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New advances in sequence assembly

Adam M. Phillippy

National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA

It may be hard to believe, but the idea of sequence assembly is
around 40 years old. Consider this pair of quotes from Rodger
Staden (Staden 1979):

“With modern fast sequencing techniques and suitable
computer programs it is now possible to sequence whole ge-
nomes without the need of restriction maps.”

“If the 5’ end of the sequence from one gel reading is
the same as the 3’ end of the sequence from another the
data is said to overlap. If the overlap is of sufficient length
to distinguish it from being a repeat in the sequence the
two sequences must be contiguous. The data from the two
gel readings can then be joined to form one longer continu-
ous sequence.”

Replace “gel reading” with “read” and these sentences would go
unnoticed in the introduction of any paper today. Here you can
also see the birth of jargon that now pervades the field: overlaps be-
tween reads form contigs (contiguous sequences). Just a few months
later, Gingeras et al. (1979) described “Computer programs for the
assembly of DNA sequences.” It all sounds so modern, until the
discussion mentions FORTRAN code stored on magnetic tapes.
How, then, can we fill an entire special issue of Genome
Research with “new advances” so many years later? To me, this re-
flects the beauty of the problem—simple enough to be stated in a
single paragraph, yet complex enough to sustain a field of research
for decades. This dichotomy is common to many famous compu-
tational problems; indeed, mathematical formulations of se-
quence assembly fall into a class of problems known as “NP-
hard” that do not admit an easy solution (Medvedev et al. 2007).
There is another reason for continued advances in sequence
assembly—advances in sequencing technology. As evident from
the Staden quotes above, the first assembly methods were moti-
vated by the invention of DNA sequencing and gel electrophoresis
“readings” (Sanger and Coulson 1975; Maxam and Gilbert 1977).
These early sequencing and assembly methods were applied to vi-
ruses with genomes of only a few kilobases (Sanger et al. 1978). As
the sequencing technology was later commercialized and scaled, it
became possible to assemble the 1-Mb genome of a free-living bac-
terium (Fleischmann et al. 1995), the 120-Mb genome of the fruit
fly (Adams et al. 2000), and ultimately the 3-Gb human genome
(Venter et al. 2001). These advances in scale required parallel com-
putational advances, embodied by the tools that assembled these
early genomes—TIGR Assembler (Sutton et al. 1995) and Celera
Assembler (Myers et al. 2000). A similar theme continued through
the 2000s, as new sequencing technology such as 454 (Margulies
et al. 2005) and Illumina (formerly Solexa) (Bentley et al. 2008) re-
quired rethinking the assembly problem. The abrupt transition
away from Sanger reads to the much shorter Illumina reads shifted
the field toward de Bruijn graph assemblers (Pevzner et al. 2001)
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such as Velvet (Zerbino and Birney 2008) and ABySS (Simpson
et al. 2009). Most recently, with the advent of longer, single-mol-
ecule sequencing reads from Pacific Biosciences (PacBio) (Eid et al.
2009), the field returned to overlap graphs (Myers 1995) and adap-
tations of Celera Assembler (Chin et al. 2013; Koren et al. 2013).

Presently, the number of available technologies has only
grown. The papers in this issue include sequencing data from
four platforms—Illumina, PacBio, Oxford Nanopore, and
Sanger—and multiple technologies for constructing long-range
scaffolds: paired reads, linked reads, optical mapping, proximity li-
gation, and physical mapping. This glut of technologies has
spurred interest in determining the most effective approach to re-
construct whole genomes.

The low cost of short-read sequencing compared to Sanger
has driven a wide expansion in the number of genomes se-
quenced, but with a sharp reduction in contig and scaffold
lengths. An emerging trend is to combine cost-effective Illumina
sequencing with clever library preparation techniques designed
to improve assembly continuity. One powerful example is chro-
matin conformation capture via proximity ligation and high-
throughput sequencing (Hi-C) (Lieberman-Aiden et al. 2009).
This family of methods generates a familiar paired-read data type
(two reads separated by some distance) but from a distribution of
sizes that can span megabases. This data can be used to group con-
tigs by chromosome, reconstruct chromosome-length scaffolds,
and phase haplotypes (Burton et al. 2013; Kaplan and Dekker
2013; Selvaraj et al. 2013). In this issue, Rice et al. (2017) demon-
strates a related approach, using in vitro reconstituted chromatin
and Illumina sequencing to assemble the American alligator ge-
nome. Another approach to boosting short reads uses high-
throughput barcoding to tag groups of “linked reads” that all orig-
inate from a larger, single molecule of DNA. For this new data type,
Weisenfeld et al. (2017) introduces a new assembler, Supernova,
for the de novo assembly of diploid human genomes from linked
reads. Additionally, Jackman et al. (2017) describes a new version
of the ABySS assembler and explores linked reads and optical map-
ping for improved scaffolding.

