, areas gained, lost,
swapped, and persisted between the LULC classes were calculated using
the matrices (Table 4). The off-diagonals in the matrices correspond to
conversions from one land use class to the other, and the diagonals in
Table 4 illustrate LULC classes' persistence (i.e., no change).

The amount of net change revealed that there were transformations
among LULC types. As indicated in Table 4, farmland, bareland and forest
area have experienced the highest net positive change, followed by
bareland and forest area have shown a net positive change within the



Figure 5. Gains and losses of the LULC classes during 1985–2021.

Table 5. Analysis of LULC dynamics and their patterns across agro-ecologies during 1985–2021.

Years Agro-ecologies LULC classes in ha Total (ha)

Bareland Farmland Forest Grassland Shrubland

1985 Lowland (Kola) 901.78 6123.21 606.7 2988.54 6411.65 17031.88

Midland (Woina dega) 115.33 10981.15 4664.64 7101.27 15445.88 38308.27

Highland (Dega) 0 321.36 832.69 183.35 3224.25 4561.65

Total 1017.1 17425.7 6104.03 10273.16 25081.8 59901.8

2000 Lowland (Kola) 3042.76 6949.22 1619.085 2527.74 2895.25 17034.055

Midland (Woina dega) 804.03 22652.99 4396.53 947.78 9502.86 38304.19

Highland (Dega) 104.47 1221.78 1152.73 118.41 1966.15 4563.54

Total 3951.27 30823.99 7168.34 3593.93 14364.26 59901.8

2021 Lowland (Kola) 3120.80 12629.54 80.26 650.14 694.29 17175.03

Midland (Woina dega) 996.45 28634.7 3354.31 596.74 4958.45 38540.65

Highland (Dega) 11.44 1339.97 937.64 4.50 1892.58 4186.13

Total 4128.69 42604.21 4372.21 1251.38 7545.32 59901.8

1985–2000 Lowland (Kola) þ2140.98 þ826.01 1012.385 �460.8 �3516.4 -

Midland (Woina dega) þ688.7 þ11671.84 �268.11 �6153.49 �5943.02 -

Highland (Dega) þ104.47 þ900.42 þ320.04 �64.94 �1258.1 -

Total gain/loss þ2934.17 þ13398.29 þ1064.31 �6679.23 �10717.54 -

2000–2021 Lowland (Kola) þ78.04 þ5680.32 �1538.83 �1877.6 �2200.96 -

Midland (Woina dega) þ192.42 þ5981.71 �1042.22 �351.04 �4544.41 -

Highland (Dega) �93.03 þ118.19 �215.09 �113.91 �73.57 -

Total gain/loss þ177.42 þ11780.22 �2796.13 �2342.55 �6818.94 -

1985–2021 Lowland (Kola) þ2219.02 þ6506.33 �526.44 �2338.4 �5717.36 -

Midland (Woina dega) þ881.12 þ17653.55 �1310.33 �6504.53 �10487.43 -

Highland (Dega) þ11.44 þ1018.61 þ104.95 �178.85 �1331.67 -

Total gain/loss þ3111.59 þ25178.51 �1731.82 �9021.78 �17536.48 -
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study period of 1985–2000. In contrast, a net negative change in
shrubland and grassland was recorded, probably as a result of over-
grazing and farming expansions throughout the same study period.
During the study period of 1985–2000, the highest loss was occurred in
shrubland, followed by grassland, while the highest gain was observed in
farmland followed by shrubland and bareland. In addition, the highest
net positive change was recorded in farmland followed by bareland
within 2000–2021 and 1985–2021 (Table 4). In comparison, the highest
net negative change was recorded in shrubland followed by grassland
and forest during the same study periods in the watershed. In contrast,
the highest gain was observed in farmland, followed by bareland, while
the highest loss occurred in shrubland followed by grassland and forest
within 2000–2021 and 1985–2021 in the watershed (Table 4 and
Figure 5).
9

Swap is the difference between the total and net change for each
category, and it is equivalent to the surface area exchanged across LULC
classes (Yesuph and Dagnew, 2019). The highest swap value was expe-
rienced in shrubland followed by farmland during 1985–2000, this im-
plies an extensive exchange with other LULC classes, it simultaneously
loses and gains surface area from other classes. In comparison, the
highest swap value was observed in bareland followed by farmland
during 2000–2021. Overall, the highest swap value was recorded in
farmland followed by shrubland and grassland, exhibited these LULC
classes were the utmost dynamic class in the watershed between 1985
and 2021 (Table 4).

