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Abstract

Background: Ventricular tachycardia (VT) and ventricular fibrillation (VF) are the most
serious cardiac arrhythmias that require quick and accurate detection to save lives.
Automated external defibrillators (AEDs) have been developed to recognize these
severe cardiac arrhythmias using complex algorithms inside it and determine if an
electric shock should in fact be delivered to reset the cardiac rhythm and restore
spontaneous circulation. Improving AED safety and efficacy by devising new
algorithms which can more accurately distinguish shockable from non-shockable
rhythms is a requirement of the present-day because of their uses in public places.

Method: In this paper, we propose a sequential detection algorithm to separate
these severe cardiac pathologies from other arrhythmias based on the mean
absolute value of the signal, certain low-order intrinsic mode functions (IMFs) of the
Empirical Mode Decomposition (EMD) analysis of the signal and a heart rate
determination technique. First, we propose a direct waveform quantification based
approach to separate VT plus VF from other arrhythmias. The quantification of the
electrocardiographic waveforms is made by calculating the mean absolute value of
the signal, called the mean signal strength. Then we use the IMFs, which have
higher degree of similarity with the VF in comparison to VT, to separate VF from
VTVF signals. At the last stage, a simple rate determination technique is used to
calculate the heart rate of VT signals and the amplitude of the VF signals is measured
to separate the coarse VF from VF. After these three stages of sequential detection
procedure, we recognize the two components of shockable rhythms separately.

Results: The efficacy of the proposed algorithm has been verified and compared
with other existing algorithms, e.g., HILB [1], PSR [2], SPEC [3], TCI [4], Count [5], using
the MIT-BIH Arrhythmia Database, Creighton University Ventricular Tachyarrhythmia
Database and MIT-BIH Malignant Ventricular Arrhythmia Database. Four quality
parameters (e.g., sensitivity, specificity, positive predictivity, and accuracy) were
calculated to ascertain the quality of the proposed and other comparing algorithms.
Comparative results have been presented on the identification of VTVF, VF and
shockable rhythms (VF + VT above 180 bpm).

Conclusions: The results show significantly improved performance of the proposed
EMD-based novel method as compared to other reported techniques in detecting
the life threatening cardiac arrhythmias from a set of large databases.
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Background
Ventricular Fibrillation (VF) and Ventricular Tachycardia (VT) are life-threatening car-

diac arrhythmias generally observed in adults with coronary artery disease. In 1979,

automatic external defibrillators (AEDs) were introduced to accurately analyze the car-

diac rhythms and, if appropriate, advise/deliver a high-energy shock to those patients

who suffer from coarse VF and VT of a rate above 180 bpm, combinedly known as the

shockable rhythms [6]. Though a significant number of works have been published on

this topic, the scope for development of more accurate and reliable techniques relaxing

assumptions of certain previous works and incorporating features from diverse nature

of the cardiographic signals is yet open. Based on separation capability, the algorithms

available in the literature can be classified into categories such as, separating VF from

VT [4,7,8], VF from normal sinus rhythm (NSR) [9], VF plus VT from nonVTVF [10],

shockable rhythms from other ECG pathologies [5,11,12], VF from nonVF [1-4,13-24].

Comprehensively, the last two categories [25] are the most realistic for fruitful hospital

management of cardiac abnormalities.

To separate VF from VT many efforts have been aimed at characterizing these

abnormalities by means of diverse techniques such as the sequential hypothesis algo-

rithm proposed by Thakor et al. [4], continuous wavelet transform [7], paired unipolar

electrograms [8] etc. But only separating VF from VT is not useful for cardiac manage-

ment. Because, in real life problems, other types of abnormalities are also present. A

recent work is presented in [9] using the EMD technique to separate VF from NSR

which shows almost 100% accuracy. But, when other types of pathology except the

NSR and VF are present, poor accuracy is obtained. To separate VT plus VF from

other arrhythmias, a time domain based complexity measure algorithm has been pro-

posed in [10]. But it fails to show good performance due to its weakness in selecting a

proper threshold value. Another approach has been reported in [5] to classify arrhyth-

mias into two types: shockable and non-shockable signals. This work shows quite good

accuracy but improvement area is still open. Various algorithms have been developed

for classifying the abnormalities according to the last category. To separate VF from

other arrhythmias, different methods were proposed based on different techniques of

signal processing, such as the threshold crossing interval (TCI) algorithm [4], auto-cor-

relation function (ACF) [13], probability density function method [14], VF-filter

method [15], [16], [17], rate and irregularity analysis [18], [19], sequential hypothesis

testing algorithm [20], [21], correlation waveform analysis [22], spectral analysis [3]

and four fast template matching algorithms [23]. But these algorithms fail to show

good performance when tested on a large database due to the some shortcomings in

their reported algorithms. For example, the TCI method, based on a time domain tech-

nique, fails to detect the normal sinus rhythm (NSR) signal due to several factors, e.g.,

choice of 1-s analysis window, improper threshold etc. [24]. An improved version of

this algorithm called the threshold crossing sample count (TCSC) method has been

reported in [24] by removing some of the drawbacks of the TCI method. But the

TCSC algorithm does not consider the shape of the ECG signal, therefore, it fails to

classify VT into the nonVF group. On the other hand, the ACF relies on the regularity

in NSR and irregularity in VF rhythms [26]. But practically, in most cases, there is no

strict regularity found in the NSR signal and, therefore, the detection accuracy of the

NSR signal by this method severely falls. The spectral analysis method successfully
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detects the nonVF signal from ECG arrhythmias. But in the detection of VF, this

method shows poor accuracy due to the false detection of the VF signal with low peak

frequency in the spectrum [26]. On the other hand, the Hilbert transform (HILB) [1]

and phase space reconstruction (PSR) [2] algorithms employing phase space plot of the

ECG signal demonstrate improved performance of VF detection. Because the phase

space plot is based on the histogram of a signal, it does not consider the shape of this

signal. Thus, to separate VT from VF when other arrhythmias are also present, these

two methods are not very suitable.

