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ABSTRACT: We compile a large data set designed for the
efficient benchmarking of exchange−correlation functionals
for the calculation of electronic band gaps. The data set
comprises information on the experimental structure and band
gap of 472 nonmagnetic materials and includes a diverse
group of covalent-, ionic-, and van der Waals-bonded solids.
We used it to benchmark 12 functionals, ranging from
standard local and semilocal functionals, passing through
meta-generalized-gradient approximations, and several hy-
brids. We included both general purpose functionals, like
the Perdew−Burke−Ernzerhof approximation, and functionals
specifically crafted for the determination of band gaps. The
comparison of experimental and theoretical band gaps shows
that the modified Becke−Johnson is at the moment the best available density functional, closely followed by the Heyd−
Scuseria−Ernzerhof screened hybrid from 2006 and the high-local-exchange generalized-gradient approximation.

1. INTRODUCTION

Since its first appearance more than 50 years ago, Kohn−Sham
density-functional theory (DFT)1,2 has become pivotal in
modern solid state physics.3 Coupled to the evolution of
computational capabilities, it is no longer a mere companion to
experimental work but stands on its own as a tool with predictive
ability. Although the formulation of the theory is exact, all
complexities of the many-body problem are cast into an
unknown object, famously referred to as the exchange−
correlation (xc) functional Exc. This is a crucial term, which
has to be approximated in every numerical application of the
theory. As a consequence, success or failure of DFT calculations
rests solely on the validity of the chosen approximation to the xc
functional.
Currently more than 400 xc functionals exist in the literature.4

Some of these are widely used and known, but most functionals
do not find widespread use. Two striking examples are PBE5 and
B3LYP,6 which have become the de facto standards within the
physics and chemistry communities, respectively. Beyond these
“Swiss-army knife” functionals, there exists a series of more
specialized ones for particular uses. For example, PBEsol7,8 has
been shown to improve the description of lattice parameters of
solids, and HSE069 is the preferred functional for the calculation
of band gaps of semiconductors.

There are several paths used to develop xc functionals. Some
rely on exact limits and sum rules, and a deep understanding of
the physics of correlated electron gases (e.g, the PBE,5 the
AK13,10 or the SCAN11 functionals). Others use a more
pragmatic and practical approach and rely on fitting
experimental or high-quality theoretical results for atoms,
molecules, or solids (e.g., the HCTH12−14 family, or the
Minnesota family of functionals15). In any case, there is a lot of
ingenuity and imagination involved in the creation of a
functional, but these, of course, can never guarantee the quality
of the final results. Therefore, benchmarking functionals in large
data sets is perhaps as important as developing them. As such, in
this Article, we are concerned with benchmarking a selection of
approximations to the xc functionals for electronic band gaps of
solids.
Band gaps are without doubt one of the most important

quantities for electronic and optoelectronics applications. For
example, the size of the band gap determines the absorption
threshold and limits the maximum open circuit voltage of
photovoltaic modules, and it is therefore a crucial factor in their
efficiency. Also the frequency of the light emitted by a diode
depends directly on the band gap, as does the transparency, or
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the lack thereof, of a given crystal. It is such a basic attribute that
it is often the second property measured (or calculated) for any
semiconductor, following the crystal structure of course.
In standard DFT the fundamental band gap is not directly

given by the difference between the conduction band minima
and valence bandmaxima. In fact, there is a contributionmissing
due to the discontinuity of the derivative of the xc functional
with respect to the number of particles.16−18 Unfortunately,
standard local density approximations (LDA) and generalized
gradient approximations (GGA) lack this discontinuity, leading
to band gaps that are approximately half of their experimental
value. In the case of the meta-GGA and hybrid functionals, the
orbital dependence renders the implementation of the Kohn−
Sham scheme (through the optimized effective potential
method19,20) very complicated. Therefore, these functionals
are typically used through the minimization of the energy with
respect to the Kohn−Sham orbitals, in what is called the
generalized Kohn−Sham scheme.21,22 In this scheme, the
Kohn−Sham band gap of a solid equals the fundamental gap
for the approximate functional if the potential operator that
enters the generalized Kohn−Sham equations is continuous and
the density change is delocalized when an electron or hole is
added.23 This helps explaining why band-gaps calculated with
meta-GGAs and hybrid functionals are typically closer to
experimental values than the ones obtained with the multi-
plicative potential that stems from a LDA or a GGA functional.24

Of course, several benchmarks of band gaps of semi-
conductors and insulators already appeared in the literature.
However, such benchmarks typically contain somewhere from
10 to around 10025−30 systems. Reference 31 is a notable
exception to this observation, containing a set of 270 inorganic
compounds. These numbers are nevertheless small, in view of
the diversity of crystalline semiconductors that one can find in
nature. Not only may they contain any of the ∼100 chemical
elements that constitute the periodic table, but they also exhibit
different kinds of chemical bondings. In fact, we have
semiconductors and insulators that are purely covalent (e.g.,
silicon, diamond), strongly ionic (e.g., NaCl), or even van der
Waals bonded (such as the elemental solids made of rare gases).
Ideally, to test functionals against any bias, and to assess them for
the different situations one requires large and varied benchmark
sets.
As such, our goals are 2-fold. First to compile a large data set of

experimental band gaps (together with the corresponding
experimental crystal structures). Second, to use it as an effective
large-scale benchmark of some of the most used xc functionals
for the determination of electronic gaps.
The rest of this Article is structured as follows. In secion 2 we

give a brief overview of the properties of our selection of
functionals, followed by a description of the construction of the
benchmark data set and the details of the numerical methods.
Results are then presented in section 5, and finally our
conclusions are drawn in section 6.

