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Abstract
Gene expression datasets are large and complex, having many variables and unknown
internal structure. We apply independent component analysis (ICA) to derive a
less redundant representation of the expression data. The decomposition produces
components with minimal statistical dependence and reveals biologically relevant
information. Consequently, to the transformed data, we apply cluster analysis (an
important and popular analysis tool for obtaining an initial understanding of the
data, usually employed for class discovery). The proposed self-organizing map
(SOM)-based clustering algorithm automatically determines the number of ‘natural’
subgroups of the data, being aided at this task by the available prior knowledge of the
functional categories of genes. An entropy criterion allows each gene to be assigned
to multiple classes, which is closer to the biological representation. These features,
however, are not achieved at the cost of the simplicity of the algorithm, since the
map grows on a simple grid structure and the learning algorithm remains equal to
Kohonen’s one. Copyright  2005 John Wiley & Sons, Ltd.
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Introduction

High-throughput methods developed in the last
decade that allow measuring and recording large
amounts of data have offered new directions to bio-
logical and medical research. Transcriptional pro-
filing using microarray technology makes possible
the extraction of whole-genome expression data,
which is in need of suitable analysis tools. Starting
from virtually no literature a few years ago, this
field has come to dominate many conferences and
journals (Kohane et al., 2003).

Genes involved in different biological processes
that are being affected as a result of experimen-
tal treatment exhibit specific patterns of variation
in their expression. Therefore, genes’ expression

profiles1 reflect genes responses to a particular set
of experiments. Clearly, microarray measurements
contain information about many different aspects
of gene regulation and function. It is believed,
and previous studies confirmed these assumptions
(Lieberman, 2001; Lee et al., 2003), that by suit-
ably decomposing the gene expression data, result-
ing components may correspond to distinct bio-
logical functions and the decomposition may help
producing a less redundant representation of data.

Methods like Principal Component Analysis
(PCA) and Independent component analysis (ICA)
are usually employed to represent the original data
in a manner that facilitates subsequent analysis

1 In the context of the current paper, by “profile” we refer to the
expression values of a gene recorded over a set of experiments.
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by means of a suitable transformation2. However,
as PCA is only a second-order method (i.e. it
finds representations of the data using informa-
tion only in the co-variance matrix) and constrains
the direction vectors to be orthogonal, we can just
decorrelate the components. ICA imposes statisti-
cal independence on the individual output compo-
nents, using higher-order statistics (e.g. kurtosis),
which means information not contained in the co-
variance matrix. If the underlying components are
Gaussian, it is necessary to use PCA (Gaussian
distributions can be completely determined by the
information contained in the co-variance matrix),
since the ICA model imposes the restriction of non-
Gaussianity on all the components (with the possi-
ble exception of one). However, for non-Gaussian
data, ICA should be employed, since PCA repre-
sentations may lack important intrinsic information
(Karhunen et al., 1997). Recent studies suggest that
the distribution of gene expression data deviate
from the Gaussian distribution and therefore ICA
can be effectively applied in order to reveal bio-
logical relevant features (Kreil et al., 2003; Lieber-
meister, 2001).

In this study we employ independent component
analysis (ICA), due to its capability to take into
account higher-order dependencies in the data. The
linear ICA is a method for the construction of a
linear non-orthogonal coordinate system, in which
the components are required to be statistically inde-
pendent. However, it must be noted at this point
that many practical implementations of ICA find
components with minimal statistical independence
(which is the case for our work also). The consider-
ation of higher-order statistics in ICA allows mean-
ingful information within the data to be exploited.
Its capability of estimating underlying sources from
an observed dataset has been successfully tested in
blind-source separation problems, where the source
signals are extracted from an observed data consist-
ing of a mixture of the original signals. Since the
expression of genes is controlled by a combination
of underlying processes that regulate the way cells
behave, it is assumed that ICA can be a useful tool
for finding a meaningful representation of the gene
expression data. The results of Liebermeister et al.
(2002) have shown that the retrieved independent

2 Although the methods discussed can be extended to non-linear
variants, we treat only linear transformations in this paper.

components correspond to putative biological pro-
cesses in yeast cell cycles and may reveal charac-
teristic differences between cell types.

Both PCA and ICA have been previously used
in gene expression analysis as either a dimension-
ality reduction method only (Yeung et al., 2001b)
or as a method to obtain a more meaningful rep-
resentation of the data, and subsequently to anal-
yse the biological significance of its decomposition
(Liebermeister, 2001). In addition, simple cluster-
ing of the decomposed data was performed, in order
to improve the prediction of functional classes for
gene expression datasets with incomplete annota-
tion (Lee et al., 2003).

Clustering of gene expression data, i.e. the
grouping of genes into biologically meaningful
groups according to their expression profile, is a
good starting point for the analysis of a genome
whose function remains largely unknown at this
time. The simple underlying assumption in all
gene-clustering techniques is that genes that appear
to be expressed in a similar manner (have similar
expression profiles) are in fact involved in the same
process and share similar biological functions. The
corollary to this assumption is that, although genes
may distantly affect the function of other gene
products, they fall into groups of more tightly reg-
ulated biological processes.

Different clustering techniques have previously
been applied directly to microarray data (Brazma
et al., 2002; Eisen et al., 1998; Mavroudi et al.,
2002; Papadimitriou et al., 2001). Although the
first clustering methods applied were mostly devel-
oped outside biological research, such as hierar-
chical clustering and K-means, they still revealed
biologically relevant information. However, some
of their characteristics are not suited for their use
in clustering expression data. Perhaps the strongest
impact on the final results of some methods is
the necessity of specifying the expected number of
clusters, as in the case of K-means, as well as the
classic self-organizing map (SOM), a number that
is almost impossible to predict in advance (Moreau
et al., 2002). In the case of greedy hierarchical
clustering, major drawbacks are the impossibility
of relocating objects that may have been incorrectly
clustered at an early stage, as well as solution non-
uniqueness (the solution may be dependent on the
order of presentation of the data to the algorithm)
(Morgan et al., 1995).
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Recently, many new clustering algorithms have
started to tackle some of the limitations of the
above-mentioned earlier methods, e.g. the self-
organizing tree algorithm (Campos Marcos et al.,
2001), but still work needs to be done. Based on
our previous work on clustering of gene expres-
sion data (Mavroudi et al., 2002), we intended to
develop a new method addressing a number of
shortcomings of both classical and the newer clus-
tering methods, more specific to microarray data.

We propose to use clustering of the gene expres-
sion profiles in the component space resulting from
ICA decomposition. After decomposition, the orig-
inal gene expression data is represented by a new
set of variables with respect to a new set of basis
vectors. Our method is based on the self-organizing
map of Kohonen (2001), since the standard SOM
algorithm has a number of properties that render it
a candidate of particular interest as a basic frame-
work for building more advanced algorithms for
clustering applications. SOMs can be implemented
easily, are fast, robust, and scale well to large
datasets. They allow one to impose partial struc-
ture on the clusters and facilitate visualization and
interpretation. In cases where hierarchical informa-
tion is required, it can be implemented on top of
a SOM, as by Vesanto et al. (2000). We modified
the standard SOM algorithm in order to account for
the following peculiarities of gene expression data,
which could not be handled by the basic SOM:

1. The number of gene clusters is unknown,
although the SOM requires a predefinition of
this number.

2. Closely related to using a predefined number
of clusters is the consideration that even genes
which are not really co-expressed with other
cluster members (and therefore represent noise)
are forced to end up in one of the clusters,
and thereby hamper the further analysis of the
clusters.

3. The outcome of the clustering with the SOM
relies completely on the distance between genes
and the map nodes. However, it is known that
genes with related functions do not always
show the same high degree of similarity within
their respective clusters, i.e. different functional
classes have different degrees of heterogeneity.
Some clusters may be more compact, while
others may be more spread. Prior information

about the functional categories of genes could
aid the clustering, but is usually ignored.

