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Determining an optimal decision model is an important but difficult combinatorial task in imbalanced microarray-based cancer
classification. Though the multiclass support vector machine (MCSVM) has already made an important contribution in this field,
its performance solely depends on three aspects: the penalty factor C, the type of kernel, and its parameters. To improve the
performance of this classifier in microarray-based cancer analysis, this paper proposes PSO-PCA-LGP-MCSVM model that is
based on particle swarm optimization (PSO), principal component analysis (PCA), and multiclass support vector machine
(MCSVM). The MCSVM is based on a hybrid kernel, i.e., linear-Gaussian-polynomial (LGP) that combines the advantages of
three standard kernels (linear, Gaussian, and polynomial) in a novel manner, where the linear kernel is linearly combined with the
Gaussian kernel embedding the polynomial kernel. Further, this paper proves and makes sure that the LGP kernel confirms the
features of a valid kernel. In order to reveal the effectiveness of our model, several experiments were conducted and the obtained
results compared between ourmodel and other three single kernel-basedmodels, namely, PSO-PCA-L-MCSVM (utilizing a linear
kernel), PSO-PCA-G-MCSVM (utilizing a Gaussian kernel), and PSO-PCA-P-MCSVM (utilizing a polynomial kernel). In
comparison, two dual and two multiclass imbalanced standard microarray datasets were used. Experimental results in terms of
three extended assessment metrics (F-score, G-mean, and Accuracy) reveal the superior global feature extraction, prediction, and
learning abilities of this model against three single kernel-based models.

1. Introduction

Cancer is a disorder caused by excessive and uncontrolled
cell division in a body. A total of 9.6 million people died
of cancer in 2018 [1]. As a matter of fact, death due to
cancer can be reduced to nearly half if the cancer types are
detected early and the right treatment administered in
time. However, it is still a challenge for researchers to
effectively diagnose cancer on the basis of morphological
structure since different cancer types exhibit thin dif-
ferences [2].

This challenge encourages application of data mining
techniques, especially the use of gene expression data in
determining the types of cancer cells. The level of gene
expression can duly indicate the activity of a gene in a body
cell based on the number of messenger ribonucleic acids
(mRNAs). It is well known to contain information about the

disease that may be in the gene sample, which may help
experts in treating or preventing the disease [3].

Though next-generation sequencing (NGS) especially
RNA-sequencing (RNA-Seq) is slowly replacingmicroarrays
when analyzing and identifying complex mechanism in gene
expression, e.g., in the gene expression-based cancer clas-
sification problem, it is relatively expensive compared to
microarrays. Since microarrays have been used for a long
time, there exist robust statistical and operational methods
for their processing [4–13]. In addition, many significant
microarray experiments have been conducted and are
publicly available to the research community [14–20]. For
microarrays, there exist large and well-maintained re-
positories that have collected these types of data for long.
While the preprocessing and analysis steps of microarray
data are mostly standardized, the establishment of RNA-Seq
data analysis techniques is still ongoing in the field of
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transcriptomics. Because of these reasons, to date micro-
arrays are still utilized inmany gene expression-based cancer
classification studies as presented in the most recent survey
of hybrid feature selection methods in microarray gene
expression for data for cancer classification [20–23].

The DNA microarray technology has the capability of
determining the level of thousands of genes concurrently in a
given experiment, which so far has facilitated the devel-
opment of cancer classification by the use of gene expression
data [4–13].

Clinical decision support is the most recent application
of DNA microarrays in the medical domain. This support
can take the form of disease diagnosis or predicting clinical
outcomes in response to a treatment. Currently, the two
major areas in medicine that are drawing much attention in
this regard are management of cancer and other contagious
diseases [24].

With the rapid development of artificial intelligence
(AI), machine-learning algorithms such as artificial neural
network (ANN), support vector machine (SVM), and
k-nearest neighbor (KNN), many researchers have im-
mensely applied them in the gene expression-based cancer
diagnosis. For instance, the artificial neural networks
(ANNs) have been proposed for the microarray gene
classification due to their superior ability to map input-
output structured data. Khan and Meltzer utilized the
ANN in analyzing microarray gene data from patients with
small round blue-cell tumours [9]. Bevilacqua and Tom-
masi developed an accurate classifier model based on the
feed-forward ANN for estrogen receptor (ER) ±metastasis
recurrence of breast cancer tumours [25]. Chen et al. [26]
also modeled a classifier for microarray gene data using
ANN ensembles that were based on filtering of samples. In
all these studies, attractive classification accuracies were
obtained.

