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Abstract: A four-noded finite element of a moderately thick plate made of functionally graded
material (FGM) is presented. The base element is rectangular and can be extended to any shape
using a transformation based on NURBS functions. The proposed 2D shape functions are consistent
with the physical interpretation and describe the states of element displacement caused by unit
displacements of nodes. These functions depend on the FGM’s material parameters and are called
material-oriented. The shape function matrix is based on a superposition displacement field of two
plate strips with 1D exact shape functions. A characteristic feature of the proposed formulation is full
coupling of the membrane and bending states in the plate. The analytical form of the stiffness matrix
and the nodal load vector was obtained, which leads to the numerical efficiency of the formulation.
The element has been incorporated into Abaqus software with the use of Maple program. The finite
element shows good convergence properties for different FGM models in the transverse direction to
the middle plane of the plate. During derivation of the 2D plate element the formally exact 1D finite
element for transverse nonhomogeneous FGM plate strip was developed.
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1. Introduction

Functionally graded materials (FGMs) belong to a class of innovative materials with varying
properties over a changing dimension [1,2]. The materials both occur in nature and can be obtained
in an artificial way. A good example of an FGM found in nature is bamboo wood [1,2]. Due to
the natural fiber distribution in the stem cross-section, it has high bending strength under natural
loads. The beginnings of conscious creation of artificial FGMs should be dated to the beginning of
the 1980s, with applications for the construction of thermal shields with unprecedented parameters.
FGM eliminates the sharp interfaces existing in composite materials, replacing them with a gradient
interface to produce a smooth transition from one material to the next.

There are different kinds of fabrication processes for producing functionally graded materials.
Thin FGM sections are produced by physical or chemical vapor depositions, plasma spraying,
self-propagating high temperature synthesis, etc. Volume FGM members are produced using powder
metallurgy technique, centrifugal casting method, solid freedom fabrication technology, etc. Further
details can be found in the literature [1,2].

Applications of functionally graded materials are quite wide, from aerospace, energy and
automobile, through mechanical and civil engineering, to medicine, sport, sensors and optoelectronic
fields. As the fabrication process is improved, the overall process cost is reduced, hence expanding the
applications of FGM.

Plate structures are an important area of FGM applications. It is possible to build effective
two-dimensional theories in which material variation in the transverse direction is usually assumed.
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Shear deformable as well as thin plate theories are to be applied. An overview of important papers in
this field and the derivation of the equations of the first and higher order theories can be found in [3].
The scope of obtaining effective solutions by means of analytical methods is very limited (see [3]). It is
necessary to use computational methods, among which the finite element method [4] dominates.

In the standard FEM model, the functional variability of material coefficients is represented in
the elasticity matrix, which appears in the formulas for the finite element stiffness matrix. Shape
functions are usually polynomial, with varying numbers of nodes and various techniques for improving
formulation properties. A synthetic description of the most important models, together with citations
of representative papers, is presented below.

Formulation within three-dimensional theory was applied to static analysis of thick or moderately
thick rectangular plates [5] (eight-node brick element), to circular plates on elastic foundation [6] as
well as for vibration analysis [7] (8- and 20-node isoparametric elements). Gradation of the finite
elements’ elastic properties can be also used in the 3D formulation.

Various two-dimensional theories with the influence of shear deformation are the most common
approach. Usually the first-order formulations are applied.

Rectangular finite elements with linear shape functions were used for static analysis,
piezothermoelastic dynamics [8], active deflection/vibration control [9] and free vibrations [10].
Eight-node rectangular elements were applied for nonlinear free flexural vibrations [11] and piezo-
electric fiber reinforcement [12]. The enhanced strain formulation to avoid the locking effects in
eight-node elements was proposed in [13] for structural stability and dynamics problems. The elements
can be successfully implemented in the Abaqus package [14].

Triangular plate finite elements with the discrete shear gap improvement were analyzed in [15,16]
for static and free vibration problems.

Axi-symmetric plate finite elements within buckling, vibration and thermal analysis were proposed
in [17].