As indicated in Table 4 and Figure 6, regarding the net change-to-
persistence ratio to diagonals of each LULC class, grassland (�11.27)
had shown the highest net change-to-persistence ratio, followed by
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bareland (7.9) and farmland (1.11), while the lowest net change-to-
persistence ratio was recorded in shrubland (�0.86), followed by forest
(0.28) between 1985 and 2000. On the other hand, the net change-to-
persistency ratio was quite high for grassland (45.06), shrubland
(�1.31) and forest (�0.76) as contrasted with farmland (0.41) and
bareland (0.19) within the study period of 2000–2021. Overall, grassland
(�78.03), bareland (8.4) and shrubland (�3.2) had a large net change-to-
persistence ratio as contrasted with farmland (1.67) and forest (�0.53).
The least persistent LULC class has the highest net change-to-persistence
ratio (both negative and positive), while the LULC class with the lowest
net change-to-persistence ratio has increased or declined at a faster rate
(Dibaba et al., 2020; Sisay et al., 2021).

3.4. Trends of LULC classes between 1985 and 2021

This section presents LULC trends (scales and directions) using dis-
tributions of LULC data in Zoa watershed during the study period be-
tween 1985 and 2021. A regression analysis model was used since it has a
very flexible design and can be used with data that is not evenly spaced
over time. It also indicates that LULC classes are unceasingly shaped
during the study period with minor and major conversations from one
class to the other. As presented in Figure 7, the scatter plots of bareland
and farmland show an increasing trend over time and are steady data
series revealing dynamics in socio-economic activities at priorities on the
rate of overwhelming areas under shrubland, forest and grassland during
the study period. Whereas the analysis of scatter plots revealed that forest
area, grassland and shrubland exhibit a falling tendency between 1985
and 2021. The regression analysis indicates the land use classes of
bareland (R2¼ 0.70) and farmland (R2¼ 0.99) have a significant positive
or direct relationship, while shrubland (R2¼ 0.95), grassland (R2¼ 0.87)
and forest area (R2 ¼ 0.47) have a significant negative or inverse rela-
tionship between 1985 and 2021 in the study area. In contrast, the co-
efficients of the regression showed that the LULC classes of the forest,
grassland and shrubland are significantly affected throughout the study
period. These are might have an upward trend of farmland and bareland
with associated drivers of land use land cover dynamics in the study area.

3.5. LULC dynamics and their patterns across agro-ecologies

Analysis of LULC dynamics and their patterns across agro-ecologies
have important implications for sustainable natural resource manage-
ment decisions since the diverse agro-ecologies and topography need a
special management plans. The findings realized that between 1985 and
Figure 6. Net change-to-persistence ratio of t
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2021, a significant portion of the landscapes in each of the agro-ecologies
practiced various LULC dynamics and trends. During 1985–2021, a large
proportion of the bareland was found lowland or kolla agro-ecology,
while a large proportion of farmland, forest and shrubland were found
in midland (Woina dega) agro-ecology in the watershed (Table 5 and
Figure 8). This is due to the midland sharing a large proportion of the
total area of the watershed and it is suitable for human settlements.
However, a large part of the grassland was located midland in 1985 and
in lowland in 2000 and 2021.