Furey proposed an SVM based on a simple kernel to
carry out gene expression data analysis, which turned out to
perform remarkably [27]. Vanitha et al. utilized SVM
alongside mutual information gained (MI-SVM) for feature
selection [11]. In his research, he used various SVM models:
linear SVM, radial basis function (RBF) SVM, quadratic
SVM, and polynomial SVM. He further compared the re-
sults obtained from the proposed scheme with the k-nearest
neighbor (K-NN) and ANN classifier results. Based on the
obtained result, utilization of the MI-SVM obtained better
results compared to K-NN and ANN, and even in some
datasets, 100% accuracy was achieved.

Based on these previous research studies, it is evident
that SVM has already made an important contribution in the
field of microarray-based cancer classification. However,
many researchers have pointed out that though the SVM is a
promising classifier in microarray-based cancer classifica-
tion, its performance solely depends on three aspects: the
penalty parameter C of this classifier, the type of kernel
utilized, and its parameters [28–32].

To improve the classification accuracy of the SVM
classifier, some techniques have been presented to search
for the optimal model parameters, such as the grid-search
and the gradient descent [1]. Although these approaches

have proven their effectiveness in the corresponding
experiments, in most cases they fall into the local opti-
mum point easily and have a defect of low efficiency
[1, 18].

Recently, some meta-heuristic techniques, such as par-
ticle swarm optimization (PSO), genetic algorithm (GA), bat
algorithm (BA), and dragonfly algorithm (DA) have attained
promising results when utilized in tuning SVM classifier’s
parameters [18]. However, most of these research studies
have not been applied to gene expression-based cancer
analysis. In addition, they only focus on SVM with a single
kernel function. Though some research studies [28] point
out that combining multiple kernel functions can achieve
better performance compared to a single kernel function,
little research has provided an in-depth formulation and
analysis of the performance of a multiclass support vector
machine (MCSVM) with a combined kernel function. Thus,
there would be a definite need to systematically study the
complex optimization problem in the MCSVM classifier
with a combined kernel applicable to gene expression-based
cancer classification.

Considering PSO has a number of desirable properties,
including simplicity of implementation, scalability of di-
mension, and a good empirical performance, and is com-
putationally efficient compared to other optimization
techniques [33], and there exist few studies on MCSVM
classifier with combined kernels in microarray-based cancer
classification, this paper proposes a novel gene expression-
based cancer classification model, i.e., PSO-PCA-LGP-
MCSVM. This model is based on particle swarm optimi-
zation (PSO), principal component analysis (PCA), and
multiclass support vector machine (MCSVM) with a novel
hybrid kernel function, i.e., linear-Gaussian-polynomial
(LGP) kernel.

The objective of this research is to construct a MCSVM
classifier with three different standard kernel functions
(linear, Gaussian, and polynomial). Use PCA to reduce the
dimensional complexity of the considered microarray
datasets and optimize all the parameters of this model using
PSO.

The overall structure of this paper takes the form of five
chapters, including this introductory chapter.The remaining
part of this paper proceeds as follows: a detailed presentation
of the proposed model is presented in Section 2. Section 3
deals with the considered cancer microarray datasets and the
evaluation metrics used. Section 4 focusses on the experi-
mental results and discussions. Finally, conclusions and
recommendations are given in Section 5.

2. PSO-PCA-LGP-MCSVM Principles

2.1. Normalization. Microarray gene expressions can differ
by an order of magnitude. Thus, it is necessary to normalize
these data to improve the performance of subsequent
microarray data analysis stages like gene selection/feature
extraction, clustering, and classification [1].

In this paper, the microarray gene expressions are lin-
early transformed from the interval [Xmin, Xmax]⟶ [0, 1]
uniformly utilizing the following equation [1]:
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X′ �
X − Xmin

Xmax − Xmin
, (1)

whereX′ is the new normalized value of the gene expression
level and X is the value of the gene expression level before
normalization, while Xmax and Xmin, respectively, declare
the largest and least values of all the data in an attribute
(gene) to be normalized.

Since the min-max normalization has the advantage of
preserving exactly all the relationships among the original
gene data values and does not introduce any bias [1], it is
considered in this paper.

2.2. Principal Component Analysis (PCA). One of the major
challenges encountered in working with DNA microarray
data is their high dimensionality that is coupled with a
relatively small sample size. While there is a plethora of
crucial information that can be derived from these large
datasets, their high-dimensional nature can often hide the
critical information. Thus, a process that can reduce the
dimensionality complexity of this type of data is required. In
addition, a dimensionality reduction step will minimize
errors obtained in the subsequent classification stage
[1, 12, 33–35].