Nine-node quadrilateral finite element was proposed for higher order shear deformation theory
for static and free vibration analysis in [18] and was extended for large amplitude problems in [19].
Modified discrete Kirchhoff four-node quadrilateral element was used for the third-order theory for
skew plates in [20].

An example of the application of C-1 continuity finite element formulated for classical thin FGM
plate theory and applied for natural frequency analysis can be found in [21].

Isogeometric finite element formulation with NURBS-based shape functions was presented in [22]
for static, vibrations, buckling and flutter as well as in [23] for thermal buckling.

The finite element formulation can be also applied for FGM shell structures and FGM
beams—see [24–28] as representative papers.

A variety of finite element formulations applied for FGM plates seems to be a sign that the
development of an element suitable for the analysis is still an open problem. This was an inspiration
for the proposal of the present paper. The common problems with FE formulations based on standard
polynomial shape functions are shear locking (connected to the parasitic shear) and zero energy
modes. Analogous problems occur in FGM modeling using FEM. In addition, standard polynomial
approximation assumes decoupling of approximated displacement fields. This is not consistent
with the physical interpretation of the shape function in FGM boards, which should describe the
displacement fields caused by unit displacement of nodes and should be coupled. In the matrices of
shape functions proposed in the work, we observe full displacement of displacement fields.

The proposed elements are free from zero energy modes. Earlier studies of homogeneous plates
with similar physical shape functions [29] did not show shear locking even for very thin plates.
This phenomenon was also not observed in the FGM model proposed in this paper. The new finite
elements are based on the physical interpretation of the shape functions, according to which they
describe the distribution of finite element displacements caused by unit displacement of nodes.
Naturally, such distributions should depend on the physical properties of the element. This approach
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was proposed for the statics of homogeneous plate bending in [30] and generalized in [29,31,32] for
other types of structures. The proposed base element is rectangular with fully coupled displacement
fields (membrane and bending conditions), which are based on analytical solutions regarding plate
strips constructed of material with any FGM properties. The developed finite element was incorporated
into the Abaqus system with UEL element user subroutine (using Maple program procedures) and
its convergence was tested. The basic four-node rectangular finite element can be extended to any
shape via parametric transformation based on NURBS functions [33]. During the development of the
rectangular element, a formally accurate finite element for plate strip was created.

2. FGM plate Finite Elements

The subject under consideration is a rectangular four-noded finite element of dimensions 2a × 2b
and thickness h in nondimensional coordinate system ξ = x−xe

a , η = y−ye
b . The element is presented in

Figure 1.
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Generalized displacements of membrane and bending states as well as natural nodal displacements
are defined as

u =
{
u, v, w,ϕx,ϕy

}
(1)

q= {q1,q2,q3,q4

}
, (2)

qi =
{
ui, vi,ϕxi,ϕyi

}
, i = 1, 2, 3, 4 (3)

Shape function matrix (u = Nq) is proposed in the form

N = [N1N2N3N4], (4)

Ni = (ξ, η) ==
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(5)

The matrix (Equation (5)) is consistent with physical interpretation of the shape function, according
to which it describes the distribution of finite element displacements caused by unit displacement of
nodes. This approach is an extension of the concept proposed for the statics of homogeneous plates [29]
and for other types of structures [30,31]. Fully coupled displacement fields for membrane and bending
states can be observed. The proposed shape matrix is an overlay of one-variable distributions of
displacements of two crossed plate strips (Figure 2) with imposed boundary displacements.

f̂ = f̂ (ξ), ˆ̂f = ˆ̂f (η) (6)
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One-variable displacement fields are related to the FGM plate strips (Figure 2). If the first-order
plate theory with shear deformation is used [3], the following six-level set of differential equations
with physical boundary conditions is to be considered (for the x direction as the example):
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1
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0 −B0
1
a2

d2
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d
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u
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ϕ

 =

−p
−q
−m

 (7)

where

Ai =
Eo

1− v2

h
2∫

−h
2

[
P(z) · zi

]
dz, B0 =

5
6

1− ν
2

A0, i = 0, 1, 2, (8)

and p, q and m are load components. Coefficients Ai and B0 depend on the adopted FGM distribution
represented for isotropic transverse nonhomogeneous material by the Young’s modulus E0, Poisson’s
ratio ν and function P(z). In the above system of equations, one can observe a coupling of the membrane
and bending states in the FGM panel. A similar system of equations for a moderately thick beam made
of FGM was considered in the paper [26].