In this paper, we propose a sequential detection algorithm based on the mean abso-

lute strength and certain low-order intrinsic mode functions (IMFs) of the EMD analy-

sis of the signal along with a simple rate determination technique. In our proposed

algorithm, we not only separate VF but also VT from other arrhythmias. VT plus VF

(VTVF) is separated from other arrhythmias in the first stage using an index called the

mean absolute value (MAV). Then we decompose the VTVF signal into IMFs using

the EMD technique to discriminate VF from VT. EMD was introduced in [27] for pro-

cessing signals from nonlinear and non-stationary processes. Here, we apply the EMD

technique to biomedical signals and particularly for ECG analysis. Next, a simple rate

determination algorithm is utilized to classify VT according to the heart rate and to

separate coarse VF from fine VF, amplitude of the VF signals are measured. Finally,

this sequential ECG arrhythmias classification approach is interpreted as three different

detection schemes, such as, VTVF from nonVTVF; VF from nonVF; shockable from

non-shockable rhythms. While proposing an algorithm for detecting the shockable

rhythms special care must be taken to make the specificity high. It will then ensure the

false alarm generation probability of the AEDs low. But an algorithm with high specifi-

city generally results in low sensitivity. To mitigate this contradictory requirement,

detection of the shockable rhythms using a sequential algorithm is found to be more

effective. At last, in the ‘Results’ Section, we compare our algorithm with different

well-known algorithms available in the literature.

Methods
ECG signals

We use the MIT-BIH Arrhythmia Database (MITDB) [28], Creighton University Ven-

tricular Tachyarrhythmia Database (CUDB) [29] and MIT-BIH Malignant Ventricular

Arrhythmia Database (VFDB) [30] to evaluate our algorithm. The MITDB contains 48

files, 2 channels per file, each channel 1805 seconds long. The CUDB contains 35 files,

1 channel per file, each channel 508 seconds long. The VFDB contains 22 files, 2 chan-

nel per file, each channel 2100 seconds long. In our analysis, we choose episodes of 8-s

long from the whole MIT-BIH arrhythmia and CU databases. We perform a continu-

ous analysis by taking the data in steps of 1 sec. Thus, the total number of 8-s episodes

collected from the MITDB and CUDB are (1805-7) × 48 × 2 = 172608 and (508-7) ×

35 = 17535, respectively. Since, the VFDB includes ECG recordings of subjects who

have experienced episodes of sustained VT and VF, we use this database for VF and

VT episodes. By taking the ECG signal in steps of 1 sec we choose 4000 episodes of

VF and 4000 episodes of VT from this database. Therefore, a total of 172608 + 17535

+ 4000 + 4000 = 198143 episodes are used to compare our algorithm with other algo-

rithms. Amongst these 198143 episodes, we have noticed some episodes which are
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annoted as the noise signals. Since, in this work we have no interest in these noise sig-

nals, we have omitted these noise episodes. Also, analysis of the distinct mode asystole

signal is not presented here. Therefore, this type of ECG signal is not included into

our complete dataset.

The complete dataset includes the following types of ECG signals.

1. Normal beat

2. Left bundle branch block beat (LBBB)

3. Right bundle branch block beat (RBBB)

4. Atrial premature beat (APC)

5. Aberrated atrial premature beat

6. Nodal (junctional) premature beat

7. Supraventricular premature or ectopic beat

8. Premature ventricular contraction (PVC) beat

9. Fusion of ventricular and normal beat

10. Atrial escape beat

11. Nodal (junctional) escape beat

12. Paced beat

13. Fusion of paced and normal beat

14. Unclassifiable beat

15. Blocked APC

16. Ventricular tachycardia

17. Ventricular fibrillation

To determine the discriminating threshold and verify its effectiveness, the complete

dataset is divided into two subsets: training and test datasets. The training dataset is

used to determine the thresh-old value. To check the efficacy of the threshold value

determined from the training dataset, the test dataset is used. Both the datasets include

all types of above mentioned rhythms. The training dataset includes:

1. (1805 - 7) × 23 × 2 = 82708 episodes from MITDB (file no. 100-109, 111-119,

121-124).

2. 2000 episodes of VF and 2000 episodes of VT from VFDB.

On the other hand, the test dataset includes:

1. (1805 - 7) × 25 × 2 = 89900 episodes from MITDB (file no. 200-203, 205, 207-

210, 212-215, 217, 219-223, 228, 230-234).

2. 2000 episodes of VF and 2000 episodes of VT from VFDB.