In this paper, principal component analysis (PCA) that
includes the calculation of variance of proportion for ei-
genvector is used. The steps of this algorithm are as follows:

(a) Let X′ (the normalized microarray gene expression
data) be the input matrix for PCA. Each row vector
of X′ represents the normalized expression gene
values for each of the genes.

(b) Compute the mean (centroid)X of each gene j using
the following equation where the sum goes through
all M samples (tissues):

X �
1
M


M

i�1
Xij
′ , (2)

where M is the number of tissues and Xij
′ is gene j

data.
(c) Compute the covariances (degree to which the genes
are linearly correlated) as per the following equation:

Ckj �
1

M − 1


M

i�1
Xki
′ − Xk(  Xji

′ − Xj , (3)

where Ckj is the covariance of gene k and gene j,M
is the number of samples (tissues), Xki

′ is the ex-
pression level of gene k in sample i, Xji

′ is the ex-
pression level of gene j in sample i, Xk is the mean of
expression levels of gene k, and Xj is the mean of
expression levels of gene j.

(d) Form a covariance matrix C using the computed
covariances and transform it into a diagonal matrix
as depicted in the following equation:

C �

C11 C12 C1M

⋮ ⋮ ⋮

CM1 CM2 CMM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⟶

z1 0 0

⋮ ⋱ ⋮

0 0 zM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The diagonal elements of the transformed matrix are
the eigenvalues z1, z2, . . . , zM which denote the
amount of variability captured along a particular new
dimension.

(e) Calculate corresponding eigenvectors as
ρ1, ρ2, . . . , ρM using the following equation:

zkρk � Czk. (5)

(f ) Sort the eigenvalues in descending order, i.e.,
z1 ≥ z2 ≥ z2, . . . , zM− 1 ≥ zM.

(g) The eigenvectors corresponding to the k largest ei-
genvalues (where k<M) are the first k principal
components.

(h) Select the first k eigenvectors via the cumulative
proportion of variance (eigenvalues).The proportion
of variance (PPV) for each principal component is
determined as follows:

PPV �
zi


M
i�1zi

× 100%. (6)

(i) Form the principal component matrix P, a matrix
consisting of selected k eigenvectors that correspond
to the largest k eigenvalues, where the k eigenvectors
are derived from eigenvalues that meet the criterion
in the following equation:


k
i�1zi


M
i�1zi

× 100% ≥ 95%. (7)

(j) Compute dimensionally reduced microarray gene
expression dataXDimRed′ using the following equation:

XDimRed′ � X′ × P. (8)

Hence, the analysis reduces the highly dimensioned
original microarray datasets to P for each sample, which are
the inputs for the multiclass support vector machine
(MCSVM).

To be able to measure the generalization error for each
considered model, per-fold PCA was adopted. This is
achieved by first conducting a separate PCA on each cali-
bration set and then applying this transformation on the
validation set. This same transformation is achieved by first
subtracting the means of the calibration set from the vali-
dation set and then projecting these data onto the principal
components of the training set achieved this.The underlying
assumption is that the testing and training set should be
derived from the same distribution, which justifies this
process.
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2.3. Multiclass Support Vector Machine (MCSVM). The
MCSVM classifier is based on Vapnik–Chervonenkis (VC)
dimension of the statistical learning theory and the struc-
tural risk minimization [1, 5, 7, 11, 36].

The main objective of MCSVM is to map the pre-
processed, nonlinear inseparable microarray gene expres-
sion data into a linear highly dimensioned manifold θ by the
use of a transformation ∅: RN⟶ θ, then obtaining the
optimal hyperplaneΨ: ψ(x) � (ω · ϕ(x) + b) by solving the
following optimization convex problem (the soft margin
problem) [36]:

min (ω, ξ) �
1
2
ω2 + β

n

i�1
ξi

Subject to yi(ω · ϕ(x) + b)≥ 1 − ξi, for all 1≤ i≤ n,
(9)

where ω is a coefficient vector of the hyperplane in the
manifold (feature space), b is the threshold value of the
hyperplane, ξi is a slack factor introduced for classification
errors, and β is a penalty factor for errors.

The parameter β controls the penalty of misclassification
and its value is normally determined via cross-validation.
Larger values of β normally lead to a small margin which
minimizes classification errors while smaller values of βmay
produce a wider margin resulting in manymisclassifications.

The feature space θ is highly dimensioned, so its direct
computation can lead to “dimension disaster.” However,
since ω � ni�1δiyi∅(xi), then all the operations of the
support vector machine (MCSVM) in the feature space θ are
only dot products. And since kernel functions, i.e.,
G(xi, xi′) � ∅(xi) ·∅(xi′), are efficient at handling dot
products, they were introduced into the SVM. This implies
there is no need to know how to map the microarray gene
expression data from its original space to the feature space θ.
Thus, selection of a kernel and its coefficients is vital in the
computational efficiency and accuracy of an MCSVM
classifier model [28–32].