4. Genes belong to more than one functional cat-
egory, although the SOM cannot handle multi-
labelled data.

5. The number of genes in the different functional
categories is unbalanced (e.g. large categories
in yeast may contain more than 2200 genes and
small categories as few as four genes). This
makes it difficult for the basic SOM to map the
rare classes into distinct clusters.

It is obvious that the above-mentioned problems
are not exclusively SOM-specific, but affect many
other clustering algorithms. Thereby their adjust-
ment improves not only over the basic-SOM algo-
rithm (Tamayo et al., 1999) but also over many
other existing methods.

There have been several dynamically extendable
schemes proposed recently. The dynamic topology
representing structures (Si et al., 2000) adaptively
grows the number of output nodes by applying a
vigilance test; self-organized tree algorithms (Cam-
pos et al., 2001; Herrero et al., 2001) are tree-
building algorithms that use unsupervised learn-
ing to construct hierarchical representations of the
data; the joint entropy maximization approach (Van
Hulle et al., 2002) employs kernel methods in a
learning algorithm that forms topological maps;
Azuaje (2001) uses a two-layer neural network
structure that implements fuzzy logic operations
in order to achieve a number of pattern-matching
and adaptation formations. The growing cell struc-
tures algorithm (Fritzke, 1995; Cheng et al., 2001)
is based on SOM but replaces the basic two-
dimensional grid by a network of nodes whose
connectivity defines a system of triangles.

Our approach has similarities to the above-
described methods, as it is driven by the same prin-
ciple of expansion based on locally accumulated
error. Perhaps the main difference in our approach
is that we include prior functional knowledge in
order to guide the map expansion and to design
the expansion criteria. Of course, we are aware
that in molecular biology classes may be defined
but are neither complete nor completely trusted.
This shouldn’t be a reason to completely neglect
the knowledge we have acquired so far, but con-
stitutes a reason for avoiding an analysis which
would be too tied to the original classes. In contrast
to most supervised approaches, which do not give
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any insight into the internal structure of the data
but only classify data into a priori given classes,
we are still aiming at class discovery, while taking
into account any a priori knowledge.

Comparing with other SOM-based semi-supervi-
sed methods in the literature (Sinkkonen et al.,
2000; Kohonen, 2001), while these approaches are
aimed for the cases where complete and reliable
class information exists, we aim to exploit super-
vised information only when it exists, and thus
we confront the problems caused by incomplete
and unreliable class labelling of gene expression
data. Additionally, we consider the fact that, due to
the possible co-expression of genes with different
groups of genes in response to the varying demands
of the cell, genes do not always belong to a unique
class, but may be multi-labelled. Finally, in con-
trast to the complexity of some of the mentioned
schemes, we built simple algorithms that can be
implemented easily and the training of the models
is very efficient.

There are several aspects in which the cur-
rent work improves over our previous method
(Mavroudi et al., 2002). A substantial enhance-
ment is provided by our choice to make use of
the advantages offered by ICA. The linear trans-
form not only produces suitable representations of
the gene expression data by filtering out unwanted
sources of variation and easing this way further
cluster analysis, but also helps to reveal unobserved
variables that highlight particular biological factors.
Also of great importance is the effective frame-
work provided for reducing data dimensionality,
which has a great impact on the computational
complexity of the algorithm. Further improvement
of our algorithm is related to an efficient use of
multifunctional labelling of the data in a more
elaborate entropy-based error measure, as well as
from the incorporation of a supervised dimension
into our map convergence criteria. These provisions
are discussed in detail in the following sections,
with current results demonstrating the superior-
ity of the present approach and its potential, not
only as a clustering but also as a classification
device.

Methods

A simple representation of gene expression data
would be that of a matrix X ∈ �nxm , whose rows

represent profiles of n genes and the columns
contain the genes’ expression measurements over
m conditions. Each gene profile has a class label,
describing its gene’s biological function. Usually
the data dimensions are very large (thousands to
tens of thousands × tens to hundreds), therefore
making it a challenge for the data analysis to find
a suitable representation of the data such that the
transformed variables give information otherwise
hidden in the dataset.

Decomposition refers to a process that trans-
forms the input data space into a space designed
in such a way as to allow a meaningful representa-
tion of the data, which captures most of the intrinsic
information content. Usually, therefore, the input
data space undergoes a dimensionality reduction
as the projected space is constructed (since redun-
dant information is eliminated). More formally, this
means that each m-dimensional data vector x of the
original data space can be represented by d num-
bers, with d < m .

Gene expression with ICA

Using ICA decomposition we can model the gene
expression data matrix as a matrix product:

X = S·A with xij =
m∑

l=1

sil alj where

i = 1 . . . n and j = 1 . . .m (1)

where S is the matrix containing the data rep-
resentation in independent component space. The
model represents the original data by new variables
(columns of S) or, alternatively, seen with respect
to a new basis formed by the rows of the mix-
ing matrix A. The gene expression profiles xi will
be represented in component space by the profiles
si (rows of S), which will inherit the class labels
from the correspondent xi . The new set of vari-
ables, the independent components, have minimal
statistical independence between them and may be
interpreted as influences of some unobserved vari-
ables, as described by matrix A. The task of ICA
is to estimate from the observed gene expression
data the independent components or, equivalently,
to estimate the mixing matrix A.

Furthermore, we are specifically interested in
extracting most of the information contained in
the original gene expression data within just a few

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 596–616.



600 A. Dragomir, S. Mavroudi and A. Bezerianos

independent components. ICA offers an effective
framework for dimensionality reduction. The pro-
cedure we adopt for truncating the profiles si in
order to keep only independent components that are
important in our analysis is presented in Results.
Intuitively, similar experiments/conditions from the
original gene expression set could be described by a
single component in the transformed dataset. After
retaining the most informative components, we will
use as inputs to our algorithm the truncated pro-
files si , which will be referred to from now on as
patterns.

Approaches to ICA

One main category of approaches to the ICA com-
putation relies upon batch computations that mini-
mize or maximize some relevant contrast functions.
These algorithms suffer from the problem that they
require very complex matrix operations. Another
category considers adaptive algorithms that are
based on stochastic gradient algorithms, imple-
mented with neural networks. These approaches
suffer from slow convergence. Moreover, the con-
vergence itself depends critically on the choice of
the learning rate parameters and therefore it cannot
be guaranteed.

On the other hand, the fixed-point ICA algo-
rithm, presented by Hyvarinen et al. (1997), is an
approach that utilizes a highly efficient fixed-point
iteration scheme for finding the local extrema of
a suitable contrast function that accepts as argu-
ments a linear combination of the observed vari-
ables. The detection of the local extrema of this
contrast function makes possible the approxima-
tion of the non-Gaussian independent components.
The fixed-point algorithm works practically for any
non-Gaussian distribution of the independent com-
ponents (Hyvarinen, 1999) and for any choice of
the contrast function. The choice affects only the
performance optimization. This is very important,
since there is little a priori information about the
distribution of the gene expression profiles. Addi-
tionally, the algorithm in its hierarchical version
finds the independent components one at a time,
instead of working in parallel like most of the sug-
gested ICA algorithms that solve the entire mixing
matrix. This makes it possible to estimate only cer-
tain desired independent components (Hyvarinen
et al., 1997).

Before applying the fixed-point algorithm, a pre-
liminary whitening of the data x is performed,
a useful preprocessing step in data analysis. The
observed vector x is linearly transformed to a
vector u = M • x, such that the elements ui are
mutually uncorrelated and all have unit variance.
Therefore, the correlation matrix of u equals unity:
E {uT • u} = I. This transformation can be accom-
plished effectively with PCA. A benefit of using
PCA is that in addition to whitening, it can at
the same time perform an effective dimensionality
reduction of the data. Specifically, the dimension
of the transformed data vector u is reduced to d ,
where d is the number of independent components
that we wish to obtain. Therefore, after the trans-
formation we have:

u = M • x = M • A • s (2)

Since the components si are independent by
assumption:

E {uT • u} = BE {s • sT}BT = B • BT = I (3)

It follows that B = M • A is an orthogonal
matrix. Therefore, the problem of finding an arbi-
trary full-rank matrix A is reduced after the PCA
whitening to the simpler problem of finding an
orthogonal matrix B, from which the indepen-
dent components are obtained with s = BT • u. The
criterion for finding the orthogonal matrix B is
to minimize the final objective function J (w) =
E {(wTu)4} − 3‖w‖4, where wT u are linear com-
binations of the observations ui and with z = BT w,
with ‖w‖ = ‖z‖ = 1, as in Hyvarinen et al. (1997).