Solution of the homogeneous equations can be used to obtain exact shape functions for the strip,
as follows:

u(ξ) = C5 + C6ξ+
3A1

A0a
C4ξ

2, (9)

w(ξ) = C1 + C2ξ+ C3ξ
2 + C4ξ

3, (10)

φ(ξ) =
1
a

C2 + 2C3ξ+ 3C4(ξ
2 +

2A2

B0a2 −
2A2

1

A0B0a2 )

 (11)

Two 1D displacement vectors û = (ξ) and ˆ̂u = (η) for plate strips (Figure 2) are defined as

û = (ξ) =
{
u(ξ), w(ξ),ϕx(ξ)

}
, ˆ̂u = (η) =

{
v(η), w(η),ϕy(η)

}
(12)

Formally exact shape function matrices can be developed for each plate strip:

û = (ξ) = N̂(ξ) · q̂e, ˆ̂u = (η) = ˆ̂N(η) · ˆ̂qe (13)

with natural boundary parameters at each end:

q̂e= {u1, w1,ϕx1, u2, w2,ϕx2
}
, ˆ̂qe= {v1, w1,ϕy1, v2, w2,ϕy2

}
(14)

The 1D shape function matrices can be expressed in the form

N̂ =
[

N̂1(ξ) N̂2(ξ)
]
, ˆ̂N =

[
ˆ̂N1(η)

ˆ̂N2(η)
]

(15)
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N̂i
(ξ) =


N̂i

11(ξ) N̂i
12(ξ) N̂i

13(ξ)

0 N̂i
22(ξ) N̂i

23(ξ)

0 N̂i
32(ξ) N̂i

33(ξ)

, ˆ̂N
i
(η) =


ˆ̂N

i
11(η)

ˆ̂N
i
12(η)

ˆ̂N
i
13(η)

0 ˆ̂N
i
22(η)

ˆ̂N
i
23(η)

0 ˆ̂N
i
32(η)

ˆ̂N
i
33(η)

 (16)

where
N̂i

11(ξ) =
1
2 (1 + ξiξ),

N̂i
12(ξ) =

3
4

ξiA1B0a(1−ξ2)
3A0A2+A0B0a2−3A2

1
,

N̂i
13(ξ) =

3
4

A1B0a2(ξ2
−1)

3A0A2+A0B0a2−3A2
1
,

N̂i
22(ξ) =

1
2 + 1

2

(
1 + 1

2
A0B0a2(1−ξ2)

3A0A2+A0B0a2−3A2
1

)
ξiξ,

N̂i
23(ξ) =

1
4

(
A0B0a3ξ

3A0A2+A0B0a2−3A2
1
+ aξi

)
(ξ2
− 1),

N̂i
32(ξ) =

3
4

ξiA0B0a(1−ξ2)

3A0A2+A0B0a2−3A2
1

N̂i
33(ξ) =

1
2

(
ξiξ+

3
2

A0B0a2(ξ2
−1)

3A0A2+A0B0a2−3A2
1
+ 1

)
.

(17)

The shape functions for the second direction are analogous. They can be obtained from Equation
(17) by exchanging variables ξ→ η, a→ b . The functions (Equation (17)) strongly depend on the
parameters of FGM, so the formulation is named “material-oriented”.