The common kernel functions that are utilized as con-
tinuous predictors include [1, 5, 28]:

(1) Linear kernel:

G xi, xi′(  � xi · xi′ . (10)

(2) Polynomial kernel:

G xi, xi′(  � η∗ xi · xi′(  + δ( 
d
, (11)

where η> 0, δ ∈ R, and d ∈ Z+.
(3) Gaussian kernel:

G xi, xi′(  � exp
xi − x

2
i′

2σ2
 , (12)

where σ > 0.

These MCSVM kernel functions can be broadly cate-
gorized as follows: local kernel functions and global kernel
functions. Samples far apart have a great impact on the
global kernel values while samples close to each other greatly
influence the local kernel values. The linear and polynomial
kernels are good examples of global kernels while the
Gaussian radial basis function and the Gaussian are local
kernels [28, 30–32, 37].

Relatively speaking, the linear kernel function has a
better extraction of global features from samples, the
polynomial kernel has good generalization ability, and the
Gaussian kernel (the most widely used kernel) has a good
learning ability among all the single kernel functions.Thus, it
is evident that utilizing a single kernel function-based
MCSVM classifier in a given application such as gene ex-
pression data may neither attain good learning ability,
proper global feature extraction ability, and a better gen-
eralization capability. In trying to overcome this hiccup, two
or more kernel functions can be combined [28–32].

2.4. Linear-Gaussian-Polynomial MCSVM (LGP-MCSVM).
In trying to build a kernel model that has better global
feature extraction, good learning, and prediction abilities,
the work presented in this paper combines the merits of two
global kernels (linear and polynomial) and one local kernel
(Gaussian). This paper therefore proposes a novel kernel
“linear-Gaussian-polynomial (LGP)” kernel, which is for-
mulated as follows:

GLGP xi, xi′(  � β1 · xi · xi′(  + β2

· exp − β3 ·
η × xi · xi′(  + δ( 

d

2 × σ2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

(13)

where β1 + β2 + β3 � 1, β ∈ R, and δ, d> 0.
In this paper, we utilize different values of β tomix the three

standard kernels (different regions of the input space). In this
case, β is a vector, i.e., β � [β1, β2, β3]. Through this approach,
the relative contribution of each kernel to the hybrid kernel, i.e.,
Glgpk(xi, xi′), can be easily varied over the input space.

The LGP kernel function takes better global feature
extraction ability from the linear kernel, good prediction
ability from the polynomial kernel, and better learning
ability from the Gaussian kernel. Mercer’s theorem provides
the necessary and sufficient qualifiers of a valid kernel
function. It states that a kernel function is a permissible
kernel if the corresponding kernel matrix is symmetric and
positive semidefinite (PSD) [5, 38].

A kernel matrix can be validated that it is PSD by de-
termining its spectrum of eigenvalues. It is important to note
that a symmetric is positive definite if and only if all its
eigenvalues are nonnegative. Considering this, for the
proposed kernel to be permissible, it must satisfy Mercer’s
theorem. This validity can be proved by using the Taylor
expansion for the exponential function of equation (13):
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GLGP xi, xi′(  � β1 · xi · xi′(  + β2 − 

∞

i�0
βi3 ·

η × xi · xi′(  + δ( 
d.i

2 × σ2i · i!
⎛⎝ ⎞⎠, (14)

GLGP xi, xi′(  � β1 xi · xi′(  + β2 − 1 +
∞

i�1

− βi3
2 × σ2ii!

η xi · xi′(  + δ( 
d.i

 ⎛⎝ ⎞⎠, (15)

GLGP xi, xi′(  � β1 xi · xi′(  − β2 + β2
∞

i�1

− βi3
2 × σ2ii!

η xi · xi′(  + δ( 
d.i

 , (16)

GLGP xi, xi′(  � β1 xi · xi′(  − β2 + β2
∞

i�1

− βi3
2 × σ2ii!

·KPoly(i), (17)

GLGP xi, xi′(  � β1KLinear − β2 + β2
∞

i�1

− βi3
2 × σ2ii!

·KPoly(i), (18)

GLGP xi, xi′(  � β1KLinear − β2 + β2
∞

i�1

− ci × βi3
i!