Although these short-read library preparation methods can
extend scaffolds to span entire chromosomes, they lack the finer
resolution required to improve contig lengths. Instead, the biggest
gains in contig lengths have come from single-molecule sequenc-
ing. First from PacBio and most recently from Oxford Nanopore,
these technologies can generate reads exceeding 10 kb, orders of
magnitude longer than Illumina. Critically, 10-kb reads are longer
than the most common repeats in both microbial and vertebrate
genomes and can therefore generate highly continuous assem-
blies. In fact, the complete reconstruction of bacterial genomes—
a process that used to require teams of people—is now automated
and routine. However, the massive read lengths and increased er-
ror rate of these new technologies have also required updated as-
sembly methods. This issue includes three new assembly tools
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designed specifically for long-read PacBio and Nanopore data:
Canu (Koren et al. 2017), HINGE (Kamath et al. 2017), and
Racon (Vaser et al. 2017).

Combining single-molecule sequencing with complementa-
ry technologies has also become a common strategy. Fan et al.
(2017) demonstrates improved accuracy for human structural var-
iant calling using a combination of PacBio and Illumina. For de
novo assembly, two new studies look at plant genome assembly,
with Zimin et al. (2017) combining PacBio and Illumina data to as-
semble the highly repetitive grass Aegilops tauschii, and Jiao et al.
(2017) combining PacBio with proximity ligation and optical map-
ping to assemble relatives of the model species, Arabadopsis thali-
ana. In the latter case, the combination of PacBio reads and long-
range scaffolding techniques enabled multi-megabase contigs
and scaffolds spanning entire chromosome arms.

So, what is gained from improved de novo assemblies? High-
quality assemblies can reveal repeat structures and structural vari-
ation otherwise missed by short-read resequencing. For de novo
projects, short-read assemblies are fragmented, because the over-
laps between reads are not long enough to distinguish between
common repeats. These repeat sequences are left unassembled,
breaking contigs and hindering analysis. With the emergence of
long sequencing reads has come a renewed interest in repetitive se-
quences, which can be properly analyzed for the first time. This in-
cludes detailed analysis of highly repetitive satellite sequence in
flies (Khosta et al. 2017) and birds (Weissensteiner et al. 2017), pav-
ing the way for functional studies in areas of the genome not pre-
viously accessible. Long-read assembly is even revealing new
variation in the human genome, and Huddleston et al. (2017)
highlights the importance of long-read sequencing and haplotype
resolution for accurate structural variant detection.

Ultimately, the goal of genome assembly is a gapless, haplo-
type-resolved reconstruction, but these genomic jigsaw puzzles
are so difficult that we have not yet finished the human genome.
This issue marks the 38th build of the human reference sequence
(Schneider et al. 2017), which still contains more than 800 gaps af-
ter decades of work and billions of dollars spent. But there is hope
on the horizon. Progress over the past five years has been swift,
driven by new technology. De novo assemblies of humans (Seo
et al. 2016) and other vertebrates (Bickhart et al. 2017) are ap-
proaching reference quality by combining technologies such as
PacBio, Illumina, optical mapping, linked reads, and proximity li-
gation; and new phasing methods can now recover chromosome-
scale haplotype blocks from this data (Edge et al. 2017). With these
latest techniques, only the largest segmental duplications and het-
erochromatic regions remain a challenge.

Future advances in technology may overcome these remain-
ing hurdles. Reflecting on the earlier Staden quote, “If the overlap
is of sufficient length to distinguish it from being a repeat ...,” as
soon as a sequencing technology can produce good enough reads,
such that all regions of the genome can be uniquely distinguished,
genome assembly will become trivial. Although the minimum
combination of read accuracy and length required to complete
the human genome is currently unknown, I suspect we are getting
close. Most recently, Nanopore sequencing reads approaching 1
Mbp were reported (http://lab.loman.net/2017/03/09/ultrareads-
for-nanopore/), and it is imaginable that further technology ad-
vances will enable the complete assembly of a diploid human
within a few years.

Luckily, even if sequence assembly is made obsolete by new
technology, there will be plenty of work left for the bioinformati-
cians. Low-cost, complete genomes will enable new and powerful

comparative genomics studies, requiring scalable methods for an-
alyzing whole genomes. Many of these methods share much in
common with the de Bruijn and overlap graphs of genome assem-
bly. Illustrating these connections, Paten et al. (2017) provides a
state-of-the-art overview on the topic of genome graphs and their
application to read mapping, variant calling, and haplotype deter-
mination. These graph structures allow reference genomes to
evolve beyond a single, linear representation to capture the full
diversity of a population. Hopefully, as continued advances in
technology allow us to spend less time assembling genomes, we
can spend more time exploring their wonderful evolution and
functional complexity.
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