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Abstract
The R6/2 transgenic mouse model of Huntington’s disease (HD) carries several copies of exon1 of the huntingtin gene that 
contains a highly pathogenic 120 CAG-repeat expansion. We used kinome analysis to screen for kinase activity patterns in 
neural tissues from wildtype (WT) and R6/2 mice at a pre-symptomatic (e.g., embryonic) and symptomatic (e.g., between 
3 and 10 weeks postnatal) time points. We identified changes in several signaling cascades, for example, the Akt/FoxO3/
CDK2, mTOR/ULK1, and RAF/MEK/CREB pathways. We also identified the Rho-Rac GTPase cascade that contributes to 
cytoskeleton organization through modulation of the actin-binding proteins, cofilin and profilin. Immunoblotting revealed 
higher levels of phosphoSer138-profilin in embryonic R6/2 mouse samples (cf. WT mice) that diminish progressively and 
significantly over the postnatal, symptomatic course of the disease. We detected sex- and genotype-dependent patterns in the 
phosphorylation of actin-regulators such a ROCK2, PAK, LIMK1, cofilin, and SSH1L, yet none of these aligned consist-
ently with the changing levels of phosphoSer138-profilin. This could be reflecting an imbalance in the sequential influences 
these regulators are known to exert on actin signaling. The translational potential of these observations was inferred from 
preliminary observations of changes in LIMK-cofilin signaling and loss of neurite integrity in neural stem cells derived from 
an HD patient (versus a healthy control). Our observations suggest that a pre-symptomatic, neurodevelopmental onset of 
change in the phosphorylation of Ser138-profilin, potentially downstream of distinct signaling changes in male and female 
mice, could be contributing to cytoskeletal phenotypes in the R6/2 mouse model of HD pathology.
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Introduction

Huntington’s disease (HD) is an autosomal-dominant, pro-
gressive neurodegenerative disorder that affects 5–7 per 
100,000 people (Wynford-Thomas and Robertson 2017). 

The genetic defect involves a CAG (trinucleotide coding 
for glutamine/Gln/Q) repeat expansion within exon 1 of the 
huntingtin gene (HTT). Above the pathological threshold 
(≥ CAG39; Q39), there is a strong correlation between the 
number of repeats and the age of onset and/or severity of 
clinical manifestation (Ross and Tabrizi 2011).

The wildtype (WT) HTT protein functions in a number 
of processes including energy metabolism, synaptic func-
tion, protein transport, transcription, survival, autophagy, 
and cytoskeletal dynamics [reviewed in (Saudou and Hum-
bert 2016)]. A reduction in WT HTT has been implicated 
in axonal trafficking defects (Trushina et al. 2004), while 
the deletion of WT HTT significantly attenuates regenera-
tion, hence implicating it in neural plasticity after injury 
(Poplawski et al. 2020; Belin et al. 2015). Consistent with 
this, the mutant huntingtin protein (mHTT) can impact pro-
teins involved in a diverse range of biological processes 
(Culver et al. 2012; Hosp et al. 2017). The mHTT targets 
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primarily medium spiny neurons in the striatum, a structure 
enriched in dopamine (DA) neurotransmission (Roze et al. 
2011), which increases in early stage of the clinical course 
of HD (leading to hyperkinetic movements) and decreases 
as pathology progresses, including in mouse models of 
HD (Cepeda et al. 2014). The progressive disruption in 
striatal DA transmission and any synaptic plasticity defect 
might rely, in part, on interference of the critical interaction 
between DA receptors, components of the actin cytoskeleton 
(especially Filamin-A, which participates in the anchoring 
of membrane proteins to the actin cytoskeleton), and down-
stream DA signalling molecules (Lin et al. 2001); this might 
occur during development and affect synaptogenesis (McCa-
rthy et al. 2011; Zhang et al. 2010).

The potential for sex-dependent differences in HD pro-
gression and severity of phenotype is unclear. For example, 
women can present with a slightly more severe phenotype 
and a faster progression of HD than men (Zielonka et al. 
2013), although contrasting reports also suggest that symp-
tom onset is later (Roos et al. 1991) and that disease progres-
sion is milder (Roos et al. 1991; Chen et al. 2009) in women. 
Part of the substantial loss of striatal DA receptors and 
severity of phenotype in symptomatic male (versus female) 
transgenic HD rats (Q51) has been attributed to lower levels 
of the neuroprotective sex hormone 17β-estradiol in the male 
rat (Bode et al. 2008). A role for estrogen in clinical HD is 
supported by the demonstration that the phytoestrogen, gen-
istein, promotes the breakdown of mHTT in HD fibroblasts 
(Pierzynowska et al. 2019) and by a much earlier demonstra-
tion that premarin could improve motor symptoms, but in 
less than 30% of patients (Koller et al. 1982). Clearly, exami-
nation of a role for estrogen in the context HD is warranted.

We undertook a preliminary comparison of neural stem 
cell cultures and observed dysregulation of the cytoarchitec-
ture (e.g. a loss of neurite outgrowth) in HD (Q45) cultures 
(cf. healthy control). Western blotting confirmed changes 
in molecular signatures implicated in actin signalling, such 
as changes in LIMK1, cofilin, and SSH1L (all components 
of the Rho-Rac signalling pathway). In order to identify 
changes in signaling pathways during the symptomatic 
course of HD, we chose to use the R6/2 mouse model. This 
transgenic mouse carries copies of a fragment of exon 1 
of the human huntingtin gene containing a Q120 repeat 
expansion that is sufficient to trigger a progressive behav-
ioral and neurological HD-like phenotype that manifests by 
4–6 weeks of age (Mangiarini et al. 1996). We used kinome 
analysis (Berard et al. 2018) to screen for potential phos-
phorylation events (Jalal et al. 2009) and identified several 
affected signaling cascades, including the Rho-Rac GTPase 
cascade that has been associated with cytoskeletal pheno-
types in various models of HD (Puigdellivol et al. 2015; 
Tourette et al. 2014; Tousley et al. 2019). A role for this 
cascade was corroborated by evaluating the phosphorylation 

status of key signaling proteins such as ROCK, LIMK1, 
SSH1L, cofilin, and profilin in R6/2 mouse tissues. Our 
observations strongly suggest distinct signaling changes in 
male and female mice, and as importantly, indicate an onset 
of signalling defect centered on the HTT- and actin-binding 
regulator profilin (Shao et al. 2008; Angeli et al. 2010) at 
embryonic stages, thus corroborating the suggestion that HD 
progression might have a neurodevelopmental origin (Wiatr 
et al. 2018).