· KPoly(i), (19)

where KPoly(i) � (η(xi · xi′) + δ)d and KLinear � (xi · xi′)

and ci � 1/(2∗ σ2i).
From equation (19), it is evident that GLGP(xi, xi′) is a

mixed kernel comprising of a weighted linear kernel, a
constant β2, and a weighted summation of polynomial
kernels. Using propositions (20)–(22) of Theorem 1 and
propositions (21) and (22) of Corollary 1 [38], Mercer’s
conditions are proved to be true for the proposed kernel, and
hence, it is a valid kernel.

Theorem 1. Functions of Mercer’s kernels K1 and K2 are also
Mercer’s kernels:

G xi, xi′(  � K1 xi, xi′(  +K2 xi, xi′( , (20)

G xi, xi′(  � c ·K1 xi, xi′( , for all c ∈ R+, (21)

G xi, xi′(  � K1 xi, xi′(  + c, for all c ∈ R+. (22)

Corollary 1. Functions of a Mercer kernel K1 are also
Mercer’s kernels:

G xi, xi′(  � K1 xi, xi′(  + c( 
d
, for all c ∈ R+ and d ∈ N,

(23)

G xi, xi′(  � exp
K1 xi, xi′( 

σ2
 , for all σ ∈ R+. (24)

Since the proposed hybrid LGP kernel combines three
valid Mercer’s kernels, i.e., linear, Gaussian, and polynomial
kernels, it also a valid Mercer’s kernel that can be used for
training and classification of the multiclass support vector
machine (MCSVM).

By using the proposed LGP-MCSVM, the nonlinear
transformation of the microarray gene sample points to get

the corresponding kernel matrix so as to obtain the clas-
sification results during the training phase of the MCSVM
classifier.

2.5. Particle Swarm Optimization (PSO). Currently, there is
no widely accepted method for optimizing these parameters.
The “grid-search (GS)” with exponentially growing se-
quences of combination C, η  for the commonly utilized
Gaussian kernel is often applied in microarray analysis
[1, 18]. Though it is easy to implement, it has low computing
efficiency. In addition, the optimal result of the GS can only
be generated from the preset grid combinations while un-
known possible optimal parameters cannot be explored and
discovered.

In this paper, particle swarm optimization (PSO) opti-
mization technique is adopted to optimally search for the
best parameter combinations for the considered models
[18, 33]. The PSO technique is derived from the migration
patterns of birds during foraging, which has a faster con-
vergence, efficient parallel computing, and a strong uni-
versality that is able to efficiently avoid local optimum [20].
In addition, the iteration velocity for its particles is largely
influenced by the sum of current velocity, previous particle
value, the current global optimal value, and random in-
terferences, which greatly helps avoid the local optimal and
improves the search coverage and effectiveness. In order to
effectively evaluate the performance of the considered
models, different values were considered for all kernel pa-
rameters within the following ranges presented in Table 1.

The parameters that need to be determined in the PSO
algorithm include the dimension of the search space D, the
swarm size n, cognitive learning factor c1, social learning
factor c2, the inertia weight w, and the maximum number of
iterations. The search space dimension D for each consid-
ered model is equal to the number of parameters required to
be set for that model, i.e., PSO+L-MCSVM (D � 1),
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PSO+P-MCSVM (D � 4), PSO+G-MCSVM (D � 2), and
PSO+LGP-MCSVM (D � 8). Since each model has a dif-
ferent dimensional search space and there is no exact rule in
the literature for selecting the swarm size, as a rule of thumb
with heuristic optimization algorithms, the swarm size for
each model was set to 10 ×D [39]. According to [40], both
the cognitive learning factor and social learning factor were
set to 2, i.e., c1 � c2 � 2, and the inertia weight w was set to 1
as suggested in [41]. To prevent the searches from termi-
nating prematurely and unnecessary additional computa-
tional complexity, the maximum number of iterations for all
models was set to 50. Table 2 presents these initial PSO
parameters of each model. More information on the PSO
algorithm is presented in [18–20, 33, 39–43].

2.6. PCA-PSO-LGP-MCSVM Model. The main process of
the proposed algorithm is outlined as follows:

(1) Transforming the cancer microarray data into the
right format for the SVM package.

(2) Loading a cancer microarray dataset.
(3) Randomly dividing the loaded microarray data into

two sets: training set and testing set.
(4) Initialize the PSO parameters such as the pop-

ulation size, the maximum number of iterations,
and the considered multiclass SVM parameters.

(5) Adopt PSO to search for the optimal solution of
particles in the global space by using 5-fold cross-
validation that incorporates per-fold PCA feature
extraction. This process is presented below.