The SOM-based learning algorithm

Algorithm dynamic growing and adaptation

Unlike the standard SOM, which has a fixed archi-
tecture, we designed a model initialized with a map
that consists of only four nodes, arranged on a rect-
angular 2 × 2 grid, and then expands automatically
in order to properly represent the input data. Each
node corresponds to a different cluster, with one
or several clusters in the final map configuration
representing a class. Weights of the starting nodes
are initialized with random patterns from the input
dataset. Patterns representing the gene profiles in
the independent component space are successively
presented to the map, each of them being assigned
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to the node with closest weight vector, according
to a distance measure (named ‘winner node’) that
is consequently adjusted together with its direct
neighbours, to represent the patterns mapped. Since
the map starts with a much smaller than usual sized
SOM, there is no requirement for a large neigh-
bourhood to train the whole map at the first learning
steps (e.g. with four nodes initially in the map, a
neighbourhood of one only is required). As train-
ing proceeds, during subsequent training runs, the
area defined by the neighbourhood becomes local-
ized near the winning node, not by shrinking the
vicinity radius (as in the standard SOM) but by
enlarging the SOM with the dynamic growing.

The learning rule for the adjustment of the
weight vector remains the same as in the standard
SOM. Specifically, during the adaptation phase the
weight vectors of the four nodes in the direct
neighbourhood of the winner and for the winner
itself according to the following formula:

wj (t + 1)

=
{

wj (t), j /∈ Nt
wj (t) + µ� ·�(d(i , j ))·�wj (t), j ∈ Nt

}

where the learning rate µω(t) is an exponentially
decreasing sequence of positive parameters, Nt
is the neighbourhood of the winner node at the
t th learning step, �(d(i , j )) is the neighbourhood
function implementing different adaptation rates
even within the same neighbourhood, �wj (t) is
the distance between the input pattern and its
closest weight vector and d(i , j ) = ((ir − jr)2 +
(ic − jc)2)

1
2 (the row and column of a node i are

denoted by ir , ic , respectively).
The learning rate µω(t) typically starts with a

value of 0.1 and decreases exponentially to 0.02.
These values are chosen as to have a relatively
fast convergence without, however, sacrificing the
stability of the map (Haykin, 1999). The learning
rate should be kept to a small value during the
convergence phase, but not allowed to decrease to
zero, in order to avoid the network getting stuck to
a map configuration with topological defects.

The neighbourhood function �(d(i , j )) can be
defined with the following simple formula:

�(d(i , j ))

=
{

1 if i = j
α 0 < α < 1 if (ir − jr)2 + (ic − jc)2 = 1
0 otherwise

The expansion of the map is driven by a process
that aims to minimize two concepts of error, the
quantization error (representing the unsupervised
part of the learning algorithm) and the classifica-
tion error (representing the supervised part). The
relative significance of the supervised part is con-
trolled by a parameter rsu . More formally, we could
state that the learning and the expansion of the map
aim to minimize a measure τE of the form:

τE =
Nd∑
i=1

εi (4)

where Nd is the number of nodes and εi the
individual composite error term for node i , defined
below:

εi = (1 − rsu)·UnsupervisedComponent i

+ rsu ·SupervisedComponent i (5)

The map expansion procedure is performed by
inserting new nodes in the neighbourhood of the
node j , with the largest composite error measure
after the presentation of all the patterns to the map.
Training efficiency and implementation simplicity
were motivations for expanding mostly from the
boundary nodes (see Figure 1). By these means,
depending on the position of the node j , the
insertion process follows the guidelines described
bellow:

1. If node j is a boundary node, the expansion is
performed by acquiring one to three new nodes
in the direct neighbourhood of the node j . The
weights of the new nodes are initialized so as to
preserve the trend of the weights of neighbour-
ing nodes (to respect the weight flow ). Specifi-
cally, the weight of the new node is computed
as WN ≡ Wr,c−1 = Wr,c + (Wr,c − Wav ,c), with
wav ,c denoting an average of the weights of
nodes in the neighbourhood of the node initi-
ating the expansion.

2. If node j is a near boundary node i.e. a node
from which the boundary of the map can be
reached by traversing in any direction at most
two nodes, a percentage (usually 20–50%) of
the weight of the node initiating the expansion is
shifted towards the outer nodes. This operation
alters locally the Voronoi regions and usually,
with a few ‘rippling’ operations, the respective
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Figure 1. Map expansion by boundary node insertion.
New nodes are added in the free positions in the grid
around the node initiating the expansion (so-called winner
node). The weight of the new node (wr,c−1) is initiated with
a value representing a local average of the neighbouring
nodes, maintaining the weight-flow (i.e. if wr,c > wr,c+1, then
wr,c−1 > wr,c)

node’s weight is propagated to a boundary node
(located nearby).

3. Finally, if the node with the largest error mea-
sure is neither placed on the boundary nor
near the boundary, the alternative of inserting
a whole column of new nodes is used. The rip-
pling of the weights is avoided in these cases,
since usually excessive computation times are
required before the weights propagate from a
node placed deep in the map to a boundary node.
The column of new nodes is inserted in the grid
respecting the direction of largest total error.
Specifically, the sum of the composite errors
for the nodes in the grid columns to the right
and to the left of the winner node is computed.
The new column of nodes is inserted to the side
where the error measure is larger. The initial
weight values of the new nodes are assigned
with respect to the weight flow of the neigh-
bouring node weights, as described above.

Map expansion, followed by the re-adaptation
of the weight vectors, is performed repeatedly
until convergence (based on the relative change
of the total error measure for all nodes between
successive training runs) and expansion criteria are
met. These criteria are discussed in the following
section. After the final expansion of the map is
performed, we proceed to a fine-tuning of the
respective map configuration. The procedure is

similar to the adaptation phase, with the exception
that the learning rate decreases to a smaller value in
order to allow fine adjustments to the final structure
and to allow a lower convergence threshold to be
imposed.

Expansion mechanisms

As introduced above, the map expansion takes into
account two kinds of error measures. Minimizing
the unsupervised part of the above composite error
measure ε corresponds to producing clusters of
genes that are similar to each other according to a
similarity measure (we prefer to use the Manhattan
distance, since it is less sensitive to outliers).
This term assures the proper functioning of the
algorithm, even for completely unlabelled data.
The minimization of the supervised component of
the error measure, on the other hand, secures a
proper use of the labelling. Minimal supervised
error forces patterns with similar labels into the
same cluster.

Unsupervised component of the composite error
measure

We have modified the local error measure that
is commonly used for implementing dynamically
growing schemes (Alahakoon et al., 2000; Herrero
et al., 2001). The measure we are using is cus-
tomized in such a way to be less sensitive when a
large number of similar patterns are mapped to the
same node. The unsupervised term in (5) is, thus,
a weighted average local error:

εwale(i) = 1

|Si |
∑
x∈Si

rcx · Dist(x, wi ) (6)

where Si denotes the set of patterns x mapped to
node i , |Si |represents the number of elements of the
set Si , wi is the weight vector of the node i and
the Dist operator, the distance metric. The weight
factor rcx is given by:

rcx = 1

Lx

Lx∑
l=1

(
# patterns of class cl

# total patterns

)−1/2

(7)

and corresponds to the average frequency ratio of
the Lx classes cl to which pattern x belongs. If
a pattern x is unlabelled (i.e. is not assigned to
any functional class) rcx is set to rcx = 1. The
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reason for choosing the exponent factor −1/2 is
to make the errors on the low frequency classes
account more (e.g. if class A is 100 times less
frequent than B, it is ‘amplified’ 10 times more).
By this means it promotes an additional expansion
in the neighbourhood of the node where rare
classes are mapped, and consequently it enhances
the possibility that rare classes will be mapped
on distinct nodes. As a result, the representation
of these low-frequency classes is improved. We
should note that these classes are usually of most
biological significance. Being an average value,
εwale does not increase by the accumulation of a
large number of similar patterns to a node.