Following the above formulation, the formally exact stiffness matrix as well as the load vector for
two line-noded, 6 d.o.f. (horizontal displacements, vertical displacements and rotations) plate strip
finite element can be expressed in the form (for the ξ direction as an example)

Ke =



k11 0 k13 −k11 0 −k13

0 k22 ak22 0 −k22 ak22

k13 ak22 k33 −k13 −ak22 k36

−k11 0 −k13 k11 0 k13

0 −k22 −ak22 0 k22 −ak22

−k13 ak22 k36 k13 −ak22 k33


, (18)

k11 = A0
2a ,

k13 = −A1
2a ,

k22 =
3B0(A0A2−A2

1)
2a[−3(A2

1−A0A2)+a2A0B0]
,

k33 =
−3A2

1(A2+a2B0)+A0A2(3A2+4a2B0)
2a[−3(A2

1−A0A2)+a2A0B0]
,

k36 =
3A2

1(A2−a2B0)−A0A2(3A2−2a2B0)
2a[−3(A2

1−A0A2)+a2A0B0]
,

(19)

Qe = pa



1
−

aA1B0
−3A2

1+A0+(3A2+a2B0)

−
a2A1B0

−3A2
1+A0+(3A2+a2B0)

1
−

aA1B0
−3A2

1+A0+(3A2+a2B0)

−
a2A1B0

−3A2
1+A0+(3A2+a2B0)


+ qa



0
1
1
3 a
0
1
−

1
3 a


+ ma



0
−

aA0B0
−3A2

1+A0+(3A2+a2B0)

−
−3A2

1+3A1A2

−3A2
1+A0+(3A2+a2B0)

0
−

aA0B0
−3A2

1+A0+(3A2+a2B0)

−
−3A2

1+3A1A2

−3A2
1+A0+(3A2+a2B0)


(20)

The results to be obtained within the above formulation are formally exact and no convergence
study is necessary.
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The strain matrix for the rectangular finite element can be expressed as

B = [B1B2B3B4], Bi = DNi, (21)

where

D =

[
D1 0
0 D2

]
, D1 =


1
a
∂
∂ξ 0
0 1

b
∂
∂η

1
b
∂
∂η

1
a
∂
∂ξ

, D2 =



0 −
1
a
∂
∂ξ 0

0 0 −
1
b
∂
∂η

0 −
1
b
∂
∂η −

1
a
∂
∂ξ

1
a
∂
∂ξ −1 0

1
b
∂
∂η 0 −1


(22)

The stiffness matrix and load vector can be received in the standard FEM procedure as follows:

Ke = ab

1∫
−1

1∫
−1

BTEBdξdη, (23)

Qe = ab

1∫
−1

1∫
−1

NTpdξdη, (24)

where elasticity matrix is expressed as

E =


E1 E2 0
ET

2 E3 0
0 0 E4

 (25)

E1 =


A0 vA0 0
vA0 A0 0

0 0 1−v
2 A0

, E2 =


A1 vA1 0
vA1 A1 0

0 0 0

, (26)

E3 =


A2 νA2 0
νA2 A2 0

0 0 1−ν
2 A2

, E4 =

[
B0 0
0 B0

]
, (27)

and
p =

{
px, py, pz, mx, my

}
(28)

is the load vector for the panel.
The analytical form of stiffness matrix can be obtained with the use of Maple software—the

expressions are relatively long and exceed the limitations of the present paper.
The analytical form of the load vector can be expressed as

Qe =


Qe

1
Qe

2
Qe

3
Qe

4

, (29)
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Qe
i = pxab



1
0

aA1B0
3A0A2+A0B0a2−3A2

1
ξi

−
a2A1B0

3A0A2+A0B0a2−3A2
1

−
1
3

abA1B0
3A0A2+A0B0a2−3A2

1
ξiηi


+ pyab



0
1

bA1B0
3A0A2+A0B0a2−3A2

1
ηi

−
1
3

abA1B0
3A0A2+A0B0a2−3A2

1
ξiηi

−
a2A1B0

3A0A2+A0B0a2−3A2
1


+ pzab



0
0
1
−

aξi
3

−
bηi
3


+

+mxab



0
0

aA0B0
3A0A2+A0B0a2−3A2

1
ξi

−
a2A0B0

3A0A2+A0B0a2−3A2
1

−
1
3

abA0B0
3A0A2+A0B0a2−3A2

1
ξiηi


+ myab



0
0

bA1B0
3A0A2+A0B0a2−3A2

1
ηi

−
1
3

abA1B0
3A0A2+A0B0a2−3A2

1
ξiηi

−
a2A1B0

3A0A2+A0B0a2−3A2
1


.