Between 1985 and 2021, the proportion of farmland in all agro-
ecologies showed an increasing tendency with the highest rate in the
watershed (Table 5 and Figure 8). Likewise, bareland was expanded in all
agro-ecologies except in highland during 2000–2021, which might be
related to reafforestation programs introduced in the highland areas of
the watershed. In contrast, forest area was increased in highland agro-
ecologies during 2000–1985 due to Eucalyptus plantations, while it
was reduced in lowland and midland agro-ecologies between 1985 and
2021. Over the entire period (1985–2021), grassland and shrubland
showed an astonishing decline due to expansion of farmland in adjoining
their areas in all agro-ecologies in the watershed. This study consistent
with Birhane et al. (2019) and in their study conducted in Northern
Ethiopia reported that the reduced amount of these land use types might
be due to socioeconomic activities such as cultivations of marginal lands,
mainly introduction of sawmills, civil war and cutting shrubs for fire-
wood both for the market and home consumption.
3.6. LULC dynamics in slope gradients

Analysis of LULC dynamics in slope gradients have been imperative
due to the ceaseless demand for farmland which brought LULC changes
in steep slope gradients. During 1985, a large share of the farmland,
grassland and bareland were located in moderate (15–30%) and sloping
(5–10%) gradients. Over the same study period, however, a significant
amount of the forest area was found in moderately (15–30%) and steeply
(30–60%) slope gradients. Furthermore, a high amount of shrubland was
located on a moderately slope (15–30%), followed by a strongly slope
(10–15%) in the watershed.

In the year 2000, a large proportion of bareland, grassland and
shrubland in the watershed was on a moderately rolling slope (15–30%),
followed by slope rolling (5–10%). Likewise, a major part of the farmland
was experienced in a moderately rolling slope (15–30%) in the water-
shed. However, a significant portion of forest area was situated in mod-
erate (15–30%) and steep (30–60%) slope gradients (Table 6). A previous
he LULC classes between 1985 and 2021.



Figure 7. Trend analysis of LULC Classes in the Zoa watershed from 1985 to 2021.

Figure 8. LULC maps across agro-ecologies.
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study has validated forest ratio was increased in steep slopes. In line with
this study, the increment of forests is more in steep slopes which can be
due to the fact that these areas are inaccessible to human activities unlike
11
the moderate and gentle slopes (Birhane et al., 2019). A considerable
portion of bareland was placed in moderate (15–30%) and sloping
(5–10%) slope gradients in 2021, whilst forest area was situated in



Table 6. Analysis of LULC dynamics in slope gradient during 1985–2021.

Years LULC types Slope classes in percent rise and area coverage in ha

0–5% 5–10% 10–15% 15–30% 30–60% >60% Total

1985 Bareland 126.59 282.88 205.17 349.52 52.97 0 1017.13

Farmland 1720 4336.6 3648 6544.65 1173.62 2.83 17425.7

Forest 133.87 450.15 616.3 2686.3 2199.41 18 6104.03

Grassland 757.58 2180.35 2088.3 4303.13 941.63 2.178 10273.168

Shrubland 1921.87 5149.9 4747.16 10339.44 2913.18 10.25 25081.8

2000 Bareland 524.86 1077.56 762.84 1236.84 348.24 0.93 3951.27

Farmland 2548.02 6957.77 6245.44 12420.55 2648.98 3.23 30823.99

Forest 295.65 841.99 948.92 3094 1973.35 14.43 7168.34

Grassland 267.86 676.12 568.3 1417.86 654.94 8.85 3593.93

Shrubland 1005.09 2816.18 2735.64 6126.83 1674.4 6.12 14364.26

2021 Bareland 308.03 758.9 678.2 1692.85 689.48 1.23 4128.69

Farmland 3559 9578.16 8452.97 17153.04 3852.76 8.27 42604.2

Forest 103.64 344.1 446.65 1898.99 1562.11 16.72 4372.21

Grassland 200.13 390.73 256.53 351.37 52.62 0 1251.38

Shrubland 439.21 1295.5 1363.72 3304.17 1135.84 6.88 7545.32

Note: Flat ¼ 0–5; sloping ¼ 5–10; strongly sloping ¼ 10–15; moderately sloping ¼ 15–30; steep ¼ 30–60; very steep¼>60.
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moderate (15–30%) and steep (30–60%) slope gradients. A lion share of
farmland was found in moderate (15–30%) slope gradient, followed by
sloping gradient (5–10%) in the watershed. In the watershed, a signifi-
cant amount of shrubland was identified with a moderate (15–30%) and
strong (10–15%) slope gradient.