Supervised component of the composite error
measure

Each node i is assigned a classification vector cl
with elements clk , k = 1 . . . Nc , where clk is the
ratio of the patterns with functional label k among
all the patterns mapped to the node clk = Vk

Vpattern
(Nc is the total number of classes, and unlabelled
patterns do not contribute to Vpattern ). The vector
cl is considered as the predicted soft classification
and each clk quantifies the degree of certainty that
the node i (and consequently the mapped patterns)
is assigned a label k .

We defined an entropy-like parameter, which
quantifies the uncertainty of the class label of node
i , similarly to an entropy measure (Haykin, 1999).
However, since each pattern may have multiple
functional labels, for a node i , we may have the
situation where the sum

∑Nc
k=1 clk > 1. As a result,

we cannot interpret clk as a probability (that the
node i is assigned a label k ) distribution and
therefore the entropy parameter we defined using
this ratios is not a proper entropy. Additionally,
we compute for each clk value a corresponding
qk value, such as qk = 1 − clk , which may be
interpreted as a measure indicating the degree in
which node i does not belong to class k , so that
obviously clk + qk = 1. The additional parameter
qk helps in giving a better account of the class
uncertainty within nodes. Then, the entropy-like
parameter can be computed as the sum of the
‘entropies’ of all individual classes:

Hl(i) = −
Nc∑

k=1

clk · log clk + qk · log qk (8)

This entropy-like quantity retains properties sim-
ilar to the entropy. Hl(i) is zero for unam-
biguous nodes (nodes that contain patterns with
the same functional label) and increases as the
uncertainty about the class label of the respec-
tive node increases. The upper bound of Hl(i) is
Nc log(2) and corresponds to the situation where
all the classes are equiprobable (i.e. the labelling
mechanism does not favour a particular functional
class).

The effective handling of the multi-labelled data
can be explained by a simple example. Let Nc = 2
and suppose that 50 patterns are assigned to node
i , all of them having as a label both classes,
while another 100 patterns are assigned to node
j , half of them belonging to one class and the
other half to the other. Although in each case
there are 50 patterns voting for each class, the
quantity Hl(i) will be high for node j (Hl(j ) =
2 log(2)) and zero for node i (Hl(i) = 0). Thus, it
would correctly indicate that node i should be kept
as it is, representing patterns which are labelled
simultaneously by both classes, and that node j
does not unambiguously represent any of the two
classes and the map should be expanded in its
neighbourhood.

Existing class information is explored in order
to resolve better near class boundaries. In other
words, since nodes with high entropy correspond
to nodes where patterns of different classes are
equally mapped, it is intuitively clear that these
nodes correspond to regions that lie near class
boundaries. This means that by achieving a small
entropy term (by adding new nodes near to these
regions) proper class boundaries are created.

Balance between the supervised and unsupervised
part

As stated before, the rsu parameter controls the rel-
ative significance of the supervised information in
the analysis of the respective dataset. The param-
eter could be set manually in advance; however,
this affects the performance of the algorithm cru-
cially. With rsu = 0 we have pure unsupervised
learning. The higher the rsu value, the more the
composite error ε is minimized for configurations
that fit better the a priori classification. If the goal
of the clustering analysis is to derive class labels for
gene patterns with unknown functionality based on
already annotated data, the higher the confidence in
the annotation of the expression data is, the higher

Copyright  2005 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 596–616.



604 A. Dragomir, S. Mavroudi and A. Bezerianos

the rsu parameter should be set. For sufficiently
large values of rsu the a priori component dom-
inates completely. Clearly, since in this case the
information within the dataset is suppressed, care
should be taken when dealing with such situations,
especially if the goal of the analysis is exploratory
insight of the dataset.

Therefore we prefer to produce multiple mod-
els and to introduce a model selection step, in
order to select a well-performing parameter auto-
matically. Specifically, we start with a zero-valued
supervision parameter to produce the first purely
unsupervised model, and then the whole algorithm
is repeated each time for an increased rsu parameter
until the classification performance is near opti-
mal. The classification performance for each rsu
value is measured with a specialized soft classifica-
tion performance measure, ClassifPerf(rsu ), which
is able to handle the multiple labelling of patterns
(Sable et al., 1999) and is evaluated as follows: as
already mentioned, each node i is assigned a clas-
sification vector cl with elements clk . Each pattern
has also an a priori (binary) classification vec-
tor, clpattern. Then, for each class label k of each
pattern j mapped to node i , a score is assigned.
This score equals clk if the corresponding label is
included in the original class assignment of the pat-
tern j (i.e.clpattern

k = 1) and equals qk = 1 − clk in
the other case (i.e. clpattern

k = 0). Intuitively, a small
clk ≈ 0 for a class that does not appear as a func-
tional label (i.e.clpattern

k = 0) of an input pattern j ,
is much more a success than a failure, therefore it
is considered by a score qk ≈ 0. In this way a total
score for each pattern j is computed as:

TotalScore j =
NC∑
k=1

sck

where sck =
{

clk if cl pattern
k = 1

qk = 1 − clk if cl pattern
k = 0

The performance Perfj for each pattern j is then
obtained by dividing the TotalScorej with the total
number of functional class labels Nc :

Perfj = TotalScorej
Nc

The global measure of the performance Class −
ifPerf (rsu) for a given ratio rsu is obtained by

averaging the Perfj values for all the patterns of
the dataset DS, i.e:

ClassifPerf (rsu) =

∑
i∈DS

Perfi

|DS |

with |DS| denoting the number of elements in the
dataset.

Finally, a well performing ratio rsu is selected
by using the following criteria: on the curve of
classification performance over rsu we select the
value of rsu for which a significant increase of the
classification performance is obtained, followed by
a relatively levelled part in the plot. The increase
of the classification performance with an increas-
ing value of rsu is explained by the increased role
of the a priori information for the formation of
the proper cluster structure. The significance of the
levelled part in the region of the plot of classifica-
tion performance that follows the chosen rsu is that
further increasing the strength of a priori informa-
tion does not provide an improved generalization
performance. The second criterion that guides the
identification of the proper value of rsu is that, for
the chosen value of the supervised parameter, the
number of nodes in the map is considerably smaller
compared to map configurations with comparable
classification performance (thus yielding a model
with small complexity).

In a condensed form, the main steps of our
algorithm are:

1. Initialize 2 × 2 map and set rsu = 0 (pure super-
vised learning).
Repeat//develop a series of models each of them
corresponding to an increasing value of rsu.
Repeat:

2. Adaptation phase
3. Expansion phase

until criteria for map expansion are satisfied.
4. Fine tuning adaptation phase.
5. Save map configuration for the current super-

vised/unsupervised balance rsu.
6. Compute classification performance for current

rsu.
7. Increase significance of the supervised part

(increase rsu)
until classification performance ≈ 1.

8. Model selection step
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Map convergence and expansion control criteria

The composite error measure also guides the con-
vergence of the map, with the map assumed to
have converged when the relative change of the
total error measure for all nodes between succes-
sive training runs drops below a threshold value.
The setting of the threshold value in the range
0.01–0.02 was indicated by several tests performed
on different gene expression datasets. It provides
sufficient convergence without excessive computa-
tion.