(6) To achieve 5-fold cross-validation incorporating
PCA, the following steps were followed:

(i) For j� 1 to 5 repeat steps (ii) to (vi)
(ii) Carry out PCA on data present in the

remaining 4 folds to generate a loadings matrix
(iii) Transform this data (data in the remaining 4

folds, i.e., calibration set) into a set of principal
component (PC) scores using the first P
components (that account for at least 95%
cumulative variance) of the loadings matrix
generated in step (ii)

(iv) Build a considered SVM classification model
using a set of parameter values using the
generated PC score data in step (iii)

(v) Transform the held-out test fold data (i.e., data
in fold j) into a set of principal component
(PC) scores using the P component loading
matrix retained in step (iii)

(vi) Compute the classification accuracy of the
built SVM classification model in step (iv)
using the transformed test fold j data in step
(v)

(vii) For the considered parameters set, store their
optimal parameter values set (i.e., a set of
parameters that yields the highest classification
accuracy)

(7) Report optimal parameters for the considered
model.

(8) Carry out PCA on the whole training set data (i.e.,
the training set obtained in step 3) to generate a
loading matrix.

(9) Transform this whole training set data into a set of
PC scores using the first P components (that ac-
count for at least 95% cumulative variance).

(10) Build an optimal model for the considered SVM
classification model using the optimal parameter
values set obtained in step (vii) using the generated
PC scores data in step 9.

(11) Transform the whole testing set data (i.e., the testing
set obtained in step 3) into a set of principal
component (PC) scores using the P component
loading matrix retained in step 9.

(12) Compute the classification accuracy of the built
optimal SVM classification model in step 8 using
the transformed whole testing set data in step 9.

(13) Report this test classification accuracy.

The schematic diagram in Figure 1 shows all the process
of the PSO-PCA-LGP-MCSVM algorithm.

It is important to mention that the whole analysis
process is conducted using the LIBSVM framework in
MATLAB [44, 47] on Intel(R) Core (TM) i3-3240M CPU @
3.4GHz with 12GB of RAM machine.

3. Performance Evaluation

3.1. Considered Microarray Datasets. To assess the perfor-
mance of the proposed PSO-PCA-LGP-SVM algorithm,
several experiments were conducted on four publicly
available datasets. Summary of all the datasets utilized in this
research can be found in Table 3, and following is a brief
description of each dataset:

Table 2: Initial PSO parameters setting.

Parameter Range
Maximum number of iterations 50
Inertial weight, w 1

Number of particles/swarm size

(1) PSO+L-MCSVM� 10
(2) PSO+G-MCSVM� 20
(3) PSO+ P-MCSVM� 40
(4) PSO+LGP-MCSVM� 80

Cognition learning factor, c1 2.0
Social learning factor, c2 2.0

Table 1: Parameters and their respective ranges.

Parameter Range
β � [β1, β2, β3] 0< β1, β2, β3 < 1 and β1 + β2 + β3 � 1
log2 C − 5≤ log2 C≤ 15
δ 0≤ δ ≤ 5
d 2≤d≤ 5
log2 c, log2 η − 15≤ log2 c, log2 η≤ 3
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Colon dataset [8]: this dataset contains gene expression
levels obtained from DNA-based microarrays. It has 62
samples: 22 normal and 40 cancerous tissue samples,
each described by 2000 features.
Leukemia (AML-ALL) dataset [6]: this dataset contains
gene expression levels from 72 leukemia patients: 47
with Acute Lymphoblastic Leukemia (ALL) and 25 with
Acute Myeloid Leukemia (AML). Each patient data is
described by expression levels of 7129 probes obtained
from 6817 human genes.
St. Jude Leukemia dataset [7]: this dataset was obtained
from St. Jude Children’s Research Hospital. It is divided
into 6 diagnostic groups: BCR-ABL (9 patients), E2A-
PBX1 (18 patients), Hyperdiploid> 50 (42 patients),
Mixed Lineage Leukemia(MLL) (14 patients), T-cell
Acute Lymphoblastic Leukemia (T-ALL) (28 patients),
and TEL-Leukemia (TEL-AML1) (52 patients) and other
52 patients that could not fit into any of the outlined
diagnostic groups. This dataset contains 12558 genes.
Lung Cancer dataset [13]: this dataset contains 3312
gene data obtained from 17 people with normal lungs
and 186 lung cancer patients that is classified into 5
classes: Adenocarcinomas (139 patients), Squamous
Cell Lung Carcinomas (21 patients), Pulmonary Car-
cinoids (20 patients), Small Cell Lung Carcinomas (6
patients), and Normal Lung (17 people).