Materials and Methods

Neural Stem Cell Cultures

Neural stem cells (NSCs) were derived from iPSCs (induced 
pluripotent stem cells) obtained from a female HD (Q45) 
donor (ax0021) and from an age-matched female healthy 
control (HC) donor (ax0016) (Axol Bioscience, Cambridge, 
UK). Culture dishes were coated with Axol Sure Bond coat-
ing solution (ax0041) prepared in PBS (without calcium or 
magnesium; D-PBS) overnight at 37 °C. iPSCs were seeded 
at a density of 10,000–50,000 cells/cm2 in Axol Neural 
Maintenance Media (ax0031) supplemented with the Axol 
Sure Boost serum (ax0045) for 2 h and then cultured for 
48 h in Neural Maintenance Medium supplemented with the 
Axol Sure Growth serum (ax0047). Thereafter, cells were 
cultured in the Neural Maintenance Medium alone. For pas-
saging and harvesting of NSCs, the cultures were rinsed with 
PBS and detached using the Axol Neural Unlock solution 
(ax0044). An Olympus CKX41 light microscope was used 
for assessing neurite outgrowth, cell number, and soma size 
(quantitation was performed using Neurolucida360 software: 
MBF Bioscience, Williston, VT).

Animal Tissue Harvest

All animal procedures were performed in accordance with 
Canadian Council on Animal Care guidelines and were 
approved by the University of Saskatchewan’s Animal 
Research Ethics Board. Animals had access to food and 
water ad libitum, and were housed under constant tempera-
ture (± 22 °C) and humidity (± 45%) with a 12:12 h light/
dark cycle. Age-matched breeding pairs of R6/2 transgenic 
mice (#6494) were purchased from the Jackson Laboratory 
(Farmington, CT). Tissues were harvested at embryonic day 
14 (E14), when the striatum begins to develop (Voorn et al. 
1988), as well as at a postnatal pre-symptomatic stage (at 
3 weeks of age), a stage when striatal mHTT immunore-
activity is first detectable (at 5 weeks), and a stage when 
overt symptoms—such as brain and body weight loss, and a 
visible motor phenotype—are evident (at 10 weeks) (Davies 
et al. 1997) (Supplementary Fig. 1). Given the lack of a 
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defined striatum at E14, whole brain were used for analy-
ses at this time-point. The striatum was used for analyses at 
postnatal stages, e.g. 3-week (3w), 5w, and 10w. In all cases, 
mice were euthanized by cervical dislocation.

Genotyping and PCR

Embryos (skull tissues) and pups (tail snips) were genotyped 
for the HTT transgene and sexed using SRY (sex-determining 
region Y protein). DNA was extracted (Qiagen kit: # 60506) 
and PCR amplification was carried out using Phusion® 
DNA polymerase in combination with the HTT primer pair: 
(forward) 5′-CCG CTC AGG TTC TGC TTT TA-3′ and 
(reverse) 5′-TGG AAG GAC TTG AGG GAC TC-3′; or the 
SRY primer pair: (forward) 5′-TTG TCT AGA GAG CAT 
GGA GGG CCA TGT CAA-3′, and (reverse) 5′-CCA CTC 
TGT GAC ACT TTA GCC CTC CGA-3′. Primers were pur-
chased from Invitrogen Life Technologies (New York, NY).

Peptide Arrays and Kinome Analyses

DAPPLE 2 (https​://saphi​re.usask​.ca/saphi​re/dappl​e/) was 
used to design the peptide arrays (Trost et al. 2013a). The 
customized peptide microarray (JPT Peptide Technologies 
GmbH, Germany) contained 1268 peptides (corresponding 
phosphosites are listed in Supplementary Table 1) designed 
to cover key signaling pathways (Jalal et al. 2009). Only 
those murine proteins (corresponding peptides) that have a 
human homolog were selected to populate the microarray. 
The selection was accomplished using web-based online 
databases such as Phosphosite plus (Hornbeck et al. 2012). 
There were five biological replicates (5 separate arrays) 
performed, with nine technical replicates per array. The 

resulting 45 intensity values for every peptide per biologi-
cal sample were normalized using ‘variance stabilization 
normalization’ transformation and the difference in the 
fold-change and P-values were calculated using PIIKA-2 
(Platform for Intelligent, Integrated Kinome Analysis), as 
described in detail elsewhere (Jalal et al. 2009; Trost et al. 
2013b) (Supplementary Table 2). The software (InnateDB) 
considers both fold-changes and P-values to define signifi-
cantly dysregulated pathways (Breuer et al. 2013) and draws 
upon information from several major academic databases, 
including KEGG, REACTOME, and INOH, to generate a 
list of candidate pathways. The pathways analysis revealed 
upregulated as well as downregulated pathways [provided in 
Supplementary Tables 3 and 4, respectively].

Western Blot Analysis

Tissues were sonicated in RIPA buffer on ice with five 
40 mA pulses (3 s each, separated by a 10 s pause), centri-
fuged at 12,000×g (4 °C, 30 min), and supernatants were 
heat-denatured. Samples (20 µg protein) were resolved by 
SDS-PAGE and transferred to nitrocellulose membranes, 
which were blocked and probed with primary antibodies. 
Detection relied on Image Studio™ Lite software (LI-COR) 
and densitometry was normalized to α-/β-tubulin levels.

Antibodies for WB Analyses

Antibodies directed against cofilin (cat #: 3311), phos-
phoSer3-cofilin (3318), profilin1 (3237), ROCK2 (8236), 
PAK (2604), phosphoSer473-AKT1 (9018S), AKT1 
(2938S), phosphoFoxO1/3a/4 (2599), FoxO1 (2880S), 
FoxO3a (12829), FoxO4 (9472S), and the MAPKAPK-2 
Kit (9329; includes phosphoThr222 and -Thr234) were pur-
chased from Cell Signaling Technologies (Danvers, MA). 
Antibodies recognizing LIMK1 (ab38508), phosphoThr508-
LIMK1 (ab95186), phosphoThr423-PAK (ab2477), phos-
phoSer138-profilin1 (ab215752), phosphoSer1366-ROCK2 
(ab228008), phosphoT160-CDK2 (ab194868), CDK2 
(ab32147), and α-Tubulin (ab4074) were purchased from 
Abcam (Cambridge, MA). Slingshot (SSH1L) and phospho-
Slingshot antibodies (SK6410) were purchased from Cedar-
lane (Burlington, ON). The anti-β-tubulin antibody (T8328) 
was purchased from Sigma-Aldrich (Oakville, ON). Second-
ary antibodies including IR Dye-680RD IgG (926-68071), 
IR Dye-800CW IgG (926-32211), and IR Dye-800CW IgG, 
(926-32210) were purchased from LI-COR Biosciences 
(Lincoln, NE).