Classification of the ECG signals according to the AHA recommendations

According to the AHA recommendations, all ECG abnormalities are classified into fol-

lowing categories [6]:

1. Shockable rhythms

• ‘coarse VF’: any VF signal with an amplitude of > 200 μV.

• ‘VT-hi’: rapid ventricular tachycardia with a rate of > 180 bpm.
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2. Non-shockable rhythms

• ‘NSR’: normal sinus rhythm.

• ‘N’: other arrhythmia, including supraventricular tachycardia, sinus bradycar-

dia, LBBB, RBBB, APC and PVC beats.

• ‘Asyst’: asystole; ECG signal with a peak-to-peak amplitude of < 100 μV, last-

ing more than 4 s.

3. Intermediate rhythms

• ‘VT-lo’: slow ventricular tachycardia with a rate of < 180 bpm.

• ‘fine VF’: any VF signal with an amplitude in the range 100 - 200 μV.

It is clear from this classification that VT is divided into two categories according to

heart rate; ‘VT-hi’ and ‘VT-lo’. This VT classification considers border heart rate as

180 bpm. It is, however, not strict. It may be in the range 150 - 180 bpm. AEDs only

advise/deliver shock to shockable rhythms, and intermediate rhythms are treated in a

different way called anti-tachycardia pacing.

Detection of VTVF from other arrhythmias

To detect the life threatening cardiac arrhythmias, VT and VF, from other arrhythmias,

we propose to use a property that does not match with that of any nonVTVF signal.

Typical ECG waveforms of NSR, VT and VF are given in Figure 1. Here, NSR is treated

as the representative of nonVTVF signals. The three waveforms are plotted in the same

scale. From this figure we see that the width of the QRS complex is different for different

arrhythmias. For NSR, it is noticed that the QRS interval is normally 0.06 - 0.10 sec and

in case of VT, the QRS complex is more wider (> 0.10 sec). In VF, no QRS complex is

noticed. On the other hand, P waves are normal (upright and uniform) in the NSR wave-

form and in case of VT and VF signal, no P waves are observed [31].
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Figure 1 Characteristics of NSR, VT, VF signals. Characteristics of different variety of ECG signals (a) NSR
episode, (b) VT episode, and (c) VF episode.
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The distinguishable morphological characteristics of these three groups, namely

nonVTVF, VT and VF can be quantified using a term called the absolute strength of a

signal. The absolute strength or the mean of absolute value (MAV) of a signal x(n) of

length N is defined as

MAV
N

x n
n

N

= ( )
=

−

∑1

0

1

(1)

Here, n stands for the number of samples within the chosen length. In case of NSR,

the main representative of the nonVTVF group, the duration of the QRS complex is

small as compared to one ECG period as illustrated in Figure 1(a). It is also observed

from this figure that the NSR signal level is low for most of the time in an ECG cycle.

Therefore, the absolute signal level of the QRS complexes dominates in the summation

of MAV calculation (eqn. (1)). A low MAV is thus obtained for such episodes. In case

of VT, we see that the QRS complex is much wider than that of NSR, and the ECG

signal hardly goes through the baseline as is the case for VF. Therefore, the MAV of

VT and VF for a fixed duration window is comparatively larger than that for the NSR.

Before calculating the total MAV of a ECG signal, first it is necessary to normalize

the ECG signal because the ECG signals collected from the different databases have

different dynamic value. Another important thing to be noted is that, to use the MAV

as the threshold parameter, we need to properly choose the analysis window duration.

To understand the reason behind the necessity to appropriately choose the analysis

window duration, consider a normalized VF episode of 8-s length from cu01m file of

CU database shown in Figure 2. If we choose an 8-s episode length, then it may
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Figure 2 Choice of analysis window. Effect of choice of 2-s analysis window duration on MAV.
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include a damped VF signal, as shown in figure 2, where most of the signal samples

fall in the low amplitude range, and the MAV becomes low (e.g., 0.2577). Therefore, it

is necessary to make the analysis window length small. Choosing an analysis window

of too small duration (say, 1-s) creates the same problem as observed in the TCI

method. Here, we choose the 2-s window for analysis. After calculating the MAV of

this 2-s analysis window, we shift the analysis window by 1-s successively for other seg-

ments of 2-s within the 8-s ECG episode and calculate the MAV again. After comple-

tion of shifting the analysis window to cover the whole decision frame, we average all

the MAV s found in each stage and finally MAV = 0.34 is found which is higher than

that obtained for the 8-s analysis window. In this way, by appropriately selecting the

analysis window length in calculating the MAV , we can overcome the effect of

damped behavior of the ECG signal.

Observation of other nonVTVF ECG waveforms such as Premature Ventricular Con-

traction (PVC), Premature Atrial Contraction (PAC), Supraventricular Tachycardia

(SVT) etc. reveals that these abnormalities also have low MAV compared to VT and

VF. For example, PVC arrhythmia has small MAV because a PVC beat contains only

wide QRS complex and no P waves or T waves are associated with this abnormal beat

[31]. Thus, we can use MAV as the performance index to discriminate the VTVF from

other arrhythmias.

In ECG analysis, it is important that we choose the episode length or decision frame

appropriately. Decision frame should be taken in such a way that is neither too short

to make a false alarm nor too long to cause severe cardiac arrest. Decreasing the epi-

sode length from its optimum value results in a low accuracy but quick detection. On

the contrary, increasing the episode length improves the accuracy up to a certain level

but requires longer detection time.