Due to the small number of instances in the considered
datasets, all the datasets were initially split into two disjoint
sets: the training set and the test set. Utilizing 5-fold cross-
validation, the training set was randomly divided further
into 5 subsets (approximately) equal in size. Each time 4
subsets were selected as the calibration set and the remaining
subset was used as the validation set. This process was re-
peated 5 times. Finally, the average of classification accuracy
on the validation set was used as one of the evaluation
metrics. It is important to point out that by using 5-fold
cross-validation to dynamically divide the microarray
training samples, the considered models turn out to be more
stable and objective.

The percentage proportion for the calibration, valida-
tion, and test sets for all the considered microarray datasets
is presented in Table 4.

3.2. Performance Measures for Imbalanced Microarray
Datasets. When the samples in a dataset are unevenly
distributed among the classes (for instance, in the case of
microarray datasets), the task of classification in imbalanced
domains must be defined. The majority class, as a result,
influences the data mining algorithms skewing their per-
formances towards it [15].

Most algorithms simply compute the accuracy on the
basis of the percentage of correct samples.

However, in the case of microarrays, these results are
highly deceiving since the minority classes hold minimal
effects on the overall classification accuracy. Thus, a

consideration of a complete confusion matrix (Table 5) must
be made to obtain the classification of both positive and
negative classes independently [15].

The description in Table 5 gives four baseline statistical
components, where TP and FN denote the number of
positive samples, which are accurately and falsely predicted,
respectively, and TN and FP depict the number of negative
samples that are predicted accurately and wrongly,
respectively.

Two most frequently used metrics for class imbalance
problem, namely, F-measure and G-mean, can be regarded
as functions of these four statistical components and are
calculated as follows:

F − measure �
2∗Recall∗Precision
(Recall + Precision)

, (25)

G − mean �
������������
(TPR × TNR)


, (26)

where precision, recall, TPR, and TNR are further defined as
follows:

Precision �
TP

(TP + FP)
,

Recall (TPR) �
TP

(TP + FN)
,

TNR �
TN

(TN + FP)
.

(27)

The overall classification accuracy (Acc) can be calcu-
lated using the following equation:

Acc �
TP + TN

(TP + TN + FP + FN)
. (28)

However, all these evaluation metrics are appropriate for
estimating binary-class imbalance tasks. To extend them for
multiclass, the following transformations should be con-
sidered [15].G-mean computes the geometric mean of all the
classes’ accuracies and is defined by

G − mean � 
C

i�1
Acci⎞⎠

1/C

,⎛⎝ (29)

where Acci denotes the accuracy of the ith class. F − measure
can be transformed as F-score and is computed using the
following equation:

F − Score �


C

i�1F− measurei
C

, (30)

where F− measurei is calculated further using the following
equation:

F− measurei �
2 × Precisioni × Recalli
Precisioni + Recalli

. (31)

Acc can be transformed as depicted by the following
equation:
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Acc �
C

i�1
Acci × Pi( , (32)

where Pi is the percentage of samples in the ith class. To
impartially and comprehensively assess the classification

performance of the proposed model in comparison with
PSO-PCA-L-MCSVM, PSO-PCA-G-MCSVM, and PSO-
PCA-P-MCSVM models that utilize the standard linear,
Gaussian, and polynomial kernels, respectively, the three
extended measures, namely, F-score, G-mean, and Acc
which are described in (29), (30), and (32), respectively.
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Figure 1: Scheme of the proposed PSO-PCA-LGP-MCSVM algorithm.

Table 3: The cancer microarray datasets utilized in this paper.

Category Dataset Sample size Number of genes Number of classes

Two-class AML-ALL 72 7129 2
Colon 62 2000 2

Multiclass St. Jude 215 12558 7
Lung 203 3312 5
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4. Results and Discussions

The experimental results for the 4 classification models on
the 4 microarray datasets are reported in Tables 6–8, where
the best result in each dataset is highlighted in bold and the
worst is italicized.

From Tables 6–8, the following observations can be
made

(i) Lung and St. Jude datasets are slightly sensitive to
the class imbalance while Colon and AML-ALL are
not, as shown by the difference between Accuracy
and G-mean values. An Accuracy slightly lower
than the G-mean values implies that the MCSVM is
affected by the imbalanced class distribution. This is
largely attributed by a large number of true nega-
tives (TNs) recorded achieved by all the models
when analyzing both the Lung and St. Jude datasets.