In contrast, farmland was increased on moderately and steeply rolling
slopes. This is due to rapid human population growth and continued
demand for agriculture. For instance, farmland was identified over a
steep slope 1173.62 ha in 1985, 2648.98 ha in 2000 and 3852.76 in
2021. Likewise, Kindu et al. (2013) reported the expansion of cultivated
land from gentle and moderate slopes to steep and very steep slopes of
the Ethiopian highlands. The increment of the farmland might be related
to accessibility and suitability of land. This condition exacerbates soil
erosion in undulating topography which in turn leads to bareland unless
adequate conservation measures are taken. Similarly, bareland showed a
growing trend toward moderate to steep slope gradients, possibly due to
pressures on forest and shrubland, such as overgrazing in rough terrain.

4. Major drivers of LULC dynamics in the study area

LULC changes are a direct outcome of both human and natural fac-
tors, with anthropogenic pressure owing to globalization as the foremost
driver (Regasa et al., 2021). Such an opinion concerning various parts of
Ethiopia is also presented by other authors, emphasizing the common
and simultaneous effect of the interaction of natural and anthropogenic
driving factors (Betru et al., 2019; Degife et al., 2019; Aneseyee et al.,
2020; Dibaba et al., 2020; Sisay et al., 2021). However, human activities
were found to be main and abrupt as compared to the natural process as a
driver of LULC dynamics (Dibaba et al., 2020). Some drivers are well
related to the results and analysis of Landsat images. However, the major
drivers are not only restricted in the watershed, rather they are also is-
sued of different parts of Ethiopia. Because of that, the key informants
identified the following proximate (direct) and underlying (indirect)
drivers in the watershed.

4.1. Proximate drivers

According to data gathered from key informants, six major proximate
drivers of LULC dynamics were identified in the watershed. The majority
of interviewees (95.6%) perceived that the expansion of farmland and
settlement was the foremost proximate driver of LULC dynamics
(Figure 9). This is supported by the LULC analysis which showed the
increasing tendency of the farmland class from 29.09% in 1985 to
12
51.46% in 2000 to 71.12% in 2021. Besides, the summary of the focus
group discussions revealed that the unintended expansion of farmland
and settlement on the way to the surrounding shrubland and forest area is
the main driver of the LULC dynamics in the watershed. In line with this,
similar results were reported in different parts of Ethiopia (Berihun et al.,
2019; Betru et al., 2019; Degife et al., 2019; Dibaba et al., 2020; Hishe
et al., 2020). For instance, Degife et al. (2019) asserted that the expansion
of cropland exerts puts a lot of pressure on the natural resources in Lake
Hawassa watershed of Ethiopia.

About 86.7% of interviewees asserted extraction of wood for fire-
wood and income sources are also one of the vital drivers contributing to
change in LULC in the watershed. Focus group discussants also affirmed
that almost all people in the watershed exclusively depend on trees as a
source of fuel-wood without replacing for future use. This is because of
the absence of additional power such as electric, solar and extra renew-
able energy sources. Moreover, key informants from the upper watershed
also attested that most residents are using trees as a main source of
revenue due to the increasing demand for extraction of charcoal, fire-
wood sale, local furniture and construction purposes without reforesta-
tion. Similarly, Hishe et al. (2020) reported that one more serious issue is
the extraction of trees/wood for domestic and commercial purposes,
which is primarily done by residents and or sometimes by illegal traders.