The whole process of separating VT plus VF from other arrhythmias can be

described as in the following:

1. Choose a segment of ECG signal of Le-second duration. This segmented ECG

signal of Le-second duration should be stored for the second stage.

2. The segment of the ECG signal is preprocessed using the well-known filtering

process as used in [32], which is carried out in a MATLAB routine, called filtering.

m [33]. The filtering algorithm works in four successive steps.

• First, the mean value is subtracted from the signal.

• Second, a moving average filter is applied in order to remove the power line

noise.

• Third, a drift suppression is carried out by a high pass filter with a cut-off fre-

quency of 1 Hz.

• In the last step, a low pass Butterworth filter with a cut-off frequency of

30 Hz is applied in order to suppress the high frequency noise like intersper-

sions and muscle noise.

All filters in the preprocessing step is implemented using the Matlab routine ‘filtfilt’

function.

3. Then, choose a smaller segment x(n) from the ECG signal of Le-second duration

in such a way that the length of the segment is 2-s. If the sampling frequency of

the ECG signal is Fs samples/s, then the total sample within this segment (N) is
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2Fs. For example, the sampling frequency of the ECG signal of the MITDB is 360

smaples/sec. Thus the length of the smaller segment N is 2 × 360 = 720 samples.

4. Next, divide the smaller segment x(n) by the maximum absolute value found in

that segment.

5. Calculate the MAV using (1).

6. Shift the window by 1-s successively for other segments of 2-s within the Le-sec-

ond ECG episode and go through step (4) to (5).

7. Make decision on every Le-second ECG episode (Le ≥ 2) by averaging the Le - 1

consecutive values of MAV obtained from the Le - 1 consecutive 2-s segments with

1-s step. The average value, MAVa for an Le-second episode is calculated as

MAV
Le

MAVa

i

L

i

e

=
−

=

−

∑1
1

1

1

(2)

where MAVi is the value of MAV in the i-th 2-s stage.

We calculate the MAVa of the three pathologies shown in Figure 1 and are obtained

as 0.0765 (NSR), 0.3954 (VT) and 0.4116 (VF). To verify the effectiveness of the MAV

index for separating the non-VTVF arrhythmias from the VTVF arrhythmias, other

nonVTVF representatives namely, left bundle branch block beat, nodal (junctional)

premature beat (rate ≈ 100 bpm), high rate supraventricular tachycardia (rate ≈ 100

bpm), premature ventricular contraction, right bundle branch block beat and paced

beat are chosen from the ECG databases. These six pathologies are demonstrated in

Figure 3 and their MAVa are 0.1649, 0.0954, 0.1372, 0.1475, 0.1571, 0.2166,

Figure 3 MAV of different ECG signals. ECG waveform and the MAVa values of different nonVTVF
pathologies. (a) Left bundle branch block beat, MAVa= 0.1649; (b) Nodal (junctional) premature beat, MAVa
= 0.0954; (c) High rate supraventricular tachycardia, MAVa = 0.1372; (d) Premature ventricular contraction,
MAVa = 0.1475; (e) Right bundle branch block beat, MAVa = 0.1571; (f) Paced beat, MAVa = 0.2166.
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respectively. Certainly, there is a clear separation of these MAVa values with those

obtained from VT and VF episodes.

If MAVa is greater than a certain threshold MAVd, VTVF is detected. To determine

the thresh-old value, training dataset is used. Figure 4 shows the probability distribu-

tion of MAVa of the training dataset and the test dataset. The threshold value is

selected from the probability distributions of the training dataset shown in Figure 4(a)

and we have chosen MAVd = 0.27 for Le = 8-s to ensure high specificity and also good

sensitivity. It is also noticed from Figure 4(b) that when we apply this threshold to the

test dataset, high accuracy is still obtained.

Separation of VF from VTVF

Now that we have separated VTVF from other arrhythmias. In this stage, we separate

VF from VT. Before we explain our motivation for using the EMD technique, we

briefly describe what EMD is.

EMD Preliminaries

EMD is a signal decomposing method which is fully data-driven and does not require

any a priori basis function [27,34]. The aim of the EMD is to decompose the signal

into a sum of intrinsic mode functions (IMFs). An IMF is a function that satisfies two

conditions: (1) in the whole data set, the number of extrema and the number of zero

crossings must either be equal or differ at most by one; and (2) at any point, the mean

value of the envelop defined by the local maxima and the envelop defined by the local

minima is zero. An IMF represents the oscillatory mode embedded in the data as a

counter-part to the simple harmonic function used in Fourier analysis [35].