2. FUNCTIONALS

At the lowest rung of Jacob’s Ladder,32 we find the LDA which,
as its name well indicates, approximates the xc energy at any
given point in space r, by that of a homogeneous electron gas
with density n(r). This leads to a simple expression for the
exchange energy density33,34 in terms of the Wigner−Seitz
radius r n n3/4 ( )s 3 π= +↑ ↓ and the magnetization density ζ =
(n↑ − n↓)/(n↑ + n↓), where n↑ and n↓ are the spin-up and spin-

down electronic densities. Correlation is more problematic, as
no exact analytic form is available. Because of this, several
different fits to Monte Carlo results are used, giving rise to the
different correlation functionals in the literature. In the current
work we make use of the Perdew−Zunger35 (PZ81)
approximation, which captures the spin dependency by
interpolating between the para- and ferromagnetic electron
gases, as suggested by ref 36.
At the GGA level we first consider the functional of Perdew−

Burke−Ernzerhof5 (PBE), the de facto standard functional in the
physics community. By design, each part of PBE obeys some
exact conditions. The exchange part must (i) scale correctly
under the uniform density scaling and be exact for uniform
densities, (ii) obey the exact spin-scaling relationship, (iii)
recover the linear response of the LDA for small gradients, and
(iv) satisfy the local Lieb−Oxford bound.37 The correlation has
to (i) recover the exact second-order gradient expansion in the
slowly varying limit, (ii) vanish in the rapidly varying limit, and
(iii) scale correctly under an uniform scaling in the high-density
limit. The explicit form of the PBE functional depends on four
parameters (μ, κ, β, γ), whose values are fixed from theoretical
considerations using the aforementioned set of conditions,
making PBE a fully ab initio functional.
Another very popular GGA for the study of solids is PBEsol.8

It shares the same functional form as the PBE but sets μ = 10/81
(restoring the density-gradient expansion for the exchange) and
β = 0.046. Compared to the PBE, this reparametrization yields
improved results for the lattice constants of solids7 and for
formation energies.38

The high-local exchange functional39 (HLE16) is a member
of the Hamprecht−Cohen−Tozer−Handy (HCTH)12−14

family, and more specifically, it can be obtained with a
rebalancing of the weights of the exchange and correlation
components of HCTH/407.12 HLE16 neglects the constraints
for the homogeneous electron gas and the limit of slowly varying
densities but still obeys the exchange scaling condition.
Furthermore, it has been shown to give band gaps comparable
with those calculated with more expensive methods (except for
systems with localized d states),25 at the expense of a rather poor
performance for the relaxation of lattice parameters.39

Climbing to the meta-GGA rung of the Jacob’s ladder, we
consider the Becke−Johnson40 (BJ) functional. This is a
potential-only approximation to the exchange contribution of
vxc, built to resemble the exact-exchange potential by using the
Slater potential41 augmented by an additional term:
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Besides correctly describing the homogeneous electron gas, it is
exact for the hydrogen atom and reproduces the step-like
structure of the exchange potential for atoms. Unfortunately,
this functional is not gauge invariant nor exact for all one-
electron systems42 and it asymptotically approaches a (spin-
dependent) constant whose value depends on the eigenvalue of
the highest occupied orbital. To build the BJ functional, we
follow the common recipe in the literature to approximate the
Slater potential with the Becke−Roussel (BR) formula43 and we
add correlation at the level of the LDA.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00322
J. Chem. Theory Comput. 2019, 15, 5069−5079

5070

http://dx.doi.org/10.1021/acs.jctc.9b00322


Themodified Becke−Johnson44 (mBJ) is an adaptation of the
BJ potential, where each term is scaled by means of a new
(density-dependent) parameter c:
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The parameters α and β were originally obtained by fitting band
gaps of all-electron calculations to experimental ones. The size of
the band gap increases monotonically with c which, being larger
than 1, somewhat corrects the underestimation of gaps by BJ.
We close the selection of meta-GGA’s with the strongly

constrained and appropriately normed11 (SCAN) functional.
This was designed to obey 17 exact constrains, essentially using a
function α as a measure of electron localization (α≈ 0 for single
covalent bonds, α ≈ 1 for metallic bonds, α ≫ 1 for weak
bonds), and using it to interpolate between well-approximated
regimes. This machinery leads to a functional that is exact, or
very close to it, for a diverse range of model systems. In terms of
results, it represents a remarkable improvement for the
calculation of formation energies with respect to PBE,45,46

although it tends to overestimate them for magnetic alloys by a
factor of 2−3.47
The first hybrid functional we take into account is PBE0.48,49

This global hybrid uses a simple mixture of Hartree−Fock (HF)
and PBE exchange,

E E E E(1 )xc
PBE0

x
PBE

x
HF

c
PBEα α= − + + (5)

A series of arguments exists to justify the use of a α = 1/4mixing,
and this is generally understood as an adequate value for a wide
range of materials. However, we know that this functional tends
to overestimate band gaps of semiconductors due to its constant
mixing and to the lack of screening.50,51

The Heyd−Scuseria−Ernzerhof (HSE)9,52,53 functional
improves upon the performance of global hybrids for solids by
splitting the Coulomb interaction into short and long-range.
The two ranges are determined by the function erfc(μr), where
μ is a parameter. This separation opens the door to a continuum
of possible parametrizations, among which we find HSE06,9

with μ = 0.11 and α = 0.25. This is possibly the most famous
HSE member, and it is the state-of-the-art method used in the
physics community for the determination of accurate band
gaps.25,27