Statistical Analysis

A peptide was selected from PIIKA2 output for further 
analysis if its P-value was < 0.2 along with a fold-change 

Table 1   The list of hyper- and hypo-phosphorylated peptides in both 
sexes across four developmental time points

The developmental time points at which the R6/2 murine tissue were 
harvested are listed in the first column. The next three columns list 
the number of peptides that were significantly (P < 0.2) hyper- and 
hypo-phosphorylated based on the kinome analysis in female and 
male mice. The last column lists the number of hyper- or hypophos-
phorylated peptides that were in common in both sexes

Time points Hyper-/hypo-
phosphorylated

Female: 
peptides

Male:  
peptides

Common 
peptides

E14 Hyper- 416 292 119
Hypo- 392 344 105

3w Hyper- 462 390 162
Hypo- 362 228 75

5w Hyper- 392 401 66
Hypo- 335 379 58

10w Hyper- 373 334 118
Hypo- 291 339 75

https://saphire.usask.ca/saphire/dapple/
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(FC) >  ± 1 (Goel et al. 2018; Maattanen et al. 2013). The 
P-value of 0.2 was chosen as it is known that if the threshold 
were to be too conservative, then the likelihood of false neg-
atives would increase, and if too relaxed, then the analysis 
might provide false positives. Further, given that a cellular 
phenotype is often the reflection of changes in the expres-
sion patterns of groups of signaling molecules with common 
biological functions, identifying a change in a group of these 
molecules is more biologically meaningful than a change 
in a single molecule. As importantly, it has been noted that 
50–70% of the information from peptide arrays can be lost 
due to technical reasons during data normalization (Scholma 
et al. 2016). The cut-off threshold used for InnateDB path-
way analysis was more stringent (P < 0.05 and FC >  ± 1.5), 
with P-values being generated using the hypergeometric 
distribution test that confirms—prior to correction for mul-
tiple testing—whether a pathway is statistically more over-
represented in the uploaded dataset than expected by chance. 
P-values are automatically corrected using the Benjamini 
and Hochberg or by a conservative Bonferroni correction 
(Breuer et al. 2013). Our kinome analyses relied on 5 males 
and 5 females per genotype per test time-point. The priority 
of kinome analysis is to identify targets that can be validated 
by an independent approach, for example, Western blotting.

Western blot bands were quantified using Image Stu-
dio Lite (LI-COR Biosciences) and the intensities were 
normalized using housekeeping control (α/β-tubulin). The 
phospho-proteins were expressed relative to total protein 
and the corresponding ratios were used for statistical analy-
ses based on two-way analysis of variance (ANOVA) and 
post hoc Tukey’s multiple comparison test (GraphPad v7, 
PRISM). Morphological features of NSCs were estimated 
using six separate fields from several HC and HD cultures, 
and averages were compared using the Student t-test. Statis-
tical significance was set at P < 0.05. All data are expressed 
as mean ± standard error of the mean. Our Western blot-
ting relied on 3 males and 3 females per genotype per test 
time-point.

Results

Neurite Retraction in Patient‑Derived HD Neuronal 
Cells

Comparison of NSC cultures derived from a healthy control 
(HC) (Fig. 1a, c, e) and an HD patient and from (Fig. 1b, d, 
f) did not reveal any significant loss of cell number (Fig. 1g) 
or change in shape of the cell (Fig. 1h). However, there was 
a 25% decrease in neurite length in the HD NSCs (P < 0.05) 
(Fig. 1i). Western blotting for selected proteins implicated 
in actin organization and cytoskeletal integrity revealed 
less phosphorylation of LIMK1 in the HD NSC lysate, but 

more phosphorylation of the LIMK1 substrate, cofilin; the 
latter might be reflecting the lower levels of phosphoryla-
tion (and, hence, inactivation) of the cofilin phosphatase, 
SSH1L (Fig. 1j). Levels of actin were higher in the HD NSC 
lysate, whereas those of β-tubulin remained unaltered. Pre-
liminary Western blotting of the NSC extracts also revealed 
changes in the phosphorylation of the pro-survival kinase 
Akt (− 70%), the cell cycle regulator CDK2 (+ 169%), and 
the stress-activated kinase involved in cytoskeletal organi-
zation, cell cycle, and chromatin remodeling, MAPKAPK2 
(+ 119–183%) (Fig. 1k) (discussed below).

These data suggest that the loss of communication 
between cells in HD might rely primarily on a loss of axonal 
integrity and synaptic connectivity, and implicate a potential 
influence by the LIMK/SSH1L/cofilin pathway. However, 
the interpretation of these data is hindered by the fact that 
the iPSCs available from the commercial source at the time 
were limited to a single HC female donor and a single sex-/
age-matched HD donor (leaving us with a biological repli-
cate of ‘1’). This precluded any possibility of concluding 
whether the observed changes were due to the sex of the 
donor, the diagnosis of HD, an interaction between sex and 
diagnosis, or even variation within the cultures (given that 
they were non-isogenic). Yet we feel that the observations, 
even if based on a single biological replicate, clearly indi-
cated a cytoskeletal defect and implicated the LIMK/SSH1L/
cofilin pathway, and thus provided justification for in vivo 
studies. To this end and to explore whether sex might exert 
influence, we screened protein kinase activities in the R6/2 
mouse model of HD (and WT mice) using kinome analysis. 
Our experiments included both male and female mice.

The Phospho‑protein Profiles in R6/2 Mice Suggest 
Distinct Sex‑Dependent Influences on Signaling

Kinome analysis identified peptides that were significantly 
hyper- and hypo-phosphorylated at a pre-symptomatic stage 
(E14) (Fig. 2a) as well as across all three postnatal, sympto-
matic time points (Fig. 2b–d). The analysis revealed peptides 
that were similarly hyper/hypo-phosphorylated in both sexes 
and others that were preferentially hyper/hypophosphoryl-
ated by sex (Table 1).