Intuitively, the map expansion should stop when
the patterns mapped to the nodes of the map are
similar and ‘not random’ (i.e. unrelated). The prob-
lem thus reduces to the definition of similarity
between patterns. In our setting, similarity has two
aspects, supervised and unsupervised. In the unsu-
pervised case, similarity between patterns is related
to the distance between them. In order to treat the
problem quantitatively, we set a confidence level α
from which we derive a threshold dthr for the dis-
tance between patterns, below which two patterns
are considered similar. The confidence level α has
the meaning that the probability that two patterns
allocated to the same node are ‘random’ (not sim-
ilar) is lower than α, if the distance between them
is smaller than the threshold. Obviously, the defini-
tion of a statistical confidence level would be only
possible if the distribution of the distances between
random patterns was known. Practically, although
the distribution is unknown, it is easy to approxi-
mate it by randomly shuffling all the patterns’ ele-
ments. This randomization destroys the correlations
between different patterns, while it retains the other
characteristics of the whole set (e.g. ranges and
histogram distribution of values). In this way we
compute an approximation of the distribution of the
distance between random patterns. Figure 2 illus-
trates the distributions of the distances between the
randomized patterns and the actual patterns from
the component space. In this case, by choosing
a statistically common confidence level α = 0.05,
we can determine a lower and a upper thresh-
old for the distance between patterns (dLthr and
dUthr ) and consider the distances in the interval
[dLthrdUthr ] as random. Taking into account that
smaller (larger) distance corresponds to a larger
(smaller) correlation, we can state that for distances
smaller than dLthr a positive correlation between
patterns is implied, while a negative correlation is
indicated by distances larger than dUthr .

Having determined the distance thresholds, we
compute for each node i the ratio of intra-node
pairwise distances between patterns which fall
beyond the thresholds, i.e.:

rdi = #distances beyond thresholds

#distances within node i

We then compute the sum:

RD = 1

K

K∑
i=1

rdi

where K denotes the number of clusters. Obvi-
ously, for the extreme case that every node contains
only patterns with inter-pattern distances fall out-
side these thresholds, RD takes the value RD =
0 (representing the least random state possible),
whereas for the opposite extreme case, when the
nodes only contain patterns with inter-pattern dis-
tances that fall within the thresholds, we have
RD = 1 (representing the most random state pos-
sible).

A purely unsupervised expansion control crite-
rion has been used before in the literature (Her-
rero et al., 2001; Mavroudi et al., 2002). However,
such an approach is reliable only if the distribution
of the random patterns was known and not esti-
mated. Also, the definition of randomness in such a
case depends only on the similarity of the patterns,
i.e. the derived thresholds. Therefore, the similar-
ity thresholds would be the same for all nodes,
although there is no reason to believe that the
degree of similarity between patterns that belong to
the same class is bound to be the same for different
classes.

We add to the unsupervised control criterion
described above a supervised component, which
quantifies the difference between the representation
of functional classes in the entire dataset and their
representations within different nodes. We would
expect that a random distribution would allocate
the patterns in such a way that the representation
of classes in a given node would be similar to the
representation of the classes in the initial dataset.
If the different classes represented in the dataset
were of equal size (contained the same number of
patterns), we would expect a random assignment to
result in a uniform representation of all classes and
the entropy-like measure would be an appropriate
measure of randomness (i.e. a high entropy value
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Figure 2. The results of the data shuffling illustrate that the distances between randomized data occupy a distinct
distribution. The plot concerns the data distributions from dataset 1. dLthr and dUthr are the derived distance thresholds,
with similar patterns expected to have inter-pattern distances smaller than dLthr

would mean that the distribution is random and
a low value that the distribution is not random).
However, since most gene expression datasets
have a highly unbalanced number of functional
classes (with hundreds of genes belonging to a
specific functional class, while other classes may
be represented by fewer than 10 genes) we prefer
to quantify the differences in classes representation
in the initial dataset and within each node in terms
of a measure based on the Hellinger distance.

The Hellinger distance measures the discrep-
ancy between two probability density functions
(pdf) and, unlike other divergences (e.g. Kull-
back–Leibler divergence), it is symmetric, boun-
ded, and satisfies the triangle inequality (we could
say that the Hellinger distance is a measure of affin-
ity between two distributions). In a state space �,

with ω ∈ � being the set of all possible states:

DH =
√∑

�∈�
(
√

p� − √
q�)2 ∈ [0,

√
2] (9)

Similarly, with the classification vectors defined
previously, we define for each node i vectors ϕi

of the ratios ϕik = Nik
Ni

, where Nik is the number of
patterns with functional class label k (k = 1 . . .Nc)
mapped to node i and Ni is the total number of
labels within node i (i.e. a multi-labelled pattern is
counted multiple times, once for each of its labels).
Thus, ϕik are the observed frequencies of occur-
rence of patterns with label k . One can interpret
the ϕik as probabilities, since

∑NC
k=1 ϕik = 1. Specif-

ically, for each class k , a pattern that is mapped on
the node i has a probability of ϕik of belonging to
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the class k and a probability of ψik = 1 − ϕik of
not belonging to the class k , with ϕik + ψik = 1.
Equivalently, the frequency of occurrence of pat-
terns with class label k in the initial dataset is
computed as:

ϕData
k = N k

P

NP

with N k
P being the number of patterns with label

k in the initial dataset and NP being the total
number of labels in the dataset (again, multi-
labelled patterns count multiple times). Again,
ϕData

k can be interpreted as probabilities, i.e. the
probability that a pattern in the initial dataset
belongs to the class k . Then, the distance for each
node i is given by:

DH Node
i = 1√

2 · NC

NC∑
k=1√(√

ϕData
k − √

ϕik

)2

+
(√

ψData
k − √

ψik

)2

(10)

where NC is again the number of distinct classes.
The multiplicative factor 1√

2 · NC
is introduced in

order to normalize the distance to the range [0,1].
Finally, we compute the total average distance
TDH for all K clusters as:

TDH = 1

K

K∑
i=1

DH Node
i (11)

Combining the unsupervised measure RD previ-
ously defined and the supervised distance measure
TDH we derive a total measure of the form:

Rand = β(1 − TDH ) + (1 − β) · RD ∈ [0, 1]

(12)

where β is a parameter controlling the balance
between the supervised and unsupervised term.
Rand = 0 corresponds to the case where all inter-
pattern distances of the clusters fall beyond the
thresholds and the distribution of the class labels
of the nodes differ completely from their distri-
bution in the initial dataset. Obviously, Rand = 1
corresponds to the other extreme case, where the

inter-pattern distances and the distribution of the
class labels are random.

Finally, the expansion criterion is given by:

Expand map until : Rand ≤ ε (13)

The parameter ε has been determined empirically
to 5%: for β = 0 it has the meaning that we
consider the map configuration as not random and
stops the expansion only if, on average, less than
5% of the patterns which are mapped to the nodes
do not fulfil the intra-node threshold requirements.
For β = 1 the configuration is considered as not
random if, on average, the similarity between the
class label distribution of the nodes and the class
label distribution of the dataset is less than 5%.

An important observation is that, since the pat-
terns mapped to each cluster fall between certain
similarity distance thresholds and have a distinct
class label distribution, it follows that patterns that
are not tightly co-expressed with other patterns
will be mapped to distinct clusters. In other words,
nodes that are selected as winners for very few
(usually one or two) patterns, termed uncolonized
nodes, seem to correspond to genes that lack co-
expression with other genes and are probably noisy
patterns. Of course, there is also a chance that
these patterns are not pure artifacts, but very unique
patterns that have potential to provide knowledge.
Therefore they are amenable to further study, and
this is why we do not delete these nodes from
our scheme. However, due to the changes in the
weight values of the nodes during the map adap-
tation, some patterns may be accidentally assigned
during the training process to different nodes than
those to which they are finally assigned. That is
why we mark and isolate only the patterns that are
consistently (three times or more during the com-
plete map training schedule — for all rsu parameter
values — consisting of few hundred training runs)
mapped to uncolonized nodes. In contrast, nodes
that are not selected as winners for any pattern are
removed from the map, in order to keep it compact.