We consider an additional member of the hybrid family,
namely, the HSE reparametrization from ref 54. The resulting
functional, which we henceforth refer to as HSE14, uses μ = 0.5
and α = 0.6. This allows us to obtain a diagonal part of the
dielectric tensor closer to that of Thomas−Fermi or of the
random-phase approximation.54 The HSE14 choice of param-
eters was observed by its authors to improve the description of
band gaps, at the cost of a worsening of thermochemistry results.
Lastly, we also consider two hybrids with density-dependent

mixing parameters proposed by Marques et al.,50 namely,
PBE0mix and HSEmix. These two hybrids make use of the
correlation between the optimal mixing parameter of a material
and the inverse of its low-frequency dielectric constant,50,55,56

approximating α ∼ 1/ϵ∞ via a simple global function g̅,
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where the integral is taken over the unit cell. Similarly to the case
of the mBJ functional, the resulting potential is not the derivative
of the energy due to neglecting the functional derivative of the
mixing parameter. Calculations with density-dependent mixing
parameters showed improved results with respect to the use of
the parent functionals for a set mostly composed of sp
materials.50 As already observed by Marques et al.,50 it is not
immediate to generalize this approach to non-sp materials.55

3. DATA SET

For the creation of the band gap data set, we inspected the
available literature for experimental data on band gaps. Given
the huge volume of the literature available, this task is rather
tedious but, fortunately, it was eased by some existing
compilations.57,58 Besides these, several individual entries from
the available literature were also used. The complete list of
references is available as Supporting Information.
Unfortunately, the compilation of the experimental values

suffered from a series of unavoidable issues. For example, it is
very rare to find an indication of the experimental uncertainties
in the measurement. This uncertainty is, of course, fundamental
to have an idea of the accuracy of the experimental measurement
and could certainly be used to weight the data points. Moreover,
for several systems, different articles report very different
estimates for the band gap, and often these discrepancies are
not discussed. On the other extreme, materials that fail to attract
mainstream interest have sometimes been measured only once,
and the experiment can date back more than 50 years. We
examined all sources and removed the data points that suffered
severely from these problems.
Then, reported values of gaps often come from optical

measurements (e.g., photoluminescence), as these experiments
are relatively straightforward when compared to other methods.
Optical absorption measures, of course, the optical gap, and this
differs from the fundamental (photoemission) gap by the
excitonic binding energy. It is true that the exciton binding
energy can be of the order of several electronvolts for systems of
reduced dimensionality.59,60 However, for bulk systems, this
quantity is much smaller, usually of the order of tens of
millielectronvolts. Additionally, the experimental determination
of band gaps done via Tauc plots61 or reflectivity studies often
passes by the analysis of low-intensity tails. These studies can
provide quantitative information on band gaps, but inferences
regarding their qualitative nature (direct vs indirect, allowed vs
forbidden, etc.) are not trivial.
Temperature effects are another ubiquitous problem in the

literature. Comparatively few gap measurements are performed
at low temperature and many are reported at unspecified
temperature. Since for most materials the optical band gap
decreases with increasing temperature, this will naturally
introduce a systematic error in comparison to the theoretical
results. Moreover, we note that our calculations (as most other
reported calculations) do not include zero-point effects. This
can again lead to corrections of the order of tens of
millielectronvolts (see, for example, Table 5 of ref 62).
Another big issue that we encountered is the fact that

experimental papers sometimes present insufficient information
on the material beyond its composition. This problem can be
particularly serious for materials that exhibit polymorphism. For
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the sake of reproducibility, we decided therefore to use only
crystal structures that were present in both the inorganic crystal
structure database63,64 (ICSD) and the materials project
database.65 Furthermore, we only kept materials if enough
crystallographic data (space group,Wyckoff positions, etc.) were
available in the literature to index them to their respective entries
in the materials databases: primary references were consulted to
the best of our capacity and cases of inconclusive or
contradictory data were discarded.
It is true that, on an individual basis, these issues are almost

unavoidable. We estimate that this can lead all in all to
uncertainties of the order of tenths of an electronvolt. However,
we can greatly alleviate the problem thanks to statistics, by using
a sufficiently large data set of materials.
In the definition of the benchmark data set we included also a

few constraints coming from the computational side. First,
hybrid functionals are rather expensive; therefore, few structures
with more than 24 atoms in the unit cell (and none with more
than 32) were considered. Second, materials with atoms for
which no pseudopotential is available in the VASP distribution
were discarded. Third, failure to converge calculations leads to
discarding the material (this problem was met for several
compounds containing cerium, for example).
As a last remark, we only included nonmagnetic materials.

Magnetic systems are often found to be antiferromagnetic, with
the band gap sometimes strongly dependent on the magnetic
configuration. As the correct identification of the ground state
magnetic configuration requires the construction of supercells,
we estimated that the inclusion of magnetic materials goes
beyond the scope of this Article.
In the end, this selection process resulted in a final data set of

472 materials for which we can define an experimental band gap
and experimental crystal structure. The complete data set is
presented as Supporting Information and is openly available
online.66 Figure 1 gives an overview on the data set, showing the
frequency of chemical elements in all considered materials. We
can observe that the whole periodic table is represented. The
most represented elements are, of course, the nonmetals, which
are constituents of almost all semiconductors and insulators.
This is particularly true for oxides, sulfides, and selenides that are
rather common and thoroughly studied. The most under-

represented set of elements are the lanthanides and the actinides,
due to a combination of lack of experiments, lack of
pseudopotentials, and difficulties in converging the calculations.
The distribution of experimental band gaps is displayed in

Figure 2. Note that we separate our list in categories, differing by

the type of elements in the chemical composition of the
materials: set sp, containing only elements of groups Ia, IIa, and
IIIa−VIIIa; set d, containing at least one transition metal; set f,
containing at least one lanthanide or actinide. As our complete
data set is rather large, the sp and d subsets are still statistically
significant, and separating the data set in different families allows
for more insight into the results.
The majority of the gaps clearly lies around the 2 eV region,

with a noticeable fat tail extending from around 5 eV to more
than 20 eV. The insulators with largest gaps are either van der
Waals bonded (like Ne, Ar, or Kr) or are strongly ionic fluorides
(such as LiF, YF3, MgF2, etc.). The oxide with largest gap is BeO,
with a gap of 10.6 eV, and the chloride is LiCl, with a gap of 9.4
eV. On the opposite side of the scale one finds small-gap
antimonides, selenides, and tellurides, such as PtSb2 (0.11 eV),
ScNiSb (0.11 eV), PbSe (0.145 eV), Ag2Se (1.5 eV), etc. The
elemental substance with the smallest gap in our data set is black
phosphorus with a gap of 0.31 eV.