LULC dynamics in the watershed, according to 71.1% of interviewees,
are driven by uncontrolled grazing. Besides, the results indicated by focus
group participants in the lower streams confirmed that climate variability
and overgrazing created high pressure on grassland and bushland which
in turn the grassland might be converted into bareland through time, and
thereby rising soil erosion around the outlet area. This finding corrobo-
rates LULC analysis which revealed that grassland and bushland have
exhibited a declining tendency since 1985. Likewise, due to climate
change and human activity effects, grassland ecosystems are being
invaded by other land use types in many regions of the world (Shen et al.,
2022b; Xu et al., 2022). Similarly, prior studies reported that uncon-
trolled grazing of animals, hampered forest succession by destroying
emerging seedlings and browsing, particularly of olive trees in the
country (Hishe et al., 2020).

It is indicated in Figure 9, about 73.3% of interviewees maintained
that terrain features (slope and aspects) were further drivers of LULC
dynamics in the watershed. Similar findings were reported in different
parts of Ethiopia (Kindu et al., 2015; Yesuph and Dagnew, 2019; Ogato
et al., 2021).

Predominated share of (71.1%) of interviewees declared that forest
fire was the noticeable driver of LULC dynamics. Hence, it needs an



Figure 9. Proximate major drivers of LULC perceived by interviewees. Note: Multiple responses were provided.
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urgent response; if not, it will result in environmental degradation,
especially, in the bottom and outlet parts of the watershed. Moreover,
about 64.4% of the interviewees specified that drought incidences
including erratic rainfall were considered the drivers of LULC change.
According to Gitima et al. (2021), both minimum and maximum tem-
perature were increased with the seasonal erratic nature of rainfall
bringing indescribable hardship in the Dawuro zone. In addition, focus
group discussants recognized that the increasing trends of temperature
and shifting of seasonal weather phenomenon cause LULC dynamics.
Belay and Mengistu (2019) also confirmed that climate variability and
change could lead to land conversion for various purposes.
4.2. Underlying drivers

Rapid human population growth in the study area was specified by
interviewees (91.1%) as one of the utmost important underlying drivers
of LULC dynamics. It was understood by focus group discussants that the
population is growing alarmingly in the watershed due to natural in-
creases; this exacerbates the expansion of farmland towards shrubland
and forest without concerning regional land use planning with natural
resource management. This is in line with total population data from
1984 to 2021 of the study area (CSA, 2022) and the average growth rate
of 278.28 or 7.3 by annually (Figure 10). The expansion of farmland
during the study period was consistently associated with this population
growth in a positive way. Rapid human population growth is confirmed
as a major driver of LULC dynamics in different parts of Ethiopia (Abebe
Figure 10. The total number of population (1984–2021) in the watershed
(CSA, 2022).
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et al., 2019; Berihun et al., 2019; Betru et al., 2019; Abera et al., 2020;
Hailu et al., 2020; Ogato et al., 2021; Sisay et al., 2021). For instance,
Hailu et al. (2020), both forest cover and wetland proportions
encroachment, new farmland, and firewood extraction resulted from the
rapid growth of human population and demand for cultivated land,
biofuels and construction. Moreover, Abera et al., 2020) affirmed that
population density and rapid population growth exacerbate the rate of
resource depletion in the Chewaka district of Ethiopia. Regasa et al.
(2021) based on the a literature review underlined unfavorable changes
in LULC as a consequence of increasing human pressure on the Ethiopian
environment driven by the need of improving the socioeconomic situa-
tion of the local population.