The kinome analysis data (Supplementary Table 2) 
were uploaded onto InnateDB along with their respec-
tive P-values and fold-changes (FC); this generated a 
list of pathways that were up-/down-regulated across 
the time course in these mice (provided in Supplemen-
tary Tables 3 and 4). The top three most significantly 
upregulated pathways were ‘Caspase mediated cleavage 
of cytoskeletal proteins’ (P = 7.17E−04; REACTOME), 
‘Lysosomes’ (P = 8.91E−04; KEGG), and ‘Peptide ligand 
binding receptors’ (P = 0.004190495; REACTOME) 
(Supplementary Fig. 2). The top three most significantly 
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downregulated pathways were ‘Degradation of DVL’ 
(P = 3.53E−04; REACTOME), ‘Beta-catenin independ-
ent WNT signaling’ (P = 0.001525682; REACTOME), and 
‘Degradation of GLI1 by proteasome’ (P = 0.001658169; 
REACTOME) (Supplementary Fig. 3). Other pathways 
identified were [upregulated] ‘Depolymerisation of the 
nuclear lamina’, ‘disinhibition of SNARE formation’, 
and ‘metabolism of steroid hormones and vitamin D’ and 
[downregulated] ‘Trafficking of AMPA recycling’, ‘Recy-
cling of L1′, ‘Transmission across chemical synapses’. 
Although the RhoRac GTPase pathway was not specifically 
represented in the InnateDB analysis performed, we manu-
ally annotated members of the pathway (Supplementary 
Fig. 4) and identified several changes in phosphorylation 
of proteins in the kinome analysis. The major components 
of the ROCK (Rho-associated protein kinase) and PAK 
(p21-activated kinase) cascades (Supplementary Fig. 4) 
involve serine/threonine protein kinases (and counterbal-
ancing phosphatases), with primary regulatory effects on 
the actin cytoskeleton and ultimate phenotypic effects cen-
tered on neuronal growth and synaptic plasticity (Zhao and 
Manser 2012; Julian and Olson 2014). Other preliminary 

examinations of signaling pathways are included in Sup-
plementary Figs. 5–8. These pathways are included for 
sake of information and confirm our preliminary Western 
blotting of the NSC extracts, which also revealed changes 
in the phosphorylation of the pro-survival kinase Akt, the 
cell cycle regulator CDK2, and the stress-activated kinase 
involved in cytoskeletal organization, cell cycle, and chro-
matin remodeling, MAPKAPK2 (Fig. 1k). These signaling 
pathways were not explored further in this report.

Using our peptide array dataset (Fig. 3a), we extracted the 
data relating to three of the proteins in the ROCK/PAK cas-
cades (see Supplementary Fig. 4). The respective heatmaps 
(Fig. 3b) and fold-change values obtained in R6/2 tissues 
and in control tissues (Fig. 3c) for phosphoSer1366-ROCK2, 
phosphoThr423-PAK1, and phosphoSer138-profilin high-
light sex differences at the various stages. For example, at 
the E14 stage, Ser1366-ROCK2 is hyperphosphorylated in 
males and hypophosphorylated in females, while Thr423-
PAK1 and Ser138-profilin are both hyperphosphorylated 
regardless of sex. In contrast, at the 10w time point, the 
pattern is completely reversed with Ser1366-ROCK2 being 
hypophosphorylated (regardless of sex), while Thr423-PAK1 

Fig. 1   Examination of neural stem cell (NSC) cultures: representative 
phase-contrast images of a healthy control (HC) and b Huntington’s 
disease (HD; Q45) NSCs cultured to approximately 80% confluence. 
c, d Reconstruction of the neurite extensions were generated using 
Neurolucida 360 and the representative overlay indicating the soma 
and neurites are depicted. e, f Tracings used for quantification of neu-
rite lengths. g Average cell number in HD and HC NSCs. h Average 
size of cells in HD and HC NSC cultures. i Average neurite length 
of HC and HD NSCs. j Representative Western blots of selected 

proteins implicated in cytoskeletal integrity, e.g. LIMK1, Cofilin, 
Slingshot (SSH1L), β-actin, and β-tubulin. k Representative West-
ern blots of other candidate signaling targets, e.g., Akt, CDK2, and 
MAPKAPK2 (MK2). p1-MK2 = phosphoThr222; p2-MK2 = phos-
phoThr234. Numbers in parentheses indicate the percentage change 
in densitometry of bands in HD NSC extracts relative to HC NSC 
extracts. Bar graph shows mean ± standard deviation, ***P < 0.005, 
n = 6 replicates
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and Ser138-profilin are both hyperphosphorylated in males 
and hypophosphorylated in females (Fig. 3c).

Validation of Kinome Analysis Data by Western Blot 
Analysis

We investigated the phosphorylation levels of selected pro-
teins in the Rho-Rac pathway at time-points relevant to key 
stages of HD progression in the R6/2 mouse model, namely 

developmental (E14), pre-symptomatic (3w), early disease 
(5w), and late-stage disease (10w). The levels of β-actin 
tended to be more variable than those of α-tubulin between 
the sexes and across genotypes (Fig. 4a–i). Consequently, 
levels of α-tubulin were used to monitor protein loading in 
the Western blotting experiments.

At the E14 time-point, the phosphorylation of ROCK2 
was significantly elevated in female R6/2 mice compared to 
female WT mice (P < 0.0001) and male R6/2 mice (P < 0.05) 