Figure 1. Frequency of elements in our data set. Gray boxes indicate elements not present in the data set.

Figure 2. Histogram of experimental gaps in the data set. Boxes have a
width of 0.3 eV. Colors represent the amount of each data set in the
corresponding box. Description of the partial data sets is done in the
main text.
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4. METHODS

All calculations were performed using the Vienna ab initio
simulation package (VASP; version 5.4)67 within the projector
augmented wave formalism (PAW).68 A custom version of
VASP, linked to Libxc,4,69 was also used to access xc functionals
not implemented in the standard distribution, such as HLE16.
We used the pseudopotentials distributed with the version 3.3.5
of VASP, as recommended by the materials project database.65

All calculations were performed at the experimental geometries,
as provided by the ICSD database. We used geometries marked

as high-quality data when available. Otherwise, we chose low-
temperature data or the most recent experiment.
We calculated all band gaps as the difference of Kohn−Sham

eigenvalues obtained from self-consistent calculations. To
ensure a reliable value of the gap, the k-point grids were chosen
so that the computed band gaps were converged within 50 meV
for both PBE and HLE16 calculations. This resulted in grids
with densities ranging from 500 to 4000 k-points per atom.
Finally, all meta-GGA and hybrid calculations were performed
by accounting for nonspherical contributions of the density
gradient inside the PAW spheres.

Figure 3. Relative frequency and experimental band gap as a function of the ratio between theoretical and experimental band gaps for the different xc
functionals: (a) comparison ofHLE16 with and without spin−orbit coupling effect; (b) LDAwith and without spin−orbit coupling; (c) comparison of
GGA functionals; (d) comparison of mGGA functionals; (e) comparison of screened hybrid functionals; (f) comparison of PBE0 with PBE0mix. For
representation purposes the x-axis of these plots was truncated at 1.6.
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Table 1. Dataset Sizes, Number of Calculated False Metals, Mean Absolute Errors (MAE, in eV), Mean Absolute Percentage
Errors (MAPE), Mean Percentage Errors (MPE), Mean Errors (ME, in eV), Variance (σ2, in eV2), Median Error (MnE, in eV),
Median Absolute Deviation from the Median (MADM, in eV), Interquartile Range (IQR, in eV), Linear Fit (y = ax + b)
Coefficients, Pearson’s Correlation Coefficient (r), and Kendall’s Rank Correlation Coefficient (τ) for Calculations of the
Kohn−Sham Band Gap for All Considered Functionalsa

LDA
LDA
(SOC) PBE

PBE
(SOC) PBEsol HLE16

HLE16
(SOC) BJ mBJ SCAN HSE06 HSE14 HSEmix PBE0 PBE0mix

sp set size 220 220 220 220 220 220 220 220 220 220 220 220 220 220 220
false
metals

13 14 11 13 11 6 8 9 4 8 4 4 2 2 2

Kendall τ 0.76 0.77 0.76 0.78 0.76 0.77 0.80 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.77
Pearson r 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.97 0.95 0.95 0.95 0.96 0.95 0.95
a 0.59 0.60 0.62 0.62 0.61 0.78 0.80 0.70 0.88 0.68 0.75 0.84 0.97 0.76 1.01
b (eV) 0.06 −0.05 0.13 0.01 0.07 0.37 0.13 0.20 0.21 0.24 0.55 0.47 0.30 1.09 0.39
MAE
(eV)

1.3 1.4 1.2 1.3 1.3 0.7 0.6 0.9 0.6 0.9 0.7 0.6 0.7 0.8 0.8

ME (eV) −1.3 −1.4 −1.2 −1.3 −1.2 −0.4 −0.5 −0.8 −0.2 −0.8 −0.3 −0.1 0.2 0.3 0.4
σ2 (eV2) 1.9 1.8 1.7 1.7 1.8 1.0 0.8 1.2 0.6 1.4 1.1 0.9 0.8 1.1 1.0
MnE (eV) −0.9 −1.0 −0.8 −0.9 −0.9 −0.1 −0.3 −0.5 −0.1 −0.5 −0.1 0.0 0.2 0.5 0.4
IQR (eV) 1.3 1.2 1.2 1.1 1.2 0.9 0.8 1.1 0.8 1.0 0.8 0.8 0.8 0.8 1.2
MADM
(eV)

0.5 0.5 0.5 0.5 0.5 0.4 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6

MAPE
(%)