The poor land tenure system including policy is also affirmed by in-
terviewees (68.9%) as an important driver for the LULC dynamics
(Figure 11). Focus group discussants asserted that the land tenure policy
system in the country discourages rural land ownership rights, this could
be related to a decrease in resource conservation and an upsurge in
deforestation and forest degradation. Likewise, Sisay et al. (2021) re-
ported that land policies with poor regulations are derived from each
regime's political ideologies in Ethiopia, land policies change with each
change of government. The land tenure policy was changed from private
ownership to state and private (feudal) ownership when the Derg regime
abandoned the imperial government in 1974. Moreover, Tefera (2011)
and Hailu et al. (2020) reported that due to a change in land policy under
the regime of Derge, extensive portions of forest and pasture land were
transformed for various land uses. These poor land tenure policies
contributed significantly to the fast transformation of rural land from one
land use type to another under each regime.
Figure 11. Underlying major drivers of LULC perceived by interviewees. Note:
Multiple responses were provided.
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Another driver of LULC dynamics identified by interviewees (66.7%)
in the watershed is a lack of off-farm activities (Figure 11). Besides, focus
group discussants also confirmed that the majority of the rural commu-
nities in the watershed are relying on rain-fed agriculture. In the
watershed, there was no off-farm diversification other than selling fire-
wood and charcoal, which accelerated deforestation and LULC changes.
Belay and Mengistu (2019) stated that youthful and landless peasants,
who make a living by producing charcoal and cutting trees for cultivating
land, were among the main causes of forest resource decrease. Hence,
with assistance and support in the form of capacity building, they are
being encouraged to diversify off-farm income-generating enterprises,
provision of credit and facilitating markets (Agidew and Singh, 2017) are
recommended to address these problems in the watershed.

5. Conclusion

The diverse agro-ecology and slope gradient in Ethiopia necessitates
site-specific LULC studies at a watershed level. This study is, therefore,
intended to examine the spatio-temporal LULC dynamics across agro-
ecologies and slope gradients using geospatial technologies in Zoa
watershed of Omo-Gibe basin over the period of 1985–2021. Unfortu-
nately, the changes found should be considered unfavorable and may
lead to environmental degradation by strengthening and intensifying the
phenomenon of erosion or loss of soil organic matter. The reason for such
a situation was the fact that an extensive area of shrubland and grassland
were converted into farmland. This was expanded towards moderately
and steep rolling slopes from 1985 to 2021. Additionally, the coefficients
of the model of regression reveal that the LULC classes of the forest,
grassland and shrubland are significantly affected throughout the study
period. It was found that between 1985 and 2021, the proportion of
farmland in all agro-ecological zones showed an increasing tendency
with the highest rate in the watershed. In contrast, forest area was
increased in highland agro-ecological zones during 2000–1985 due to the
launch of new plantation sites, while it was decreased in lowland and
midland agro-ecological zones between 1985 and 2021. Farmland was
expanded towards moderately and steep rolling slopes due to population
growth and ongoing demand for agricultural land. This is due to Ethiopia
has not a clear land use policy that prohibits the use of steep slope areas
for agriculture. This condition exacerbates soil erosion in undulating
topography unless adequate conservation measures are taken through
land use policy interventions in the country. The foremost direct and
indirect drivers of LULC dynamics are found to be an expansion of
farmland and settlement and rapid human population growth, respec-
tively. The overall result confirmed that farmland and barelands are
expanding at the expense of other land use types. This might lead to
serious environmental problems like climate change, soil erosion and
biodiversity loss. Thus, the confined government in consultation with the
community and other stakeholders should work on redesigning effective
management strategies through appropriate land use planning to address
the adverse effects of LULC dynamics.

It is well known that any LULC map derived from satellite images has
errors or uncertainties (Hu et al., 2020; Hussain et al., 2022; Shen et al.,
2022a). Limitations of the satellite data resolutions, imperfect adjust-
ment data, and empirical model precision are the primary causes of
image class omission and commission errors. Landsat clear-sky data
availability is the key limitation for land cover mapping. To reduce this
uncertainty, we obtained remotely sensed data in dry season of Ethiopia.
This technique is very efficient at minimizing cloud cover, various other
noise issues, and eliminates temporal data (Shen et al., 2022a). While
some of the land cover themes can be directly mapped using a single-day
satellite images, others may not be directly retrieved from the optical
medium resolution data. The incompleteness of the Landsat observation
time series decreases map accuracy in a given area with persistent cloud
cover (Potapov et al., 2022). Moreover, pixels are acquired at different
times and different viewing geometries, under different atmospheric
conditions (Shen et al., 2022a).
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