(ii) The hybrid kernel boosted the classification per-
formance of the multiclass on three datasets, i.e.,
Colon, Lung, and St. Jude. These promotions are
better portrayed by the F-score and G-mean met-
rics, which are used to evaluate a balance level of
classification results. However, a tie is reported for
the AML-ALL dataset. This implies that though the
complementary characteristics of the three standard
kernels, i.e., linear, Gaussian, and polynomial, in the
proposed hybrid linear-Gaussian-polynomial
(LGP) kernel may improve the multiclass support
vector machine classifier’s classification ability on
most microarray datasets, a single suitable kernel is
sufficient.

(iii) Of all the considered models, the PSO-PCA-P-
MCSVM reported the least performance in all the
considered metrics for all the four datasets. How-
ever, it is important to note that a promising kernel
can be obtained if we embed into the exponential
kernel.

In summary, compared with single kernel-based models
(i.e., PSO-PCA-L-MCSVM, PSO-PCA-G-MCSVM, and
PSO-PCA-P-MCSVM), the proposed PSO-PCA-LGP-
MCSVM model that is based on a hybrid linear-Gaussian-
polynomial (LGP) kernel with a better global feature ex-
traction ability, good prediction ability, and better learning

ability, has an attractive classification ability in cancer di-
agnosis using both imbalanced dual and multiclass micro-
array datasets. Moreover, due to the excellent global
searching ability of the particle swarm optimization, it can
effectively optimize the hybrid kernel-based MCSVM when
solving a wider range of classification problems.

5. Conclusion

Techniques to choose or construct suitable kernel functions
and optimally tune its parameters forMCSVMhave received
a considerable and critical attention in imbalanced micro-
array-based cancer diagnosis. A novel classification model,
PSO-PCA-LGP-MCSVM, that is based on MCSVM with a
hybrid kernel, i.e., linear-Gaussian-polynomial (LGP), is
proposed in this paper. The LGP kernel combines the ad-
vantages of three standard kernels, i.e., linear, Gaussian, and
polynomial kernels in a novel manner where the linear

Table 4: Percentage proportion for the calibration, validation, and test sets.

Dataset % proportion for calibration set % proportion for validation set % proportion for test set
AML-ALL 61.1 15.3 23.6
Colon 58.1 14.5 27.4
St. Jude 57.7 14.4 27.9
Lung 57.1 14.3 28.6

Table 5: Confusion matrix for a two-class problem.

Positive prediction Negative prediction
Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)

Table 6: Accuracy of all considered models on the four microarray
datasets.

Models Colon Lung AML-ALL St. Jude
PSO+L-MCSVM 0.7647 0.9596 0.9412 0.9422
PSO+P-MCSVM 0.8235 0.9592 0.8235 0.9395
PSO+G-MCSVM 0.8235 0.9608 0.9412 0.9572
PSO+LGP-MCSVM 0.8824 0.9729 0.9412 0.9603
Values in bold represent the best result and values in italic denote the worst
in each column, respectively.

Table 7: F-score of all considered models on the four microarray
datasets.

Models Colon Lung AML-ALL St. Jude
PSO+L-MCSVM 0.7572 0.9246 0.9328 0.7870
PSO+P-MCSVM 0.8211 0.7524 0.7733 0.6831
PSO+G-MCSVM 0.8211 0.9306 0.9377 0.8477
PSO+LGP-MCSVM 0.8712 0.9586 0.9377 0.8989
Values in bold represent the best result and values in italic denote the worst
in each column, respectively.

Table 8: G-mean of all considered models on the four microarray
datasets.

Models Colon Lung AML-ALL St. Jude
PSO+L-MCSVM 0.7676 0.9791 0.9412 0.9557
PSO+P-MCSVM 0.8235 0.7524 0.8235 0.9512
PSO+G-MCSVM 0.8235 0.9792 0.9412 0.9661
PSO+LGP-MCSVM 0.8824 0.9861 0.9412 0.9709
Values in bold represent the best result and values in italic denote the worst
in each column, respectively.
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kernel is linearly combined with a polynomial kernel that is
embedded into a Gaussian kernel. Using PSO to optimally
tune the LGP kernel-based MCSVM resulted in better
generalization, learning, and predicting ability as evidenced
by the promising results in terms of three extendedmeasures
F-score, G-mean, and Accuracy irrespective of imbalanced
binary or multiclass microarray datasets. The performance
of the proposedmodel was compared with those of 3models,
i.e., PSO-PCA-L-MCSVM, PSO-PCA-G-MCSVM, and
PSO-PCA-P-MCSVM that are based on single linear,
Gaussian, and polynomial kernels, respectively, and the
experimental results show that the proposed model is su-
perior to the three single-kernel-based models. This reflects
the good practical value of the proposed model in the field of
microarray-based cancer diagnosis, which can also be ex-
tended to more applications of medical diagnostic classifi-
cation to explore its potential.
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