Figure 4 Probability histogram of MAVa. Probability histogram of the decision parameter MAVa. (a)
Training database, (b) Test database.
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Given a signal x(n), the starting point of the EMD is the identification of all the local

maxima and minima. All the local maxima are then connected by a cubic spline [36]

curve as the upper envelop eu(n). Similarly, all the local minima are connected by a

spline curve as the lower envelop el(n). The mean of the two envelops is denoted as

m1(n) = [eu(n)+el(n)]/2 and is subtracted from the signal. Thus the first component h1
(n) is obtained as

x n m n h n( ) ( ) ( )− =1 1 (3)

The above procedure to extract the IMF is called the sifting process. Ideally, h1(n)

should be an IMF, as the construction of h1(n) seems to have been made to satisfy all

the requirements of IMF. Since h1(n) still contains multiple extrema in between zero

crossings, the sifting process is performed again on h1(n). This process is applied repe-

titively to the proto- IMF hk(n) until the first IMF c1(n), which satisfies the IMF condi-

tion, is obtained. Couple of stopping criteria are used to terminate the sifting process

[27]. A commonly used criterion is the value of standard deviation, SD, computed

from the two consecutive sifting:

SD =
| ( )( ) ( )|

( )( )

h k n h k n

h k nn

N
1 1 1

2

1 1
2

0

− −

−=
∑ (4)

where, N is the total number of samples in x(n). When the SD is smaller than a

threshold, the first IMF c1(n) is obtained. Then c1(n) is separated from the rest of the

data by

x n c n r n( ) ( ) ( )− =1 1 (5)

It is to be noted that the residue r1(n) still contains some useful information. We can

therefore treat the residue as a new signal and apply the same sifting process to obtain

r n c n r n i qi i i− − = = …1 1( ) ( ) ( ), , , (6)

The whole procedure terminates when either the component cq(n) or the residue rq
(n) becomes very small or when the residue rq(n) becomes a monotonic function.

Combining (5) and (6) yields the EMD of the original signal,

x n c n r ni

i

n

q( ) ( ) ( )=
=
∑ +

1

(7)

The results of the decomposition are q – intrinsic modes and a residue. The lower

order IMFs capture the fast oscillation modes while the higher order IMFs typically

represent the slow oscillation modes present in the underlying signal [27,37]. An exam-

ple illustrating the Empirical Mode Decomposition is given in the ‘Appendix’ section.

As mentioned earlier, the VT waveform contains the QRS complex but it is absent in

the VF wave-form. The asymmetry of the QRS complex with respect to the baseline

gives rise to asymmetric signal envelopes which are comprised of local maxima and

minima. Another interesting thing to be noted is that in case of VT, comparatively short

duration of the QRS complex results in a wideband ECG signal. On the other hand, the
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QRS complex is absent in VF and as a result this pathology has more symmetric envel-

opes than do other abnormalities and thus possesses narrowband characteristics. There-

fore, to separate VF from VT, the EMD technique can effectively use the factors of

narrowband/wideband characteristics and symmetry/asymmetry property of a signal’s

envelopes. Now, we apply the EMD technique on a VF episode to decompose it into

IMFs and plot the original ECG signal x(n) along with its first IMF as shown in Figure 5

(a). From Figure 5(a) we can say that in case of VF, its first IMF is very much close to

the original ECG signal. This is be-cause the VF has certain properties that well match

the properties of the IMF as stated above. As the EMD technique cannot decompose an

IMF signal further, therefore, in case of a VF episode, there is a unique relationship

between the ECG signal and its first IMF. Here, unique relationship means that the ori-

ginal ECG signal and its first IMF is very much similar. In some cases high frequency

noise still remains in the ECG signal after preprocessing. Therefore, when we apply

EMD to decompose the VF signal, the first IMF captures this high frequency noise as

the fast oscillation mode illustrated in Figure 5(b). To overcome this effect we consider

the sum of the first two IMFs instead of using only the first one. We can observe from

Figure 5(b) that unique relationship still exists between the ECG signal and the sum of

first two IMFs for the VF episode. In case of VT, this unique relationship or similarity

between the ECG signal and the sum of its first two IMFs does not hold as illustrated in

Figure 6 for both noise free and noise corrupted VT signals.

To exploit the property of unique relationship between the ECG signal and the

sum of its first two IMFs that exists in case of the VF only, sum of the first two

IMFs from the ECG signal is subtracted and the MAV of the difference signal is

Figure 5 EMD decomposition of VF. EMD decomposition of a VF episode. (a) ECG signal x(n) and its first
IMF of a VF episode without high frequency noise, (b) only the first IMF and the sum of the first two IMFs
of a VF episode x(n) with high frequency noise.
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calculated. Since, the dynamic range of the ECG signal varies from database to data-

base, we normalize this MAV with respect to the original ECG signal. In case of a

VF episode, the normalized MAV or NMAV of the difference signal is very small

than that of a VT episode. Here, we choose a 2-s analysis window as in the previous

case. But in this case, the performance index (NMAV ) is less sensitive to the analy-

sis window length.

The process of detecting VF from VTVF can then be described as below:

1. First, choose a segment x(n) of duration 2-s and N samples from the previously

saved ECG signal of Le-second duration.

2. At this stage, the ECG signal is preprocessed in three successive steps.

• First, the mean value is subtracted from the signal.

• Second, a drift suppression is carried out by a high-pass filter with a cut-off

frequency of 1 Hz.

• In the last step, a low-pass Butterworth filter with a cut-off frequency of 20

Hz and order 12 is applied to suppress the high frequency information.

3. Apply EMD on x(n) and determine

imf n imf n imf n12 1 2( ) ( ) ( )= +

where, imf1(n) and imf2(n) denotes the first and second IMFs, respectively.