Fig. 2   Fold-changes in indi-
vidual peptide phosphorylation 
states identified by kinome 
analysis uncovers sex differ-
ences in R6/2 mice at time-
points across the life-span: a at 
E14, b at 3w, c at 5w, and d at 
10w. Peptide numerical codes 
are listed along the x-axis and 
the corresponding fold-change 
values on the y-axis. The 
females are represented by red 
dots and males by blue dots. 
The positive values indicate 
hyper-phosphorylated peptides 
and negative values represent 
hypo-phosphorylated peptides. 
The corresponding peptides 
and their relative changes are 
summarized in Supplementary 
Tables 1 and 2, respectively
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Fig. 3   Changes in phosphorylated peptides identified in the kinome 
analysis of the R6/2 mice: a Cluster analysis of kinome data sets of 
neural tissue samples of R6/2 mice (relative to WT mice). Kinome 
data sets were subjected to hierarchical clustering analysis using 
PIIKA-2. The age of the animal is indicated under the heatmap where 
number represents the time point (E14, 3w, 5w, and 10w) followed 
by sex (F/M) and the genotype, e.g. WT (W) and R6/2 (R). Each col-
umn depicts the kinome activity at that time point. Green represents 

hypo-phosphorylated peptides and red represents hyper-phosphoryl-
ated peptides. b Fold-change heatmap for the three indicate phospho-
peptides across four time-points, e.g. E14, 3w, 5w, and 10w, in both 
sexes. The names of the peptides and the phosphosite are indicated 
at the top of each column. The color key represents positive values in 
red and negative values in green. c Scatterplot of fold-changes based 
on sex. Males are represented as squares and females as circles, with 
a different color assigned to each time-point, as indicated in the panel
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(Fig. 5a, b). The phosphorylation of PAK was lower in both 
sexes in R6/2 mice compared to WT mice (Female: P < 0.05; 
Male: P < 0.001) (Fig. 5c, d), while the phosphorylation of 
LIMK1 and cofilin were not affected by sex or genotype 
(Fig. 5e–h). The phosphorylation of SSH1L was lower in 
female (P < 0.05)—but not male—R6/2 mice (Fig. 5i, j). 
The phosphorylation of profilin was substantially elevated 
in both sexes in R6/2 mice compared to WT mice (female: 
P < 0.001; male: P < 0.05) (Fig. 5k, l).

There was significant variability in the phosphorylation of 
the proteins examined at the 3w time-point, when a mouse 
is considered juvenile and the brain is thought to be still 
maturing. For example, the phosphorylation of ROCK2 
was higher in WT males than in WT females (P < 0.05), but 
was unaffected by genotype (Fig. 6a). The level of phos-
phorylation of PAK was higher (or lower) depending on the 
sex and genotype (Fig. 6). The phosphorylation of LIMK1 
was lower in the female R6/2 mouse compared to the WT 
females (P < 0.05) (Fig. 6c), while the phosphorylation of 
cofilin was higher in the male R6/2 mouse (cf. male WT and 
female R6/2 mice) (P < 0.0001) (Fig. 6d). The phosphoryla-
tion of SSH1L was similar to that of PAK in that in that it 
was higher (or lower) depending on the sex and genotype 
(Fig. 6e).

In contrast, only sporadic differences were observed at the 
5w (e.g. emergence of motor abnormalities) (Fig. 6). Indeed, 
the only observable differences were phospho-cofilin levels 

being lower in the male R6/2 mouse (cf. WT male; P < 0.05) 
and phospho-SSH1L being lower in male WT mice (vs 
female WT mice) (P < 0.05). At 10w (e.g. overt pathology), 
phospho-ROCK2 was higher (P < 0.05), while phospho-
LIMK1 was lower (P < 0.01) in the female R6/2 mouse. PAK 
and cofilin were not affected by the R6/2 genotype, but levels 
of phospho-PAK were higher (P < 0.05) and phospho-cofilin 
was lower (P < 0.05) WT females vs. WT males.

Remarkably, the levels of phosphoSer138-profilin, which 
were substantially higher in the R6/2 mice than in the WT 
mice at the E14 stage (see Fig. 5), remained high in the 
R6/2 mouse at the 3w stage (P < 0.05), were comparable 
to levels in the WT mice at 5w of age, and by 10w were 
significantly lower in the R6/2 mice than in the WT mice 
(female: P < 0.01; male: P < 0.05) (Fig. 6f). This pattern was 
not influenced by the sex of the mouse.

Discussion

Kinome analysis based on peptide arrays is a validated plat-
form (Scholma et al. 2016) for identifying biochemical alter-
ations in conditions as diverse as prion disease (Arsenault 
et al. 2012), Alzheimer’s disease (Hoozemans et al. 2012), 
cancer (Goel et al. 2018; Parikh and Peppelenbosch 2010; 
Labots et al. 2016), infectious diseases (Van Wyk et al. 2016; 
Robertson et al. 2014; Mulongo et al. 2014; Kindrachuk 

Fig. 4   Levels of β-actin and α-tubulin at postnatal stages in WT and 
R6/2 mice. The time-points were chosen as they represent different 
stages of disease progression in the R6/2 mouse: e.g. a–c 3 week old 
(3w) = preclinical, d–f 5w = emergence of motor abnormalities; and 

g–i 10w = overt pathology. The graphs (left) represent the average 
expression of β-actin and α-tubulin quantified by densitometry of the 
corresponding Western blots from striatal samples (right). The data 
(n = 3) are expressed as % relative to female WT
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et al. 2014), and inflammation (Arsenault et  al. 2013b, 
2013a). Systematic quantitative proteomics—supported by 
mass spectrometry—based on striatal tissues from the R6/2 
mouse (Hosp et al. 2017) and post-mortem HD patient sam-
ples (Ratovitski et al. 2016) revealed a widespread loss of 
protein function that implicates Rho proteins, actin cytoskel-
eton signaling, and mitochondria (Ratovitski et al. 2016), as 
well as proteins related to energy metabolism and cellular 
transport/cytoskeleton (Wegrzynowicz et al. 2012). A recent 
quantitative proteomic study implicated HTT as a critical 
regulator of neural injury response in adult mice suggesting 
its importance in neuronal survival and axon regeneration 
(Belin et al. 2015). Several high-throughput studies of HD 
using mouse models, post-mortem brain, and patient-derived 
stem cells also implicated dysregulation of actin signaling, 
including a loss of profilin expression at early stages of the 
disease process (DiProspero et al. 2004; Goldberg 2003; 
Heng et al. 2010; Lorincz and Zawistowski 2009; McQuade 
et al. 2014; Niwa et al. 2002; Burnett et al. 2008).