43.8 47.4 40.0 43.0 42.1 33.8 25.5 32.9 29.0 33.0 28.9 30.4 32.9 52.6 42.2

MPE (%) −40.8 −45.7 −34.7 41.8 −38.5 4.4 −14.1 −19.6 3.4 −22.2 4.1 9.0 16.1 42.4 25.5
d set size 244 244 244 244 244 244 244 244 244 244 244 244 244 244 244

false
metals

22 20 19 17 24 8 7 11 7 10 5 4 2 3 2

Kendall τ 0.61 0.62 0.63 0.64 0.62 0.67 0.68 0.72 0.71 0.66 0.72 0.73 0.73 0.72 0.73
Pearson r 0.87 0.87 0.88 0.88 0.87 0.81 0.81 0.91 0.90 0.89 0.91 0.91 0.90 0.90 0.88
a 0.66 0.65 0.67 0.67 0.67 0.65 0.65 0.73 0.82 0.75 0.90 1.02 1.14 0.92 1.20
b (eV) −0.31 −0.36 −0.24 −0.29 −0.28 0.34 0.27 −0.10 0.14 −0.14 0.28 0.35 0.24 0.80 0.33
MAE (ev) 1.0 1.1 0.9 1.0 1.0 0.5 0.6 0.7 0.4 0.7 0.4 0.5 0.6 0.7 0.8
ME (ev) −1.0 −1.1 −0.9 −1.0 −1.0 −0.4 −0.5 −0.6 −0.2 −0.7 0.1 0.4 0.5 0.6 0.8
σ2 (eV2) 0.5 0.5 0.4 0.4 0.5 0.6 0.6 0.3 0.4 0.4 0.3 0.4 0.6 0.4 0.8
MnE (eV) −0.9 −1.0 −0.9 −0.9 −0.9 −0.2 −0.3 −0.6 −0.2 −0.6 0.0 0.3 0.4 0.6 0.6
IQR (eV) 0.8 0.8 0.8 0.8 0.8 0.6 0.6 0.6 0.6 0.7 0.5 0.6 0.7 0.6 0.8
MADM
(eV)

0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.4

MAPE
(%)

56.7 59.1 51.7 54.1 54.6 30.3 31.3 39.8 30.2 42.2 32.6 41.4 46.4 69.6 58.2

MPE (%) −52.6 −56.3 −46.2 −50.4 −49.8 −15.1 −20.4 −32.9 −6.4 −31.5 15.8 32.7 39.5 64.1 52.0
f set size 7 7 8 8 8 8 8 7 7 8 8 8 8 8 8

false
metals

0 0 1 1 1 1 1 0 0 1 1 1 1 0 0

Kendall τ 0.90 0.90 0.71 0.71 0.64 0.71 0.71 0.90 0.81 0.64 0.71 0.71 0.71 0.71 0.71
Pearson r 0.99 0.99 0.97 0.98 0.98 0.92 0.93 0.99 0.99 0.96 0.95 0.96 0.96 0.93 0.97
a 0.92 0.91 0.95 0.94 0.96 0.63 0.63 0.97 1.04 1.00 1.22 1.37 1.44 1.23 1.53
b (eV) −1.02 −1.05 −1.11 −1.14 −1.18 −0.33 −0.53 −0.77 −0.62 −0.93 −0.94 −1.14 −1.23 −0.45 −1.33
MAE
(eV)

1.2 1.3 1.2 1.3 1.3 1.2 1.5 0.9 0.5 0.9 0.5 0.5 0.6 0.6 0.6

ME (eV) −1.2 −1.3 −1.2 −1.3 −1.3 −1.2 −1.5 −0.9 −0.5 −0.9 −0.4 −0.2 −0.2 0.1 −0.0
σ2 (eV2) 0.0 0.1 0.1 0.1 0.1 0.4 0.4 0.0 0.0 0.1 0.4 0.6 0.7 0.5 0.8
MnE (eV) −1.2 −1.2 −1.2 −1.2 −1.3 −1.0 −1.3 −0.9 −0.6 −0.8 −0.3 −0.1 −0.1 0.3 −0.0
IQR (eV) 0.3 0.2 0.3 0.3 0.3 0.5 0.3 0.3 0.2 0.2 0.4 0.5 0.5 0.4 0.6
MADM
(eV)

0.2 0.0 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.3 0.3 0.3 0.2 0.4

MAPE
(%)

57.3 59.8 59.0 61.6 62.2 53.7 64.2 40.4 25.4 44.9 25.9 25.8 25.6 25.3 26.7

MPE (%) −57.3 −59.8 −59.0 −61.6 −62.2 −53.7 −64.2 −40.4 −25.4 −44.9 −24.1 −18.9 −16.1 1.4 −12.0
all set size 471 471 472 472 472 472 472 471 471 472 472 472 472 472 472

false
metals

35 34 31 31 36 15 16 20 11 19 10 9 5 5 4

Kendall τ 0.68 0.69 0.69 0.70 0.68 0.71 0.73 0.74 0.75 0.72 0.75 0.75 0.75 0.75 0.74
Pearson r 0.93 0.94 0.94 0.94 0.94 0.93 0.94 0.95 0.96 0.94 0.94 0.94 0.94 0.94 0.93
a 0.62 0.62 0.64 0.64 0.63 0.78 0.78 0.72 0.88 0.70 0.78 0.86 0.98 0.78 1.03
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To quantify the effect of spin−orbit coupling (SOC) on the
band gap size, we also performed calculations with this term for
the semilocal functionals (LDA, PBE, and HLE16).

5. RESULTS

The comparison between calculated and experimental band gaps
is presented graphically in Figure 3, while the tabulated list of
results can be found as Supporting Information. To evaluate the
performance of the functionals, we calculated several relevant
statistical quantities70 (see Table 1), namely, Kendall’s71,72 rank
correlation and Pearson’s correlation coefficients (τ and r,
respectively); the coefficients of the linear fit (y = ax + b) to the
calculated versus the experimental gaps; the mean absolute
error, MAE = ∑i

n|yi − yi,exp|/n; the mean error, ME = ∑i
n(yi −

yi,exp)/n; the variance, σ
2 =∑i

n(yi − yi,exp −ME)2/n; the median
error (MnE); the interquartile range (IQR); the median of the
absolute deviations from the median (MADM); the mean
absolute percentage error, MAPE = 100 × ∑i