4. Then, calculate the difference between the original signal and sum of its first two

IMFs,

e n x n imf n( ) ( ) ( )= − 12
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5. The normalized MAV of e(n) used as the index for discriminating VF from VT is

calculated as

NMAV
N

e n
n

N

N
x n

n

N
=

( )
=

−
∑

( )
=

=
∑

1

0

1

1

0

1

6. Shift the window by 1-s successively for other segments of 2-s within the Le-sec-

ond ECG episode and go through step (ii) to (iv).

7. Make decision on every Le-second ECG episode (Le ≥ 2) by averaging Le - 1 con-

secutive values of NMAV obtained from Le - 1 consecutive 2-s data segments with

1-s step. The average value NMAVa for an Le-second episode is calculated as

NMAV
Le

NMAVa

i

L

i

e

=
−

=

−

∑1
1

1

1

(8)

where NMAVi is the value of NMAV in the i-th 2-s stage.

Applying the above stated process, the NMAVa are obtained as 0.08 (for Figure 5(b)),

0.97 (for Figure 6(a)) and 0.93 (for Figure 6(b)). If NMAVa is less than a certain thresh-

old NMAVd, VF is detected, otherwise VT is detected. The threshold value NMAVd is

selected by a process as described before using the training dataset. As in this stage we

separate VF from VT, therefore, the training and test datasets include only VF and VT

episodes. This threshold value is then applied to the test dataset. Figure 7 shows the
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probability distribution of NMAVa of the training dataset and the test dataset. From

the training dataset, we have chosen NMAVd = 0.65 for Le = 8-s to ensure that both

VF and VT detection accuracies are good. It is also noticed from Figure 7(b) that the

threshold value calculated from the training dataset can be applied to the test dataset

maintaining almost the same accuracy as found from the training dataset.

Classification of VT and VF according to the AHA recommendations

As only the certain classes of VTs and VFs require high-energy shock for treatment, it

is necessary to classify the VT and VF according to the heart rate and amplitude,

respectively. Since, the heart rate calculation is complicated than the amplitude deter-

mination, hence at first we propose a technique to determine the heart rate. The heart

rate in bpm is defined as the number of QRS complexes that occur in 60 sec. To

determine the heart rate of an ECG signal, first derivative of the ECG signal is utilized.

The reason behind the choice of the first derivative of the ECG signal is to utilize the

high slope of the QRS complex. Figs. 8(a) and 8(b) show the VT signal and its first

derivative. Figure 8(b) illustrates that when QRS complexes occur, correspondingly

there is a high value (both in positive and negative part) in the first derivative signal.

We consider only the positive part of the first derivative signal. Then this signal is fil-

tered to enhance the QRS complexes further. From this filtered signal shown in Figure

8(c), the heart rate is easily calculated. The whole process of determining the heart

rate of the ECG signal is described below:

1. First, choose a segment x(n) of duration Le-second and N samples from the pre-

viously saved ECG signal and then perform preprocessing as stated in Section.

2. Calculate the first derivative (xd(n)) of x(n).

x n x n x nd( ) ( ) ( )= − − 1

The waveform of xd(n) is shown in Figure 8(b).

3. Keep only the positive part of xd(n).

x n
x n if x n

otherwisedp
d d( )
( ) ( )

;
=

≥⎧
⎨
⎩ 0

0

4. Apply the moving average filter on xdp(n) and find xdpf (n).

x n x n kdpf

k

k

( ) ( )= −
=

=

∑
0



where, a = Fs/10 and Fs is the sampling frequency. If a is not an integer, then it is

rounded to the nearest integer value. The waveform of xdpf (n) is shown in Figure 8(c).

5. Determine the maximum value (C) and the corresponding peak index (I) of xdpf
(n) and calculate the threshold value (Th) from C.

C x n

T C
dpf

h

=
= ×

max{ ( )}



where, b is a properly chosen constant. Here, we choose b = 0.25.
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6. Store the peak index (I) and mask xdpf (n) around this position.

x I Idpf ( : )− + =  0

where, g = Fs/8; if g is not an integer, then it is rounded to the nearest integer value.

7. Now, calculate again the maximum value (C) of xdpf(n) and go through step (vi)

until C goes below the Th.

8. Determine the total number of peaks (Np) those are above Th and calculate HR.

H
N

L
bpmR

p

e

=
× 60

If the heart rate of the VT signal is greater than 180 bpm, then this VT is called the

shockable VT. As the decision of shockable or intermediate VT is dependent on the
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Figure 8 Heart rate calculation. ECG waveforms in different stages of the heart rate determination
scheme (a) Preprocessed ECG signal, x(n); (b) First derivative, xd(n); (c) Filtered ECG signal, xdpf (n); (d)
Determination of the threshold level and masking of xdpf (n). (e)-(f) Two episodes are taken to check the
efficiency of the proposed heart rate determination technique and the results of the proposed technique
matched with the annotations.
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heart rate of the episode, hence, we calculate the total number of QRS beats in a epi-

sode. Now, to check the efficiency of the heart rate determination algorithm, two epi-

sodes selected are shown in Figs. 8(e)-(f). At first, the total number of QRS beats in

these episodes are determined from the annotation. Then, the proposed derivative

based heart rate determination algorithm is used to calculate the total number of QRS

beats and it is found to be 15 beats for Figure 8(e) and 17 beats for Figure 8(f). In

both cases, the total number of QRS complexes obtained by using our algorithm are

the same as determined from the annotation. Thus, this heart rate determination

method, though simple, may be used to calculate the heart rate of an ECG episode.