Results

We have performed several experiments to test
the performance of our approach on benchmark
microarray datasets of the budding yeast Sac-
charomyces cerevisiae, publicly available at the
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Stanford web site. The two (related) datasets
were generated by studying this fully sequenced
organism with microarrays containing essentially
every open reading frame (ORF). The larger
dataset contains 80-element gene expression pro-
files for 6221 genes and the smaller one con-
sists of 79-element gene expression profiles for
2474 genes. Apart from making use of our
method’s capability of incorporating supervised
information into unsupervised learning and assess-
ing its performance in exploratory data anal-
ysis, we studied its (re)classification capability
by artificially disturbing the functional classifi-
cation labels in order to assess the strength of
the model as a reclassification device. In another
experiment, we investigate the meaningful infor-
mation arising from ICA decomposition. Addi-
tional results proving our method’s solid perfor-
mance in clustering, compared to other classi-
cal approaches, are presented in the Supplemen-
tary Material (http://www.interscience.wiley.com/
jpages/1531-6912/suppmat/).

Dataset 1

Samples in this set were collected at various time
points during the mitotic cell division cycle (60
time points in four different experiments: α-factor,
cdc-15, cdc28-based synchronization and elutria-
tion), sporulation experiments (13 time points) and
the diauxic shift (seven time points). The sources
of these profiles were eight different microarray
experiments (Eisen et al., 1998).

The study of yeast genes during the diauxic
shift, for example, were obtained from DeRisi et al.
(1997). With a fluorescence ratio method, they
measured the relative abundance of mRNA for
the entire yeast genome, to examine the changes
in expression that take place with the metabolic
shift from anaerobic to aerobic metabolism. The
levels of expression of genes were measured in
seven samples, taken at 2 h intervals, and reflect
metabolic reprogramming that occurred during the
diauxic shift.

Annotation for the genes in this dataset was
derived from the Functional Classification Cata-
logue of the Munich Information Center for Protein
Sequences (MIPS) Comprehensive Yeast Genome
Database (CYGD), available at http://mips.gsf.de/
proj/yeast/CYGD/db/index.html. The selected
annotation included all the 19 top-level functional

Table 1. Functional categories in dataset 1

Functional category Ni
P pData

i

Metabolism∗ 1059 0.136
Cell fate∗ 423 0.054
Cell rescue and virulence 273 0.035
Cellular communication signal transduction
mechanism∗

59 0.007

Cellular transport and transport mechanism 480 0.062
Energy 241 0.03
Cell cycle and DNA processing∗ 620 0.079
Protein fate-folding modification destination 588 0.076
Protein synthesis 346 0.044
Regulation of interaction with cellular
environment

194 0.025

Control of cellular organization∗ 205 0.026
Protein activity regulation 13 0.02
Protein with binding function or co-factor
requirement

4 0.0005

Subcellular localization 2206 0.284
Transport facilitation∗ 305 0.039
Transcription 754 0.097
Transposable elements—viral and plasmid
proteins

10 0.001

Classification not yet clear 115 —
Unclassified proteins 2186 —

The first column contains the category name, the second column the
number of patterns corresponding to each annotation and the third
column, the distribution of the class labels in the dataset.
∗ Marked categories are employed in the classification validity
experiments.

categories. Table 1 presents the functional cate-
gories, the number of gene expression profiles (or,
alternatively, the number of component profiles si )
corresponding to each annotation and the distri-
bution of the class labels in the gene expression
dataset.

The gene expression profiles are arranged in
a table with rows corresponding to genes and
columns to the individual log-transformed gene
expression ratios of each gene in a particular
experimental condition represented by the column.
The weighted K-nearest neighbours imputation
method presented in Troyanskaya et al. (2001) is
applied in order to systematically fill up the missing
values.

The implementation of the ICA model has
been accomplished with a fixed-point algorithm,
using an implementation that is freely available at
http://cis.hut.fi/projects/ica/fastica/fp.shtml. Di-
mension control by PCA was used and 65 dom-
inant components out of 80 were selected, which
accounted for 98.64% of the variance in the
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Figure 3. Plot of the ordered PCA components obtained from dataset 1. It can be noticed that the first few components
contain most of the variance (first 65 components contain 98.64% of the variance in the data)

data. In Figure 3 the eigenvalues correspond-
ing to these principal components are plotted
along their indices. It can be seen how the 15
removed eigenvalues have actually very low val-
ues. We could have excluded even more eigen-
values without a great loss in data variance,
but we decided to keep them in order not to
lose any valuable information. Removing the less
significant principal components helped reducing
the computational complexity of further analy-
sis.

Matrix A (see equation 1) was initialized with
the first independent component and the defla-
tion approach was chosen. The deflationary estima-
tion of independent components consists in obtain-
ing first one independent component (typically by
maximizing a measure of non-Gaussianity) then
estimating the second component, discarding the
direction of the first one, and so on, repeating
the procedure until all the independent compo-
nents are obtained (Delfosse et al., 1995). Typi-
cally this is done by constraining the search for
new independent components to the space that is
orthogonal to the already found components. We
ordered the independent components and selected
the first 10 independent components by means of
the amount of data variance they retain and by the

non-Normality of their distribution, as described
by Liebermeister (2002). The robustness of our
approach (caused by its SOM-based nature) makes
it not sensitive to the exact number of independent
components employed. Our choice was driven by
the need not to include too many components that
actually describe ‘noise’.

Figure 4 shows the first five characteristic basis
functions resulted from the ICA transform (rows
of matrix A). It is interesting to observe that each
of them seems to capture information that corre-
sponds to a different subgroup of experiments. The
three upper basis functions are more active dur-
ing the cell-cycle experiments. The fourth shows
an increased response during the sporulation and
diauxic shift experiments, while the fifth is mainly
active during the sporulation experiments.

Patterns having as elements the coefficients of
the ten ‘most important’ independent components
selected above were then used as input to our map.
Therefore the input data matrix contained 6221 pat-
terns of 10 elements (the representation of original
gene expression profiles in the component space
defined by the selected independent components).
The algorithm selects for this dataset the model
with a supervision parameter value rsu = 0.6. It
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Figure 4. Five characteristic basis functions derived by independent component analysis. It can be observed how each
of them is more active for a different subgroup of experiments. The three upper basis functions capture the information
concerning mostly cell-cycle experiments (cell cycle α-factor, cdc 15-based synchronization, elutriation and cdc-28), the
fourth captures information regarding the sporulation and diauxic shift experiments, while the last one captures information
mainly about the sporulation experiments. The cell cycle α-factor (18 time points), the cdc 15-based synchronization (25
time points), the elutriation (14 time points) and the cdc 28 (3 time points) experiments were performed by Spellman et al.
(1998), the sporulation experiment (13 time points) was performed by Chu et al. (1998), while the diauxic shift experiment
was performed by DeRisi et al. (1997)

corresponds to a model with an acceptable clas-
sification performance (ClassifPerf = 0.65), small
model complexity (map with reduced number of
nodes) and a small rate of increase of the classi-
fication performance for further increased values
of rsu (see Table 2). Our approach does not set
out to enforce a perfect classification but rather to
perform exploratory analysis while making use of
the existing supervised information. The relatively

low rate of increase in the correct classification
rate on the performance curve in Figure 5 indi-
cates that further increasing the influence of the
supervised information above the chosen rsu value
does not result in a significant increase of the
classification performance, which may be due to
overfitting. The SOM-based nature of our method
enables data visualization during the learning pro-
cess.
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Table 2. The performance of the model for increasing rsu
parameter values and the corresponding number of map
nodes

rsu Number of nodes K Classification performance

0 62 0.18
0.1 65 0.21
0.2 69 0.35
0.3 68 0.45
0.4 65 0.49
0.5 63 0.53
0.6 70 0.65
0.7 77 0.66
0.8 89 0.69
0.9 90 0.76
1 99 0.77

It should be noted that increasing the amount of supervised
information used during learning (increasing rsu) does not necessary
mean that the number of nodes should increase. In some cases
supervised information helps in producing a more compact map.