Our kinome analysis of striatal tissues identified several 
candidate pathways (see Supplementary Figs. 5–8) includ-
ing the Akt/FOXO3 pathway that is neuroprotective in HD 
(Farina et al. 2017) and CDK2 (which we also observed in 
our NSC extracts, Fig. 1), thus suggesting a dysregulation of 
cell cycle regulatory proteins (Sang et al. 2014). We identi-
fied a loss of phosphorylation of mTOR and a corresponding 
increase in the phosphorylation of ULK1, which would indi-
cate an activation of autophagy, likely in response to cellular 
stress (Rui et al. 2015), and our observed loss of RAF/MEK/
CREB signalling over the symptomatic course in the R6/2 
mice is consistent with a loss of ERK activation in cell death 
in models of HD (Bodai and Marsh 2012). ERK and Akt 
signalling deficits have been implicated in the loss of differ-
entiation and neurite retraction in Q48- and Q89-expressing 
(but not Q16) PC12 cells (Song et al. 2002) and although 
these systems deserve to be characterized within the con-
text of the R6/2 mouse, we focused on the Rho-Rac GTPase 
effector proteins, e.g. ROCK and PAK given our preliminary 
observations based on HC and HD NSC cultures. Although 
ROCK and PAK target unique substrates, there is abundant 
evidence that they both modulate LIMK-cofilin signaling 
and associated phenotypes. LIMK1 is highly expressed in 
the brain (Proschel et al. 1995) and the LIMK-cofilin asso-
ciation helps support the integrity and structure of dendritic 
spines (Linseman and Loucks 2008; Govek et al. 2005) as 
well as axonal growth (Heng et al. 2010; Koch et al. 2014). 
Part of cytoskeletal integrity might rely on the phospho-
rylation of cofilin-Ser3 by LIMK1, which inactivates cofilin 
and prevents its binding to actin (Yang et al. 1998). Loss of 
phosphorylation of cofilin-Ser3 (as we’ve seen in some of 
our samples) impairs cofilin function and monomeric actin-
turnover in the cytoplasm leading to motility and morpho-
logical deficits, such as cell shrinkage (Munsie et al. 2012; 

Bravo-Cordero et al. 2013). The dephosphorylation of cofi-
lin is not necessarily negative; indeed, during cell stress 
dephosphorylated cofilin can be sequestered as cofilin-actin 
rods, thus freeing up a pool of ATP bound to cofilin for 
critical cellular processes (Bernstein et al. 2006). Wildtype 
HTT helps localize these cofilin-actin rods to the nucleus, 
but these rods then disappear with the relief of the cellular 
stress; in contrast, mHTT induces a dominant, persistent 
nuclear cofilin-actin rod phenotype that triggers, amongst 
other events, an increase in calcium levels and cell death 
(Munsie et al. 2011).

Profilin exerts the opposite action to cofilin on actin and 
its polymerization, and can affect neuronal growth cone and 
synaptic plasticity (Birbach 2008). Yet the roles of these 
pathways are not as straightforward as anticipated. Indeed, 
the Rho and Rac pathways have been shown to exert mutual 
antagonism in N-Cadherin-mediated contact mechanisms in 
myoblasts, but sequential roles for these kinases are essential 
for contact communication in these same cells (Comunale 
et al. 2007). Interestingly, inhibition of either Rho or Rac 
elicit opposite effects of actin-based repair mechanisms in 
gastric epithelium (Aihara et al. 2018) and while Rho does 
not exert much influence on the leading edge of lamellipo-
dia in rat adenocarcinoma cells, its inhibition does unmask 
a Rac-mediated facilitation of edge growth (El-Sibai et al. 
2008). The phosphatase SSH1L also targets cofilin-Ser3, 
thus promoting cofilin (re)activation (Romarowski et al. 
2015). As with Rho and Rac, the role of SSH1L in LIMK-
cofilin-actin polymerization is viewed more as a context-
dependent or sequence-dependent influence rather than sim-
ply as the phosphatase that targets cofilin.

A correlation between profilin inactivation and altered 
cytoskeletal dynamics could affect neurite morphology, 
given that actin microfilaments tend to be concentrated at 
the synaptic terminals, dendritic spines, and growth cones 
(Matus et al. 1982; Gordon-Weeks 1987). Although we 
observed changes in phosphorylation of both ROCK2 and 
PAK in the R62 mice at E14, we did not observe any cor-
responding change in the phosphorylation of their purported 
targets LIMK1 or cofilin (although we did observe a ten-
dency for an increase in phosphoSer3-cofilin in E14 female 
R6/2 mice: P = 0.055; Fig. 5g). The phosphorylation of 
profilin was significantly higher at E14 in R6/2 mice com-
pared to WT mice, regardless of sex, which suggests that the 
phosphorylation of ROCK2 (cf. the loss of phosphorylation 
of PAK) might be driving the phosphorylation of Ser138-
profilin at this time point. This would presumably stabilize 
developmental dynamic actin structures and could help 
explain the overabundance of synaptic connectivity (likely 
due to a pruning defect) demonstrated elsewhere in a condi-
tional knockout of Htt as well as a knock-in (Q175) mouse 
model of HD (McKinstry et al. 2014). Interestingly, these 
authors demonstrate that the loss of normal Htt function 
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leads to an unanticipated early exaggerated increase in syn-
apse formation; however, this phenotype is not sustainable 
and eventually leads to a loss of synaptic density by 5 weeks 
of age and a gliosis, but no neuronal death (McKinstry et al. 
2014). Similarly, the expression of mHtt in the R6/1 mouse 
and in the Q7/Q111 knock-in mouse leads to a corticostri-
atal phenotype centered on deficits in cortical cell migration 
and electrophysiological properties, including a loss of long-
term potentiation, a mechanism for strengthening synapses 
and critical for memory formation (Puigdellivol et al. 2015). 
This cortical phenotype precedes any loss of striatal synaptic 
integrity and associated motor deficits, and appears to be 
triggered by the loss (by two months of age) of Kalirin-7, 
a brain-specific Rho-guanine nucleotide exchange factor 
for Rac-like GTPases, that is expressed highly in dendritic 
spines of neuronal populations (Puigdellivol et al. 2015). 
The concurrent hyper- and hypo-phosphorylation of ROCK 
and PAK, respectively, observed at this time point (Fig. 5a, 
b) adds support to the notion of context-dependent and/or 
sequence-dependent influences of ROCK and PAK, as dis-
cussed in the previous paragraph.