However, in more complicated cases any standard heart rate determination algorithm

re-ported in the literature [38,39] may be adopted to classify the VT. On the other

hand, the amplitude of the VF signal is determined by taking the maximum value of

the absolute VF signal within a episode. If the amplitude is greater than 200 μV, than

this VF is called the coarse VF.

Quality Parameters

The quality parameters, we have used for the assessment of algorithms, are sensitivity,

speci city, positive predictivity, and accuracy. For ‘VTVF’ detection, the first four para-

meters are defined by

Sensitivity
No of detected VTVF

No of true VTVF
= . " "

. " "

Specificity
No of detected nonVTVF

No of true nonVTVF
= . " "

. " "

Positive Predictivity Pos Pred

No of detected VTVF

No of ca

( . .)

. " "
.

=

sses classified by algorithm as VTVF" "

Accuracy
No of true decisions
No of all decisions

= .
.

For ‘VF’ and ‘shockable rhythm’ detection, the definition of these four quality para-

meters contain ‘VF’ and ‘shockable rhythm’ in place of ‘VTVF’, respectively. While cal-

culating these four quality parameters to judge the effectiveness of an algorithm, in

case of any unsatisfactory results obtained, the values of the respective thresholds were

adjusted in order to obtain the best possible results.

Results and Discussion
The full classification of different ECG pathologies is shown in Figure 9. To compare our

algorithm with other reported algorithms in the literature, our classification approach

can be interpreted as three different ECG arrhythmias identification schemes; such as

1. VTVF and nonVTVF

2. VF and nonVF (nonVTVF+VT)

3. shockable (VF+VT above 180 bpm) and non-shockable (nonVTVF+VT below

180 bpm)
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Since the annotated files do not contain enough low-amplitude signals (fine VF),

therefore, this type of signal is not addressed in this identification scheme and the VF

signals in the shockable rhythms are actually coarse VF. Now, this section is divided into

three subsections and each subsection presents the results of each identification scheme.

Detection of VTVF from other arrhythmias

First, we test the separability of our algorithm between the two classes of ECG signals, i.e.,

‘VTVF’ and ‘nonVTVF’ against the annotated decisions suggested by the cardiologists in the

respective databases. We compare our algorithm with the complexity measure algorithm

[10] and the results are shown in Table 1. Comparative results illustrate that our algorithm

shows better performance than the complexity measure algorithm. Also notice that the

accuracy of the proposed MAV scheme is significantly higher than that of the complexity

measure algorithm. Thus our simple and fast algorithm can separate VTVF from nonVTVF

with higher specificity and sensitivity simultaneously. In this case, we had to change the

threshold value of the CPLX algorithm from that defined in [10] to obtain higher sensitivity.

Detection of VF from other arrhythmias

VF occurs at the clinically crucial stage of human being. As mentioned earlier, while

detecting VF from the other arrhythmias in the first stage, we should make the specifi-

city high because a low specificity may risk patient’s life by generating a false alarm to

nonVTVF

All ECG pathologies

VT VF

VT below 180 bpm VT above 180 bpm

VTVF

shockable rhythm

nonshockable rhythm

Figure 9 Classification of different ECG signals. Classification of different types of ECG pathologies.

Table 1 Quality parameters of VTVF detection

Algorithm Quality Parameters for VTVF detection

Sensitivity (%) Specificity (%) Pos. Pred. (%) Accuracy (%)

MAV 93.69 99.39 89.46 99.07

CPLX [10] 48.95 79.48 11.82 77.86
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provide a high energy shock as treatment to save his/her life. But our proposed

sequential algorithm leads to a high specificity. Quality parameters of our proposed

algorithm with some other well-known algorithms are shown in Table 2. It is clear

that our algorithm shows higher sensitivity compared to all other algorithms with very

good specificity (99.32%). To obtain higher specificity, we had to change the critical

threshold parameter of the HILB and PSR methods from that defined in the respective

papers. To compare different methods independent of the value of the decision thresh-

olds, the critical threshold parameter in the decision stage of the algorithm is varied.

By varying the threshold, we can vary specificity and sensitivity as shown in Table 3.

This table illustrates that our proposed method performs much better than the other

VF detection algorithms.

Detection of shockable rhythms from other arrhythmias

This subsection presents the results of our last identification scheme which classifies

the ECG pathologies into two groups: shockable and non-shockable rhythms. To com-

pare our algorithm with the reported algorithm in [5], some modifications in the

threshold values are made to accommodate unequal episode lengths (Le). Our pro-

posed algorithm considers Le = 8-s where Le = 10-s was considered in [5]. Modifica-

tions are shown in Table 4. For example, if Count1 < 250 for Le = 10-s, then for Le =

8-s Count1 < 250 10 * 8 or Count1 < 200.