Exploratory data analysis experiment

In order to test how much the incorporation of a
priori class information helps exploring unlabelled
data, we unlabel 30% of the data in dataset 1
and arbitrarily split the 30% in two equal subsets
(subsets T and V, each containing 15% of dataset
1 ). We monitor the classification performance
for subset V in two cases: when both T and
V are unlabelled and separately, with the labels
of T added back. In both cases, the remaining
70% of the data is labelled. The difference in
the percentage of labels of V correctly induced
shows how much the incorporation of a priori
class knowledge (about T) helps in the exploratory
analysis of V. The procedure is repeated for 50
random subsets and results of the experiment are
presented in Table 3. As expected, with increasing
values of the rsu parameter, the effect of adding
labels to the subset T is stronger. Overall, the

Figure 5. Selection of an appropriate rsu parameter, corresponding to the model that makes most effective use of the
supervised information. The classification performance should present a reduced rate of increase with values of rsu higher
than the chosen one
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results prove the utility of our method as an
exploratory analysis tool.

Classification validity experiments

Another set of experiments we performed on
dataset 1 aimed at investigating the classification
validity of our approach. Specifically, we selected
six of the 19 top-level functional categories of
the entire dataset, as marked in Table 1. A total
of 2262 genes belong to these categories and the
patterns corresponding to their representation in
independent component space was used in sub-
sequent analysis. Our selection objective was to
include categories containing different number of
genes (Metabolism contains 1059 genes, while just

Table 3. Means ± standard errors of the exploratory data
analysis experiment

rsu

Classification perform-
ance on subset V
Subsets T and V

unlabelled

Classification perform-
ance on subset V

Only subset V
unlabelled

0 0.712 ± 0.004 0.707 ± 0.003
0.2 0.738 ± 0.003 0.758 ± 0.002
0.4 0.764 ± 0.003 0.802 ± 0.003
0.6 0.809 ± 0.003 0.883 ± 0.002
0.8 0.854 ± 0.003 0.914 ± 0.003
1 0.863 ± 0.002 0.943 ± 0.002

30% of the data in dataset 1 is unlabelled and split in two equal
subsets, T and V, while the other 70% is left as in the original dataset.
Subsequently, classification performance on the patterns from subset
V is evaluated in two settings: with both subsets T and V unlabelled; or
with only subset V unlabelled. The figures represent ratios of patterns
belonging to subset V that are correctly classified, averaged over 50
random experiment reruns and their respective standard errors (we
compute the standard error as the standard deviation in the sample
divided by the square root of the sample’s size).

59 genes represent the Signal Transduction Mech-
anisms category) such as to test our approach’s
performance when confronted to categories of a
wide range of sizes. The decision to work on a sub-
set of the data is motivated by the reduction of the
large computational requirements and by obtaining
a better control of the evaluation process.

We induce randomly a small number of errors in
the original labelling and test to which extent the
unsupervised drive of our algorithm can recover the
original labelling. The incorrect labelled patterns
should be assigned to a node of the correct class
by the algorithm, if the unsupervised learning
is predominant. Specifically, in the case of the
categories presented above, we alter the labelling
of around 10% of the patterns in each category and
we monitor our algorithm’s capacity of recovering
the original classification by means of unsupervised
learning. We repeat the procedure on random
partitions of the set in order to obtain statistical
confidence (the results in Table 4 are obtained
for 50 repetitions). Indeed, the experiment shows
that for small values of rsu the original labelling
is recovered, while increasing the contribution of
the supervised information leads to patterns being
assigned to the classes indicated by the wrong
labelling.

Furthermore, Table 5 presents classification re-
sults of our approach (denoted as SOM-IC) com-
pared to those of established methods, as well as
our previous method (sNetSOM) from Mavroudi
et al. (2002). As expected, the support vector
machine (SVM) obtains the highest classification
performance; however, our approach yields results
competitive to other algorithms. All the algorithms
were tested with a 10-fold cross-validation tech-
nique (Yeung et al., 2001 a). Again as expected,

Table 4. Means ± standard errors of class recovery ratios from experiments performed on data with altered labelling

rsu

Metabolism
(1059) Cell fate (423)

Cellular
communication (59) Cell cycle (620)

Control of cellular
organization (205)

Transport
facilitation (305)

0 0.813 ± 0.003 0.906 ± 0.003 0.823 ± 0.003 0.801 ± 0.003 0.861 ± 0.003 0.883 ± 0.003
0.2 0.762 ± 0.003 0.818 ± 0.003 0.738 ± 0.003 0.758 ± 0.003 0.813 ± 0.003 0.786 ± 0.003
0.4 0.676 ± 0.003 0.733 ± 0.003 0.614 ± 0.003 0.623 ± 0.003 0.729 ± 0.003 0.635 ± 0.003
0.6 0.531 ± 0.003 0.658 ± 0.002 0.523 ± 0.003 0.554 ± 0.003 0.564 ± 0.003 0.542 ± 0.003
0.8 0.484 ± 0.003 0.513 ± 0.002 0.388 ± 0.003 0.456 ± 0.003 0.442 ± 0.002 0.441 ± 0.002
1.0 0.292 ± 0.002 0.417 ± 0.002 0.311 ± 0.003 0.383 ± 0.003 0.384 ± 0.003 0.388 ± 0.002

Class recovery ratios represent the percentage of successful label corrections performed on the mislabelled patterns. The results are averaged
over 50 random repetitions and next to them are presented the respective standard errors (we compute the standard error as the standard
deviation in the sample divided by the square root of the sample’s size). It can be noticed that for small values of rsu the algorithm recovers to
a higher degree the original labelling, while high values of rsu force the use of altered labels.
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Table 5. Comparative classification performance of the current approach (denoted by
SOM-IC) and with results for low, optimal and high degree of influence of a priori supervised
information, along with a previous approach of Mavroudi et al. (2002)∗

Functional class Method Precision Recall

Cell fate SOM-IC (rsu = 0.1) 0.57 ÷ 0.01 0.64 ÷ 0.01
SOM-IC no ICA(rsu = 0.1) 0.51 ÷ 0.02 0.60 ÷ 0.02
SOM-IC (rsu = 0.6) 0.68 ÷ 0.01 0.71 ÷ 0.01
SOM-IC no ICA(rsu = 0.6) 0.67 ÷ 0.01 0.71 ÷ 0.01
SOM-IC (rsu = 1) 0.73 ÷ 0.01 0.75 ÷ 0.01
SOM-IC no ICA(rsu = 1) 0.73 ÷ 0.01 0.73 ÷ 0.01
sNetSOM (rsu = 1) 0.44 ÷ 0.01 0.57 ÷ 0.02
sNetSOM (rsu = 10) 0.65 ÷ 0.01 0.71 ÷ 0.02
sNetSOM (rsu = 20) 0.70 ÷ 0.01 0.75 ÷ 0.02
Naı̈ve Bayes 0.41 ÷ 0.01 0.43 ÷ 0.01
SVM 0.96 ÷ 0.01 0.83 ÷ 0.01

Cell cycle and DNA processing SOM-IC (rsu = 0.1) 0.49 ÷ 0.01 0.75 ÷ 0.01
SOM-IC no ICA(rsu = 0.1) 0.48 ÷ 0.02 0.71 ÷ 0.02
SOM-IC (rsu = 0.6) 0.59 ÷ 0.01 0.77 ÷ 0.01
SOM-IC no ICA(rsu = 0.6) 0.58 ÷ 0.01 0.77 ÷ 0.01
SOM-IC (rsu = 1) 0.66 ÷ 0.01 0.82 ÷ 0.01
SOM-IC no ICA(rsu = 1) 0.66 ÷ 0.01 0.81 ÷ 0.01
sNetSOM (rsu = 1) 0.47 ÷ 0.02 0.66 ÷ 0.01
sNetSOM (rsu = 10) 0.56 ÷ 0.01 0.75 ÷ 0.01
sNetSOM (rsu = 20) 0.65 ÷ 0.01 0.80 ÷ 0.02
Naı̈ve Bayes 0.37 ÷ 0.01 0.67 ÷ 0.01
SVM 0.97 ÷ 0.01 0.83 ÷ 0.01