n|yi − yi,exp|/(n
yi,exp); and the mean percentage error, MPE = 100 × ∑i

n(yi −
yi,exp)/(nyi,exp). These quantities were obtained for the complete
data set and for the different subsets of materials defined in the
previous section. We also present in the Supporting Information
a detailed analysis of the errors for the subsets containing any
given element.
We start our analysis by looking at the mean errors. As

expected, LDA, PBE, and PBEsol present the highest errors
among the tested (semi-) local functionals. The results in Table
1 show that LDA underestimates band gaps by 50%, while PBE
follows closely with an underestimation of about 40%. They also
yield a rather large number of false metals, namely, 35 (7.4%) for
LDA and 31 (6.6%) for PBE. Finally, it is clear that sp materials
are described much better than compounds including d or f
electrons. However, a per-element analysis shows that the largest
errors come frommaterials containing Ni, Pd, and Pt (for a total
of 9 compounds) and are not uniformly distributed among the
periodic table. Because of the gross underestimation of the band
gap, spin−orbit coupling (which tends to close gaps; see Figure
S1 of the Supporting Information) generally worsens these
results, as seen by the increase of around 0.1 eV of the MAE.
Results obtained with PBEsol are very close to the ones from

PBE. In fact, PBEsol almost constantly underestimates the gap of
PBE by about 0.05 eV (see Figure S2 of the Supporting
Information). This downshift can be understood from the
reduction in the μ parameter that leads to a reduction of the

exchange contribution to the energy, and thus to a lower
estimate of the band gaps.
HLE16 clearly stands as the best functional of the GGA rung,

with mean absolute and mean absolute percentage errors of 0.60
eV and 32%, respectively. This is perhaps not surprising as this
functional was crafted to yield good band gaps. There is still,
however, a small systematic error, with an overall tendency to
underestimate band gaps (although much smaller than the LDA
or the PBE). This can be seen from its mean (percentage) error
of −0.37 eV (−6.7%). This underestimation is due to results for
the d subset, as for the sp subset this functional actually
overestimates gaps below 3 eV. Many of the largest errors come
from compounds with Pb, Bi, Se, and Te. These errors are
greatly reduced by the inclusion of spin−orbit coupling. From
Table 1 we see that this term improves the HLE16 band gaps by
an average of 3%. This improvement is nevertheless rather
concentrated in a few materials containing heavy chemical
elements. The largest corrections can be found for BiI3 (1.36
eV), CsPbBr3 (1.31 eV), PbI2 (1.24 eV), BiF3 (1.12 eV), PbTe
(1.09 eV), Cs3Bi2Br9 (1.03 eV), TlI (1.03 eV), and PbCl2 (1.02
eV). Interestingly, this correction depends considerably on the
xc functional used, and we can find systems where the spin−
orbit correction is twice as large using HLE16 as using PBE (for
example, for PbI2). This speaks against the common practice of
calculating the SOC correction with LDA or PBE and adding it
as a perturbative correction to a higher quality calculation of the
band gap. Finally, we note that even if for specific systems the
SOC correction can be rather large, on average the error
introduced by neglecting SOC is still considerably smaller than
the total average error in the band gap. Therefore, it is still
meaningful to compare the quality of the functionals without
SOC.
We move now to the meta-GGA rung, where all the

functionals tested outperform both the LDA and the PBE. BJ
and SCAN show quite a similar behavior, as they both tend to
underestimate gaps by the same amount (∼0.8 eV, correspond-
ing to 37−38%), and exhibit similar error dispersions (see
Figure 3). As expected, mBJ corrects part of the underestimation
of the band gaps (this fact is clearly visible in Figure 2). With a
mean (percentage) error of just −0.22 eV (−2.1%), in addition
to an (percentage) absolute error of about 0.5 eV (30%), mBJ
ranks first among meta-GGA functionals (and, as we will see,
among the entire selection of functionals). Curiously, it presents
errors very similar to those of HLE16, showing the same
tendency to overestimate gaps lower than 1 eV. It also performs

Table 1. continued

LDA
LDA
(SOC) PBE

PBE
(SOC) PBEsol HLE16

HLE16
(SOC) BJ mBJ SCAN HSE06 HSE14 HSEmix PBE0 PBE0mix

b (eV) −0.14 −0.21 −0.07 −0.16 −0.12 0.21 0.07 0.03 0.10 0.05 0.49 0.55 0.41 1.04 0.51
MAE
(eV)

1.2 1.2 1.1 1.1 1.1 0.6 0.6 0.8 0.5 0.8 0.5 0.6 0.6 0.8 0.8

ME (eV) −1.2 −1.2 −1.0 −1.1 −1.1 −0.4 −0.5 −0.7 −0.2 −0.7 −0.1 0.2 0.4 0.5 0.6
σ2 (eV2) 1.1 1.1 1.0 1.0 1.1 0.8 0.7 0.8 0.5 0.8 0.7 0.7 0.7 0.8 0.9
MnE (eV) −0.9 −1.0 −0.8 −0.9 −0.9 −0.2 −0.3 −0.5 −0.1 −0.6 −0.0 0.2 0.3 0.6 0.5
IQR (eV) 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.6 0.9
MADM
(eV)

0.5 0.5 0.4 0.4 0.5 0.4 0.3 0.4 0.4 0.4 0.3 0.3 0.4 0.3 0.4

MAPE
(%)