Here, as we concentrate only on the shockable and non-shockable rhythms, some clas-

sification errors may not result in detection errors. For example, from Figure 10 we see

that a classification error occurs when a VT above 180 bpm is falsely detected as VF in

the second stage. Since a VT above 180 bpm (one type of shockable rhythms) is falsely

mapped into the VF group, which is also in the class of shockable rhythms, therefore,

this classification error does not make any detection error as long as shockable rhythm

Table 2 Quality parameters of different VF detection algorithms for Le = 8-s

Algorithm Quality Parameters for VF detection

Sensitivity (%) Specificity (%) Pos. Pred. (%) Accuracy (%)

TCI 94.64 65.08 8.46 66.05

SPEC 41.42 99.57 76.67 97.65

HILB 71.76 98.87 68.41 97.98

PSR 63.69 99.05 69.57 97.88

TCSC 80.19 98.53 65.66 97.96

MAV & EMD 86.49 99.32 81.27 98.90

Table 3 Performance comparison of different algorithms for a fixed specificity and
for Le = 8-s

Algorithm Sensitivity if Specificity =

99% 98% 96%

TCI 0.33 0.73 5.73

SPEC 65.2 69.35 74.93

HILB 65.32 84.79 91.58

PSR 62.17 77.53 92.40

TCSC 65.07 84.23 93.94

MAV & EMD 89.32 94.76 95.61
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is our concern. Using the modified threshold values mentioned in Table 4, the results

obtained are presented in Table 5. As can be seen, our algorithm performs better than

the count [5] algorithm in every index in detecting the shockable rhythms correctly.

Conclusions
A novel method for the identification of life threatening cardiac abnormalities from

other arrhythmias has been presented. Performing sequential signal processing, we

have detected these cardiac abnormalities with good accuracy. It has been shown that

the proposed algorithm based on the MAV parameter and EMD technique can detect

the VT plus VF signals correctly from other arrhythmias, and the accuracy level

remains higher than that of other reported techniques. The effectiveness of the pro-

posed technique has been demonstrated using standard databases over a vast range of

both normal and abnormal ECG records. The MAV index successfully separates the

VTVF arrhythmias from different types of abnormalities. And the other parameter

NMAV which is calculated using the IMFs of the EMD technique can successfully

Table 4 Modifications in the threshold values proposed in [5] (C1 = Count1, C2 =
Count2, C3 =Count3)

Condition
No.

for Le = 10-s for Le = 8-s

1 C1 < 250, C2 > 950 and C1 × C2/C3 < 210 C1 < 200, C2 > 760 and C1 × C2/C3 < 168

2 250 ≤ C1 < 400, C2 < 600 and C1 × C2/C3 <
210

200 ≤ C1 < 320, C2 < 480 and C1 × C2/C3 <
168

3 C1 ≥ 250 &C2 > 950 C1 ≥ 200 &C2 > 760

4 C2 ≥ 1100 C2 ≥ 880

VTVFnonVTVF

VF

VT below 180 VT above 180

VT

VT above 180VT below 180 VFnonVTVF

False classification and False detection

False classification and correct detection

Correct classification and correct detection

Figure 10 Effect of false classification. Effect of false classification on the detection of shockable rhythms
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separate VF from VTVF. Finally, a fast and simple heart rate determination technique

is used to separate the high rate VT. Consistent results have been obtained by applying

our algorithm on different well-known databases namely, MIT-BIH database, CU data-

base and MIT-BIH Malignant Ventricular Arrhythmia database. Determination of the

threshold parameters from the training dataset and then their successful application on

the test dataset proves that the proposed parameters are universal. Some signal

Table 5 Quality parameters for the detection of shockable rhythms using Le = 8-s

Algorithm Quality parameters for the detection of shockable rhythms

Sensitivity (%) Specificity (%) Pos. Pred. (%) Accuracy (%)

MAV & EMD 91.09 99.42 90.71 99.21

Count [5] 88.90 99.29 85.99 98.93
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Figure 11 Illustration of the EMD using an example. (a) The original signal x(n), two envelopes eu(n)
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episodes were very difficult for classification even by expert cardiologists. Accuracy of

our proposed technique slightly falls due to these confusing episodes. The algorithm

presented here has strong potential to be applied in clinical applications for accurate

detection of life threatening cardiac arrhythmias.

Appendix
The steps involved in the EMD technique are described below using an example.

1. Determine the upper envelop eu(n) and the lower envelop el(n). These two envel-

opes are shown in Figure 11(a) along with the original signal x(n).

2. Determine the mean of the envelope, i.e., m1(n) = [eu(n) + el(n)]/2. The variation

of m1(n) is displayed in Figure 11(a).

3. Extract the first component h1(n) using eqn. (3).

4. Ideally, h1(n) should be the first IMF. But, it is observed from Figure 11(b) that

the h1(n) does not satisfy the conditions of an IMF.

5. Now, treat h1(n) as x(n) in step (1). Determine the two envelopes from h1(n) and

the mean of these two envelopes (Figure 11(b)). After subtraction of the mean

from the h1(n) a new signal h1(2)(n) is obtained. Now, check the conditions of an

IMF and also calculate the value of SD from eqn. (4), where h1(1)=h1(n).

6. Continue the process until h1(k-1) satisfies the conditions of the IMFs. When the

conditions are satisfied, the first IMF is found as shown in Figure 11(c). Now, the

first IMF is subtracted from the initial signal x(n).

7. The second IMF (Figure 11(d)) is extracted following the steps (1) to (6) except

that the subtracted signal is used instead of x(n). No further decomposition is per-

formed here as we need two IMFs for our analysis. The residue of the EMD is

shown in Figure 11(e).
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