Western blot analyses of components of the striatal 
ROCK2 and PAK pathways revealed dynamic changes with 
some level of similarity within sex/genotype across the post-
natal time-points (Fig. 6). For example, the phosphoryla-
tion pattern of ROCK2 between the sexes and genotypes 
at 5w was more similar to the pattern observed at 3w than 
the pattern at 10w, while the pattern of phosphorylation 
of PAK and cofilin at 5w resembled more so that in the 
10w sample set. Patterns of phospho-LIMK1 and phospho-
SSH1L appeared to be more in flux at 5w. Recall, it is this 
age in the R6/2 mouse that striatal mHTT immunoreactiv-
ity is first detected (Davies et al. 1997) and it is this age in 
the Q175 mouse that is associated with a loss of synaptic 
density and increased gliosis (McKinstry et al. 2014). In 
our studies, this age also aligned with a change in the rela-
tive levels of phosphoSer138-profilin. Indeed, the levels of 
phosphoSer138-profilin were substantially higher in R6/2 
mice at E14 and only slightly less so at 3w (again regardless 
of sex), but at 5w they were similar to levels in the WT mice 
and by 10w they were significantly lower than the levels in 
WT mice. While a screen of Rho pathway mRNA transcripts 
found a significant increase in profilin mRNA expression in 

autopsied HD patient cortical samples as well as in 13w-
old pooled (male + female) R6/2 mouse striatum (but not 
at 4w), there was no corresponding change in profilin pro-
tein expression (Narayanan et al. 2016) and these authors 
did not explore the phosphorylation status of profilin. It 
was shown elsewhere that Y-27632, a rho-kinase (ROCK) 
inhibitor, blocks the phosphorylation of profilin, which binds 
actin as well as Htt (Shao et al. 2008), reduces intracellu-
lar aggregation of Htt (Pollitt et al. 2003), and inhibits Htt 
toxicity in Drosophila and motor deficits in mice (treatment 
began at age 4 weeks) (Pollitt et al. 2003; Li et al. 2009). 
We are unclear as to why profilin shifts from a phosphoryl-
ated to an unphosphorylated state between 5 and 10 weeks 
of age and how this might align with pathology. Perhaps 
the hyperphosphorylated state of profilin observed at the 
embryonic stage releases mHTT to localize with, amongst 
other proteins, perinuclear α-actinin-1-enriched stress fibers 
(Tousley et al. 2019) and trigger disruption of the nuclear 
lamina (Gasset-Rosa et al. 2017) (as suggested by our path-
ways analysis; see Supplementary Fig. 2) and transport via 
the nuclear pore complex (Grima et al. 2017). In keeping 
with a nuclear phenotype, susceptibility to DNA damage or 
the induction of genes for cell cycle re-entry and transition 
from G1 to S phase (downstream of mitochondrial stress 
and normally leading to apoptosis in neurons) has also been 
shown to be proportional to the CAG repeat lengths (Q30, 
Q45, Q65, and Q81) in isogenic embryonic stem cell lines 
(Ooi et al. 2019). Perhaps this hyperphosphorylated profilin 
destabilizes actin structures and interferes with DA signal-
ling (Lin et al. 2001) as observed in the early stages of the 
disease progression (McCarthy et al. 2011; Zhang et al. 
2010). Interestingly, our pathways analysis also reveals a 
‘disinhibition of SNARE formation’ (Supplementary Fig. 2) 
as well as a loss of ‘transmission across chemical synapses’ 
(Supplementary Fig. 3). This could alter quantal DA release 
and trigger the hyperactivity observed in young R6/2 mice 
(which gradually disappears until the mice become hypoac-
tive by 8w) (Carter et al. 1999). Whatever the mechanism, 
our data suggest an mHTT-induced developmental profilin 
phenotype. An additional a priori conclusion stemming 
from this study is that if the inconsistent phosphorylation 
profiles for LIMK1, cofilin, and/or SSH1L are contributing 
to the phosphorylation of Ser138-profilin and to the onset 
or development of the disease, then their roles are likely 
sex-dependent and either sequential or cascade-specific, as 
suggested elsewhere and discussed above. Yet, it is also pos-
sible that other regulators of the LIMK-cofilin pathways, 
such as the cofilin phosphatase PP2A (Pendleton et al. 2003) 
or the LIMK phosphatase PP1 (Vorster et al. 2011), could 
be exerting temporal or sequential influences. We also can-
not discount the possibility of interference by the mHTT in 
the function of the WT HTT, e.g. transport and trafficking 
(Caviston et al. 2007; Gunawardena et al. 2003; Her and 

Fig. 5   Western blots of the proteins involved in Rho-Rac signaling 
at E14 in wild type (WT) and R6/2 mice. Densitometry was used to 
quantify the ratio of phosphorylated to total protein expression of a, b 
ROCK2, c, d PAK, e, f LIMK1, g, h Cofilin, i, j SSH1L, k, l Profilin. 
Each value was initially normalized to expression of α-tubulin in the 
corresponding lane. Note that the same α-Tubulin blot might appear 
in more than one panel because of re-probing for multiple targets 
with non-overlapping molecular weights on a given blot. The data are 
presented as mean ± sem (n = 3). *P < 0.05; **P < 0.01, between indi-
cated groups

◂
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Goldstein 2008; Orr et al. 2008) as trafficking and recycling 
pathways were also identified in our analysis (Supplemen-
tary Fig. 3). Any of these are potential mechanistic contribu-
tors to the phosphoSer138-profilin phenotype and sympto-
matic progression, and certainly warrant being investigated 
further in terms of a sex-dependent influence on HD.

Our initial observation of a reduction in neurite length 
in HD NSCs is consistent with reports of reduced neurite 
length or abnormal dendritic branching in HD (Ferrante 
et al. 1991; Rong et al. 2006; Liu et al. 2014). Recently, 
human HD patient cells and mouse (Q140/Q140) stria-
tum and primary neurons were shown to be less sensitive 
to growth factor stimulation and this reflected a disruption 
of a Rac1:p85(PI3K):α-actinin-2 complex (e.g. the mHTT 
does not interact with p85), which is enriched in striatal 
neurons and spines (Tousley et al. 2019). The loss of a 
stable complex could impact any growth factor-mediated, 
PI3K-dependent neurite outgrowth. A role for Rac1 and 
Rho GTPase signalling in the context of HD was also dem-
onstrated in a yeast two-hybrid screen designed to identify 
HTT binding partners (Tourette et al. 2014). That study 
identified a number of candidates found in Rho GTPase fam-
ily signaling, including Ezrin, several PI3K family members, 
and BAIAP2 (brain-specific angiogenesis inhibitor 1-associ-
ated protein 2). Functional assays demonstrated that mHTT 
interferes with BAIAP2-mediated filopodia-like protrusions 
in mouse embryonic fibroblasts (Tourette et al. 2014). The 
effect of mHTT on neurite outgrowth seems quite specific 
given that iPSCs derived from HD (Q77; Q109; Q180) and 
control (Q18; Q21; Q33) can all be differentiated toward a 
healthy cortical neuronal fate; but the CAG repeat length in 
HD iPSCs correlate directly with decreased neurite lengths, 
without any overt effect on branching morphology (Mehta 
et al. 2018). Neurite outgrowth is essential for the proper 
wiring of the nervous system during development and regen-
eration (Miller and Suter 2018), and cytoskeletal proteins—
along with HTT (Burrus et al. 2020)—are critical in this 
process.