50.7 53.7 46.4 49.0 48.9 32.4 29.1 36.6 29.6 38.0 30.8 36.0 39.7 60.9 50.2

MPE (%) −47.2 −51.4 −41.1 −46.6 −44.8 −6.7 −18.2 −26.8 −2.1 −27.4 9.6 20.8 27.7 52.9 38.6
aAverages are done over the total dataset (all) and over the partial sets sp, d, and f, defined in the main text. A material is classified as a false metal if
the calculated band gap is smaller than 0.01 eV.
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badly for lead compounds, although this can certainly be
improved by including spin−orbit coupling.
Among hybrid functionals, PBE0 shows the worst perform-

ance, as it grossly overestimates gaps smaller than 5 eV. For
larger gaps the effect of the unscreened exact-exchange term is
somewhat beneficial for PBE0, as the overestimation almost
balances the systematic underestimation of PBE. Unfortunately,
this compensation is not enough and PBE0 turns out to be the
functional with the largest MAPE (61%) among all tested
functionals.
Accounting for electron screening allows us to considerably

improve upon the performance of PBE0. HSE06 has absolute
errors (MAE of 0.53 eV; MAPE of 31%) comparable with those
ofmBJ. Its performance on the sp subset is slightly better than on
the d subset (see Supporting Information). This improvement is
largely due to the better description of gaps smaller than 5 eV.
For larger values, HSE06 underestimates band gaps more than
PBE0. Curiously, the MAPE for sp materials is not significantly
smaller than for d materials, and it is actually larger than the
MAPE for f-electron materials (although this may be an artifact
due to the small size of the f subset). These results go against the
conviction that standard density-functionals work much better
for an sp system with respect to the more problematic d or f
materials, which often exhibit very localized states.
Concerning the LDA, PBE, HLE16, mBJ, HSE06, and PBE0,

our global error analysis is in qualitative agreement with that of
ref 25. Quantitatively, our errors for HLE16, HSE06, and mBJ
are larger (as expected, given the increased size of our data set),
while those for LDA and PBE are smaller. This result could be
explained by the absence in our data set of antiferromagnetic
systems, which are particularly badly described by these
functionals (and also by HLE1625).
HSE14 deteriorates the results with respect to HSE06,

especially in the subset of d materials. As a result of the
reparametrization, the error on band gaps larger than 5 eV is
reduced, but at the same time smaller band gaps become less
accurate. Apart from that, there is no qualitative difference
between the two functionals with regards to their behavior
across the periodic table.
We conclude this discussion with the analysis of the

performance of the two hybrid functionals with a density-
dependent mixing parameter of ref 50. HSEmix does not improve
over HSE06 in the subset of d materials, exhibiting noticeably
larger absolute errors and a tendency to overestimate band gaps.
This is not a surprise, as the necessity to find a better functional
form for the mixing in the case of localized electronic states has
already been discussed in ref 50. The situation is different if one
considers the subset of sp materials. Below 6 eV HSE06 is still
better than HSEmix, presenting lower errors (both absolute and
percentage). The situation is inverted for band gaps larger than 6
eV, where HSEmix takes the lead. The reason HSEmix does not
yield results of similar quality over the entire range of gaps is not
clear, as the global estimator of ref 50 was fitted to a set of sp
materials with a wide range of band gaps (from Ge to Ne).
Overall, both functionals end up to have very similarMAEs, even
if HSE06 slightly underestimates band gaps and HSEmix slightly
overestimates them. In view of the present results, the fitting of
the density-dependent mixing functional should be re-evaluated,
and possibly the functional form should be adapted to describe
the screening due to more localized d and f electrons.
Similar observations can be done also for PBE0mix. The

density-dependent mixing improves the description of some
materials, notably noble gases, as well as Pb, Sb, and Bi. This

improvement is visually represented in Figure 3f as a peak
around 0 for the quantity Ecalc/Eexp− 1. Unfortunately, this trend
is not maintained on a larger material range, and not even for all
sp elements. With respect to PBE0, PBE0mix improves the
MAPE (50% instead of 61%) and the MPE (39% instead of
53%) but its absolute errors are worse, with a ME of 0.59 eV and
a MAE of 0.82 eV. This counterintuitive result comes from the
better description of only the small band gaps by PBE0mix.
We can now verify whether the errors come from statistically

different distributions by performing the Wilcoxon sign-ranked
test.72,73 For two general paired data sets {xi} and {yi}, this test
checks if the difference between pairs of values (xi − yi) is
symmetric around zero, i.e., if both sets come from populations
with the same distribution (null hypotheses). This is performed
by comparing the obtained p-value to a certain significance level
(α), which is usually taken as 0.05. If p > α, then the differences
are symmetric around zero and both sets are assumed to come
from the same distribution (at the given level of confidence).
We performed this test for the absolute errors and absolute

percentage errors of each pair of functionals. The respective
values of p are presented in Tables SI and SII of the Supporting
Information. For the absolute errors (disregarding spin−orbit
coupling), we expect all studied functionals to produce
statistically different distributions with the exception of
HLE16 and HSE06 (p = 0.14), HLE16 and HSE14 (p =
0.89), BJ and PBE0 (p = 0.89), BJ and PBE0mix (p = 0.88), mBJ
and HSE06 (p = 0.36), SCAN and PBE0 (p = 0.66), and SCAN
and PBE0mix (p = 0.60).
For the absolute percentage errors the statistically similar

distributions are PBE and PBE0 (p = 0.19), HLE16 and mBJ (p
= 0.21), HLE16 and HSE06 (p = 0.13), HLE16 andHSE14 (p =
0.32), BJ and SCAN (p = 0.10), mBJ and HSE06 (p = 0.86), and
SCAN and PBE0mix (p = 0.19).
Still within the analysis of errors we see that although mBJ

does not simultaneously present the best performance for the
IQR, MADM and MnE, its values are consistently among the
smallest. Within the total data set, the best performer for the
IQR is PBE0 (IQR = 0.6 eV), for the MADM are HLE16 (with
SOC), HSE06, HSE14, and PBE0 (with 0.3 eV), and for the
absolute value of MnE is HSE06 (|MnE| = 0.01 eV). Notice,
however, that the differences in these quantities among the best
performing functionals are small, typically 0.1−0.2 eV.
We turn now to the linear fit (y = ax + b) to the calculated