(30)

The rectangular finite element with material-oriented shape functions satisfy rigid body motion,
constant strain and ellipticity conditions [4,30].

The proposed finite element was introduced to the Abaqus system using the UEL element user
subroutine (see [34,35] for details). The UEL procedure is written in FORTRAN. The stiffness matrix is
entered into the code from Maple Software for Mathematica using the command Fortran (K, optimize,
resultname = “AMATRX”) [36] using Equations (18–20) or (21–30).

For the purpose of the present paper, the analysis is limited to the isotropic plates with functional
transverse gradation of Young’s modulus (E, E0) and mass density (ρ,ρ0):

E(z) = E0 · P(z), v = const., ρ(z) = ρ0 · P(z). (31)

Three FGM distributions (Equations (32–34)) were taken into consideration:

P(z) = 1 + 4
z2

h2γ, (32)

P(z)= (η−1)(
z
h
+

1
2

)n
+ 1, η =

Pt

Pb
, (33)

P(z) =
δ/π

δ2 +
(

z
h − ξ0

)2 + 1, (34)

where γ, Pt, Pb, n, δ, ξ0 are constant parameters to model various FGM distributions. Here, “t”
represents the top of the plate, “b” represents the bottom of the plate, E0 = Eb, ρ0 = ρb.

Examples of functions P(z) along thickness of the plate are presented in Figure 3.Materials 2019, FOR PEER REVIEW  9 of 15 
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Light color represents material with a higher intensity of material properties.
The functions described by Equations (32) and (33) are normally used to describe FGMs.

The function described by Equation (34) is original and can be used to describe plates with reinforced
mats glued in.

3. Numerical Examples

The proposed finite element was adapted to the Abaqus software. To verify the finite element,
several examples were made. Some of the examples made for convergence check are presented below.
Square plates are considered (simply supported and clamped—Figure 4) with the following data:
dimensions L × L, thickness h = L/10, Young’s modulus E0, Poisson’s ratio ν = 0.25, concentrated
force P.
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load in the middle.

In Figures 5 and 6 convergence results are shown for the maximum vertical deflection in the
middle of the plates.

Model 1a is a transverse homogeneous plate (for γ = 0 according to Equation (32)). Model 1b
is a transverse inhomogeneous plate according to Equation (32) for γ = 15. Model 2 is a transverse
inhomogeneous plate according to Equation (33) for n = 4, Pt = Pb. Model 3 is a transverse
inhomogeneous plate according to Equation (34) for δ = 0.02, ξ0 = 0.4.

One can observe that each example is characterized by a good rate of convergence for all models.
The influence of the FGM model applied in comparison to the homogeneous plate is visible.

The considerable differences result from the adopted calculation parameters in the functions described
by Equations (32)–(34). These parameters describe strong material variation—hence the differences
compared to a homogeneous material. The rectangular element shows correct convergence.

Validation of the proposed model in the scope of FGM was carried out by comparison with
the analytical solution available in the literature—the benchmark presented in the [37] was selected.
A comparison regarding the maximum displacement of a simply supported plate subjected to uniform
loading for the material model (Equation (33)) is shown in Table 1.

The numerical solution for homogeneous plates (k = 0 and k = infinity) is consistent with the
analytical solution [37] in the range of five significant digits. For other parameters of n, the proposed
finite element gives slightly less than analytical results at a level of 1%–3% error.

It is worth noting that the solution in the field of cylindrical bending using Equations (18) and (20)
is formally accurate for any FGM.
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Table 1. Comparison of the FEM results with analytical solutions [37] for a simply supported
square plate (L × L, h/L = 1/10) with uniformly distributed load q. Material model (Equation (33)),
Et = 380GPa, Eb = 70GPa .