Finally, we address our observation that dysregulation 
of phosphoSer138-profilin in the R6/2 mouse model occurs 
long before the reported onset of phenotypic changes. 
Indeed, the phosphorylation of profilin at the embryonic 
stage suggests a developmental phenotype, potentially 

centered on a pruning defect, as discussed above. How-
ever, the progressive reduction in phosphoSer138-profilin 
at postnatal stages suggests a progressive defect in actin 
cytoarchitecture across the symptomatic course of the 
disease. This might involve exaggerated pruning, if one 
considers our observation of a loss of neurite length (e.g. 
enhanced retraction) observed in the HD NSCs as well as 
the massive pruning of glutamatergic terminals observed 
in the Q140 (Deng et al. 2013) and Q175 (Rothe et al. 
2015) mouse models of HD, and the progressive loss of 
somatosensory cortical dendritic spine density over symp-
tomatic stages of the R6/2 mouse (Murmu et al. 2013). 
This provides additional support for the suggestion that 
HD follows a developmental course centered on defects 
in cortical neurogenesis, axonal transport, and Golgi 
apparatus organization (Humbert 2010). Furthermore, 
our data support the suggestion that the HD genotype 
(e.g., 72 + CAG repeats) leads to defects through a loss-
of-function mechanism as early as the neurulation stage 
(Haremaki et al. 2019).

The expression of WT HTT tends to increase with brain 
development (Marques Sousa and Humbert 2013; Bhide 
et al. 1996). Previous studies have shown that WT HTT 
associates with microtubules and is involved with trans-
port in both anterograde and retrograde directions, whereas 
mHTT interferes with these processes, ultimately affecting 
brain development and/or causing neuronal dysfunction and 
death (Caviston et al. 2007; Gunawardena et al. 2003; Her 
and Goldstein 2008; Orr et al. 2008). The appearance of stri-
atal mHTT [at 5 weeks: (Davies et al. 1997)] and the reduc-
tion in levels of functional WT HTT [by week 7: (Zhang 
et al. 2003)] in the R6/2 mouse likely exacerbates the defects 
in neuronal connectivity and transport, and expedites the 
course of symptomatology. Transport defects initially led 
to the suggestion that the R6/2 mouse and its rapidly pro-
gressing phenotype is likely a better reflection of juvenile 
onset HD (more likely when the CAG repeat expansion is in 
excess of 70) (Mangiarini et al. 1996). The critical role for 
HTT in the brain has also led to the suggestion that HD is 
a neurodevelopmental disorder, rather than simply an adult 
neurodegenerative disorder (Wiatr et al. 2018) and has also 
led to the assumption that mHTT carriers experience normal 
brain development, but that an emerging degenerative phase 
ultimately leads to the appearance of clinical symptoms. A 
recent study based on human organoids suggests that the 
CAG/glutamine repeat length in HTT regulates neurogenesis 
during early development (Zhang et al. 2019), while a repeat 
length below the disease threshold benefits brain structure 
and general intelligence among children aged 6–18 years 
of age (Lee et al. 2017). These same authors also reported 
that a higher repeat length (as long as it is below disease 
threshold) gives females an advantage on cortical thickness 
and intelligence.

Fig. 6   Densitometric analysis of the proteins involved in Rho-Rac 
signaling at postnatal time-points in wild type (WT) and R6/2 mice. 
The three time-points represent different stages of disease progression 
in the R6/2 mouse: e.g. 3  week old (3w) = preclinical; 5w = emer-
gence of motor abnormalities; and 10w = overt pathology. Densitom-
etry was used to quantify the ratio of phosphorylated to total protein a 
ROCK2, b PAK, c LIMK1, d Cofilin, e SSH1L, f Profilin. Each value 
was initially normalized to expression of α-Tubulin in the correspond-
ing sample. The data are presented as mean ± sem (n = 3). *P < 0.05; 
**P < 0.01; ***P < 0.001, between indicated groups

◂



884	 Cellular and Molecular Neurobiology (2022) 42:871–888

1 3

Conclusion

Overall, our observations suggest a potential sex-dependent 
influence on cofilin/LIMK1/SSH1L signaling in HD. We 
are re-assured that several of the observations made using 
the R6/2 mouse tissues corroborated our observations in the 
HD NSCs (even if only a single biological replicate). This 
is even more re-assuring given that these HD NSCs were 
from a Q45 donor, while the R6/2 mice are Q120 and many 
other works that we cite herein are based on equally or more 
aggressive Q77, Q109, Q140, Q175, Q180 etc. genotypes. 
We were concerned that our analyses did not identify any 
consistent changes in metabolism, be it energy or substrate, 
which are often identified in HD-related screens. Part of 
this could be viewed as a limitation of the interpretation of 
kinome platform. For example, in males at E14, we observed 
a significant downregulation [P = 0.002189] as well as a sig-
nificant upregulation [P = 0.03161] of ‘metabolism of amino 
acids’. This apparent contradiction might simply reflect two 
distinct phosphopeptides being identified in the screen 
(one being upregulated, the other being downregulated) 
and the potentially different roles of the parent proteins in 
‘metabolism of amino acids’. We also acknowledge that a 
limitation of our study is that the data remain correlational; 
however, they do suggest a biological mechanism implicat-
ing a progressive phosphoSer138-profilin phenotype. Per-
haps more importantly, our observations suggest that the 
phosphoSer138-profilin phenotype emerges in the earliest 
stages of brain development, well before any manifestation 
of symptoms, providing for a clinically targetable and modi-
fiable event. This warrants investigating whether this pheno-
type is causative and, if so, is it specific to the R6/2 mouse 
model of HD or is it generalizable across models (e.g., Q77, 
Q140, Q175) and/or in clinical HD. As importantly, both 
males and females need to be included in future studies so 
as to better define potential sex-dependent mechanisms in 
HD onset and progression.
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