versus experimental data points. This is a traditional quantity
used in this type of analysis because the ideal case (y = x) is
immediately perceived in the respective plots. The values of the
slope (a) and y-intercept (b) reflect the trend of the functional
and eventual systematic errors. Ideally, a = 1 and b = 0 eV, but as
expected, this is not the case for any functional. Instead, we must
look at these two variables more as points on a Pareto curve.
The overall winner in this sense is mBJ, with a = 0.88 (close to

the ideal value) and a small, but non-negligible, b = 0.10 eV. For
HLE16, the inclusion of spin−orbit coupling greatly benefits this
measure, by shifting b from 0.22 to 0.07 eV. Coupled with a
slope of 0.78, HLE16 (with SOC) is also a good contender in
this front. Curiously, HSE06mix and PBE0mix have the best slope
(with a = 0.98 and 1.03, respectively) but their values for b (b =
0.41 and 0.51 eV) and variances (0.7 eV2 and 0.9 eV2) translate
into a poor overall performance (as previously discussed). For
the b parameter, the best performance in seen for BJ, with b =
0.03 eV.
Lastly we turn to the correlation coefficients. As it turns out,

these two quantities are not particularly useful in the current
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context, as differences between functionals are small (lying in a
0.07 interval).

6. CONCLUSION
In conclusion, we compiled a data set of 472 experimental band
gaps of semiconductors and insulators. Structural information
on all materials presented can be easily obtained via well
established crystal structure databases. This provides a data set
for high-throughput exchange−correlation functional testing,
which is the basis for true, large scale performance analysis of
exchange−correlation functionals. This data set will be useful for
perform further benchmark studies or to design improved
functionals for band gap calculations.
Here we tested several functionals that are commonly used for

band structure calculations. The selected functionals belong to
different rungs of Jacob’s Ladder. Among these, the modified
Becke−Johnson meta-GGA showed the best performance. This
functional is closely followed by theHSE06 hybrid (which excels
for semiconductors with band gaps in the range of 1−5 eV) and
the HLE16 generalized gradient approximation. These results
must nonetheless be weighted with consideration for the pros
and cons of each functional. For example, from a computational
perspective, HSE06 is by far the most demanding functional due
to the effort required to evaluate the screened Fock term. The
functional mBJ is considerably better in this front since it is of
the semilocal type. However, it is generally observed that a large
number of iterations is necessary to achieve self-consistent field
convergence with mBJ (whatever the computer code used),
while this is not the case with HLE16, which is basically as fast as
PBE. Unfortunately, in spite of its good overall performance and
speed, HLE16 is worse than mBJ for antiferromagnetic solids. In
essence, we have three very good options, each with their own
trade-offs that must be taken into consideration when choosing
one from among them.
Lastly, we turn to the question of whether these functionals

could be further improved. It is indeed difficult to improve
HSE06 and mBJ, as they both already yield small systematic
errors. Furthermore, these latter functionals depend solely on
two parameters that are already well optimized. HLE16,
however, has a large number of parameters that may provide
enough flexibility for further improvement. Sadly, any further
improvement in the band gaps will likely lead to a further
deterioration of other properties, such as thermochemistry,
geometries, or mechanical properties. In any case, we strongly
believe that the existence of specialized functionals for the
calculation of band gaps is fully justified in view of the practical
importance of such calculations for optoelectronic applications.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.9b00322.

Figure S1, difference between the band gap with and
without spin−orbit coupling for LDA, PBE, and HLE16
as a function of the experimental band gap for the entire
data set; Figure S2, dispersion of band gaps with the PBE
versus PBEsol functionals; Figures S3−S7, mean absolute
percentage error for each element of the periodic table for
the most relevant functionals; Figure S8, mean average
percentage error and mean absolute percentage error for
the different functionals as a function of the experimental
band gap; Table SI, results for the p value obtained with

the Wilcoxon signed-rank test for the absolute errors of
each pair of functionals; Table SII, results for the p value
obtained with the Wilcoxon signed-rank test for the
absolute percentage errors of each pair of functionals
(PDF)

Spreadsheet containing the data set and the calculated
gaps (XLSX)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: silvana.botti@uni-jena.de.

ORCID
Pedro Borlido: 0000-0001-7675-3111
Miguel A. L. Marques: 0000-0003-0170-8222
Silvana Botti: 0000-0002-4920-2370
Funding
S.B. acknowledges partial support from the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation)
through the project BO 4280/8-1. Computational resources
were provided by the Leibniz Supercomputing Centre through
the projects pr62ja. M.A.L.M. acknowledges partial support
from the German DFG through the project MA6787/6-1. F.T.
acknowledges support from the Austrian Science Fund (FWF)
through project F41 (SFB ViCoM) and P27738-N28.

Notes
The authors declare no competing financial interest.

■ REFERENCES
(1) Kohn, W.; Sham, L. J. Self-Consistent Equations Including
Exchange andCorrelation Effects. Phys. Rev. 1965, 140, A1133−A1138.
(2)Hohenberg, P.; Kohn,W. Inhomogeneous ElectronGas. Phys. Rev.
1964, 136, B864−B871.
(3) Burke, K. Perspective on Density Functional Theory. J. Chem.
Phys. 2012, 136, 150901.
(4) Lehtola, S.; Steigemann, C.; Oliveira, M. J.; Marques, M. A. Recent
Developments in Libxc − A Comprehensive Library of Functionals for
Density Functional Theory. SoftwareX 2018, 7, 1−5.
(5) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(6) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab
Initio Calculation of Vibrational Absorption and Circular Dichroism
Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98,
11623−11627.
(7) Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H. T.;
Lebeg̀ue, S.; Paier, J.; Vydrov, O. A.; Ángyań, J. G. Assessing the
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