~
w = 10 Eth3

qL4 w(A
2 , B

2 )

n 0 1 2 3 5 10 Infinity

Analytical solution [37] 0.4665 0.9421 1.2228 1.3530 1.4647 1.6054 2.5328

Present study 0.4665 0.9280 1.1903 1.3124 1.4202 1.5692 2.5328

4. Free-Form Plate Finite Element—the Use of NURBS Functions

An extension of the proposed finite element for unrestricted shape (Figure 7—examples with four
and six nodes) can be done by coordinate system transformation with the use of NURBS functions [33]:

x =
N∑

i=1

Fi(ξ, η)xi,y =
N∑

i=1

Fi(ξ, η)yi, (35)

where Fi(ξ, η), i = 1, . . . , N, are NURBS functions.
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The formulation within description of geometry is close to superparametric [4]. Only four nodes
are used in every element for representation of displacement fields (according to Equation (5)), as well
as N nodes for description of a free-form element geometry.

The Jacobi and inverse Jacobi matrices can be obtained:

J =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 =


N∑
i=1

∂Fi
∂ξ xi

N∑
i=1

∂Fi
∂ξ yi

N∑
i=1

∂Fi
∂η xi

N∑
i=1

∂Fi
∂η yi

, (36)

J−1 =

 ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

 = 1
J

 ∂y
∂η −

∂y
∂ξ

−
∂x
∂η

∂x
∂ξ

 = [
J−1
11 J−1

12
J−1
21 J−1

22

]
. (37)

where J is the Jacobian of this transformation

J =
∂x
∂ξ

∂y
∂η
−
∂x
∂η

∂y
∂ξ

(38)

Now, one can calculate derivatives necessary for development of the strain matrix:

∂(. . .)

∂x
=
∂(. . .)

∂ξ
J−1
11 +

∂(. . .)

∂η
J−1
12 ,

∂(. . .)

∂y
=
∂(. . .)

∂ξ
J−1
21 +

∂(. . .)

∂η
J−1
22 , (39)
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Parameters a and b, necessary for the strain matrix, are average values of the element dimensions.
The strain matrix can be expressed in the form

B = [ B1 B2 B3 B4 ], Bi = DNi (40)

The above formulae provide a way to calculate the stiffness matrix and the load vector of
an element:

Ke =
x

Fe

BTEBdFe =

1∫
−1

1∫
−1

BT(ξ, η)EB(ξ, η) J dξdη, (41)

Qe =
x

Fe

NTPdFe =

1∫
−1

1∫
−1

NTPJ dξdη, (42)

where E is the elasticity matrix and P is the external load vector.
Following the above procedure, the limitation of the rectangular shape of the proposed finite

element can be avoided.

5. Conclusions

The paper proposes a four-noded finite element of a moderately thick plate made of FGM.
The base element is rectangular and can be extended to any shape using a transformation based on
NURBS functions.

The shape functions in the considered elements are consistent with the physical interpretation and
describe the states of element displacement caused by unit displacements of nodes. These functions
depend on the FGM’s material parameters and are called material-oriented. A characteristic feature of
the proposed formulation is full coupling of the membrane and bending states in the plate and the
dependence of the shape functions on the FGM model.

The finite element meets the conditions of rigid body motion and constant strain as well as the
elliptical condition. No spurious zero-energy modes were identified.

The analytical form of the stiffness matrix and the nodal load vector was obtained, which leads to
the numerical efficiency of the formulation. The element has been incorporated into Abaqus software
with the use of Maple program.

The finite element with material-oriented shape functions shows good convergence properties
for different FGM models in the transverse direction to the middle plane of the plate. The element
is free from locking effects. Examples have been completed to compare the FEM solution with the
analytical solution. Basic examples were used to demonstrate the convergence and correctness of the
proposed model. The results are promising as a base for modeling more complex plates built of FGMs
with various distribution of the properties over the thickness.

During derivation of the 2D plate element, the formally exact 1D finite element for a transverse
nonhomogeneous FGM plate strip was developed.
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29. Gilewski, W.; Gomuliński, A. Physical shape functions in finite element analysis of moderately thick plates.
Int. J. Number. Methods Eng. 1991, 32, 1115–1135. [CrossRef]
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