Control of cellular organization SOM-IC (rsu = 0.1) 0.62 ÷ 0.01 0.53 ÷ 0.01
SOM-IC no ICA(rsu = 0.1) 0.54 ÷ 0.01 0.51 ÷ 0.02
SOM-IC (rsu = 0.6) 0.71 ÷ 0.01 0.57 ÷ 0.01
SOM-IC no ICA(rsu = 0.6) 0.67 ÷ 0.01 0.56 ÷ 0.01
SOM-IC (rsu = 1) 0.79 ÷ 0.01 0.63 ÷ 0.01
SOM-IC no ICA(rsu = 1) 0.76 ÷ 0.01 0.62 ÷ 0.01
sNetSOM (rsu = 1) 0.49 ÷ 0.02 0.48 ÷ 0.02
sNetSOM (rsu = 10) 0.64 ÷ 0.02 0.55 ÷ 0.02
sNetSOM (rsu = 20) 0.70 ÷ 0.02 0.61 ÷ 0.01
Naı̈ve Bayes 0.35 ÷ 0.01 0.66 ÷ 0.01
SVM 0.86 ÷ 0.01 0.72 ÷ 0.01

∗ Denoted by sNet-SOM, which has optimal rsu = 10, as well as established classification methods. SOM-
IC no ICA denotes the experiment performed with the current approach directly on gene expression
profiles (before applying ICA). The last two columns present the averages of precision and recall values and
their observed variance over the 10-fold cross-validation. The median absolute deviation (MAD) quantifies
the variance of the results from cross-validation and is calculated as the median of the absolute-value
distances of the points about the median, multiplied by the constant 1.4286, i.e. adjusted for asymptotic
normal convergence, e.g. MAD = 1.4286· median |x − median (x)|. Precision = TP/(TP + FP), while
Recall = TP/(TP + FN). TP, true positives; TN, true negatives; FP, false positives; FN, false negatives.

classification performance is influenced by values
taken by the rsu parameter. Using the available
supervised information (by increasing the value of
rsu ) results in improved classification rates. The
classification results of our method using as input
the gene expression profiles (before applying ICA;
entries SOM-IC no ICA in Table 5) prove that
employing profiles’ representations in the indepen-
dent component space improves the performance.

However, for high values of rsu , the improvement
becomes insignificant. This may be due to the fact
that the supervised information used determines the
algorithm to take decisions primarily based on the
class information and not on the pattern similarities.

As a confirmation of other recent studies (Saidi
et al., 2004) which show the benefits of unsu-
pervised clustering in the component space, we
present in the Supplementary Material results of
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the experiments testing our approach’s handling of
pure unsupervised problems, both using the orig-
inal gene profiles and their representations in the
component space.

Dataset 2

The dataset consists of expression profiles of 2476
yeast genes samples at different time points and
during eight experimental settings (Brown et al.,
1999), in total 79 measurements for each gene. Six
functional classes are contained in the dataset and
they were obtained again from the MIPS Yeast
Genome Database. The first five classes [tricar-
boxylic acid cycle (TCA), respiration chain com-
plexes, cytoplasmic ribosomes, proteasomes and
histones] represent biological categories of genes
and are therefore expected to present a similar
expression variation. The sixth (helix–turn–helix
proteins) is not a functional class but genes
included in this group have in common that they
code for the helix–turn–helix structural motif; in
this analysis they are used as a control set.

We evaluated the dispersion of class represen-
tation over the nodes of the final map configu-
ration by measuring the entropy of class repre-
sentation. We expect this measure to be high in
the case of helix–turn–helix class, due to the het-
erogeneity of the respective gene patterns. The
relatively high entropy values for the TCA and
Respiration classes may be explained by their less
homogeneous structure (the fact that these classes

Table 6. Values of the entropy of class representation for
the classes present in dataset 2

Class

Entropy
(component
space data)

Entropy
(original

gene
experiment)

Tricarboxylic acid pathway (TCA) 1.96 1.99
Respiration chain complexes 1.82 1.89
Cytoplasmic ribosomal proteins 1.21 1.28
Proteasome 0.51 0.53
Histones 0.60 0.64
Helix–turn–helix 2.78 2.91

The first column contains the functional classes, the second column
contains results from analysis performed with patterns from the
independent component space, while results corresponding to
analysis performed directly on gene expression data are presented
in the third column. As expected, the entropy measure for the
helix–turn–helix is high, reflecting the heterogeneity of the patterns
representing this class.

accumulate patterns belonging to other functional
classes is caused by the low degree of similarity
among their patterns). As in the previous exper-
iment, we have run the algorithm both on the
original gene expression data and on the ICA-
derived patterns. The results obtained are presented
in Table 6. The higher entropy values obtained for
the map structure corresponding to the analysis
performed directly on gene expression profiles sug-
gest a higher dispersion of class representation and
therefore less homogeneous clusters. However, the
high degree of supervised information employed
may be, as in the experiment above, the cause for
the relatively low difference in entropies for the
algorithm running on the two types of data. The
map structure studied is the one corresponding to
the model with an optimal value of rsu = 0.6.

Conclusions

We have introduced a self-growing adaptive net-
work, which aims to overcome the drawbacks of
current clustering algorithms for gene expression
data by swiftly integrating unsupervised and super-
vised learning. The algorithm adaptively deter-
mines the number of clusters with a dynamic
expansion process based on the principle of local
error accumulation. It starts with a small number
of nodes and grows to represent the input data. The
expansion algorithm prefers to grow new nodes
in the neighbourhood of boundary nodes, with a
mechanism for whole-column insertion being pro-
vided in order to deal with the cases when large
maps need to be expanded from a node deep
within its interior. The level of expansion is deter-
mined automatically, based on a statistical confi-
dence level of non-randomness chosen by the data
analyst.

The method builds on our previous work (Mavr-
oudi et al., 2002) by efficiently incorporating inde-
pendent component analysis in a drive to find a
more meaningful representation of the data. The
method yields an interesting outcome, highlighting
particular biological processes as well as represent-
ing the data in a biologically sensible way. Also,
compared to our previous work, the convergence
criteria are improved and more thoroughly defined.
Comparative evaluation of the current method as
a reclassification device proves it to be superior
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to our previous approach, with both the incorpora-
tion of ICA into our analysis and the enhancements
brought to the SOM-based algorithm contributing
to this improvement.

Our approach efficiently uses supervised infor-
mation, whenever available, and is able to deal
with incomplete or unreliable functional labelling.
Additionally, the method allows enhanced repre-
sentation of rare classes and successfully handles
multi-labelled gene expression profiles.

The resulting clusters are enriched with function-
ally related genes. Of course, since we use func-
tional information in our supervised learning, this
is not surprising. We have to stress though, that the
purpose of our algorithm is not to classify the gene
patterns according to existing classification, but to
include the existing knowledge, which is known
to be evolving and incomplete, in order to cluster
(reclassify) the genes and to assign a function to
unlabelled genes. At the same time, our method
proves to be a reliable tool in exploratory analy-
sis, the presented results underlining the positive
effect of incorporating a priori class knowledge
when exploring unlabelled data.

In future work we intend to further analyse our
results from a biological perspective. Especially,
we intend to investigate whether, on distinct subsets
of clusters that all correspond to a particular
top-level functional category, we possibly get a
mapping of genes that belong to distinct functional
subcategories. Furthermore, it is known that genes
are co-expressed with different groups of genes,
each group being controlled by a distinct regulatory
mechanism, in response to different environmental
conditions of the cell (Gash et al., 2002). We
intend to uncover the characteristic ‘features’ of
each cluster (i.e. the experiments on which the
grouping of genes is primarily based), in order
to elucidate the relationships between gene classes
and experimental conditions. In this way we expect
to obtain biological knowledge about multi-labelled
genes, e.g. to uncover the reasons that cause the
same gene to be involved in several processes.
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