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Abstract
Three strains of the genus Diaporthe were isolated from different plant hosts in south-western China. Phyloge-
netic analyses of the combined ITS, β-tubulin, tef1 and calmoudulin dataset indicated that these strains repre-
sented three independent lineages in Diaporthe. Diaporthe millettiae sp. nov. clustered with D. hongkongensis 
and D. arecae, Diaporthe osmanthi sp. nov. grouped with D. arengae, D. pseudomangiferae and D. perseae and 
Diaporthe strain GUCC9146, isolated from Camellia sinensis, was grouped in the D. eres species complex with 
a close relationship to D. longicicola. These species are reported with taxonomic descriptions and illustrations.
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Introduction

Genus Diaporthe has been well-studied in recent years by Udayanga et al. (2011, 
2012), incorporating morphological and molecular data and recommending appropri-
ate genes to resolve species limitations in the genus. Since these revolutionary papers, 
43 novel Diaporthe species have been described from China with morphological and 
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phylogenetic evidence (Huang et al. 2013, 2015; Fan et al. 2016; Gao et al. 2014, 
2015, 2016, 2017; Yang et al. 2017a,b, 2018; Yang et al. 2016; Du et al. 2016; Dis-
sanayake et al. 2017a). Dissanayake et al. (2017b) provided an update of the genus 
with additional 15 species (7 new and 8 known species) from Italy based on molecular 
evidence. New records and species have also been reported by Hyde et al. (2016), Ross-
man et al. (2016), Chen and Kirschner (2017), Guarnaccia et al. (2018), Perera et al. 
(2018), Tibpromma et al. (2018) and Wanasinghe et al. (2018).

Three strains of Diaporthe were isolated from different medicinal plants collected 
in Guizhou and Guangxi during a survey of fungal diversity in south-western China. 
All the strains produced conidiomata containing alpha- and beta-conidia, typical of 
Diaporthe. This paper describes these three collections using molecular evidence, based 
on the analysis of combined ITS, β-tubulin, tef1 and calmoudulin datasets, as Dia-
porthe millettiae sp. nov. and D. osmanthi sp. nov. and D. longicicola with a new host 
record from Camellia sinensis.

Materials and methods

Isolation and morphological studies

The samples were collected from Guizhou and Guangxi provinces. The Diaporthe strains 
were isolated using the single-spore method (Chomnunti et al. 2014). Colonies, grow-
ing from single spores, were transferred to potato-dextrose agar (PDA) and incubated at 
room temperature (28 °C). Following 2–3 weeks of incubation, morphological charac-
ters were recorded as in Udayanga et al. (2011, 2015). Conidia and conidiophores were 
observed using a compound microscope (Olympus BX53). The holotype specimens are 
deposited in the Herbarium of Department of Plant Pathology, Agricultural College, 
Guizhou University (HGUP). Ex-type cultures are deposited in the Culture Collec-
tion at the Department of Plant Pathology, Agriculture College, Guizhou University, 
China (GUCC). Taxonomic information of the new taxa was submitted to MycoBank 
(http://www.mycobank.org) and Facesoffungi (http://www.facesoffungi.org).

DNA extraction and sequencing

Fungal cultures were grown on PDA medium until they nearly covered the whole 
Petri-dish (90 mm diam.) at 28 °C. Fresh fungal mycelia were scraped from the sur-
face with sterilised scalpels. A BIOMIGA Fungus Genomic DNA Extraction Kit 
(GD2416) was used to extract fungal genome DNA. DNA amplification was per-
formed in a 25 μl reaction volume system which contained 2.5 μl 10 × PCR buffer, 
1 μl of each primer (10 μM), 1 μl template DNA and 0.25 μl Taq DNA polymerase 
(Promega, Madison, WI, USA). Primers ITS4 and ITS5 (White et al. 1990) were used 
to amplify the ITS region. Three protein-coding gene fragments (β-tubulin, tef1 and 

http://www.mycobank.org
http://www.facesoffungi.org


Diaporthe Hui Long 115

calmoudulin) were amplified by the primers Bt2a/Bt2b (Glass and Donaldson 1995), 
CAL228F/CAL737R and EF1-728F/EF1-986R (Carbone and Kohn 1999). Gene se-
quencing was performed with an ABI PRISM 3730 DNA autosequencer using either 
a dRhodamine terminator or Big Dye Terminator (Applied Biosystems Inc., Foster 19 
City, California). The sequences of both strands of each fragment were determined for 
sequence confirmation. The DNA sequences were submitted to GenBank and their 
accession numbers were provided in Table 1.

Table 1. GenBank accession numbers of isolates include in this study.

Species Culture no. GenBank no.
ITS tef1 β-tubulin calmoudulin

Diaporthe alleghaniensis CBS 495.72 KC343007 KC343733 KC343975 KC343249
D. ambigua CBS 114015 AF230767 GQ250299 KC343978 KC343252
D. anacardii CBS 720.97* KC343024 KC343750 KC343992 KC343266 
D. arecae CBS 161.64 KC343032 KC343758 KC344000 KC343274
D. arengae CBS 114979 KC343034 KC343760 KC344002 KC343276
D. baccae CBS 136972 KJ160565 KJ160597 MF418509 MG281695
D. beilharziae BRIP 54792 JX862529 JX862535 KF170921 –
D. betulae CFCC 50470 KT732951 KT733017 KT733021 KT732998
D. bicincta CBS 121004 KC343134 KC343860 KC344102 KC343376
D. biguttusis CGMCC 3.17081 KF576282 KF576257 KF576306 –
D. celastrina CBS 139.27 KC343047 KC343773 KC344015 KC343289
D. celeris CBS 143349 MG281017 MG281538 MG281190 MG281712
D. charlesworthii BRIP 54884m* KJ197288 KJ197250 KJ197268 –
D. cinerascens CBS 719.96 KC343050 KC343776 KC344018 KC343292
D. cotoneastri CBS 439.82 FJ889450 GQ250341 JX275437 JX197429
D. decedens CBS 109772 KC343059 KC343785 KC344027 KC343301
D. elaeagni CBS 504.72 KC343064 KC343790 KC344032 KC343306
D. ellipicola CGMCC 3.17084 KF576270 KF576245 KF576291 –
D. eres CBS 138594 KJ210529 KJ210550 KJ420799 KJ434999
D. foeniculina CBS 187.27 KC343107 KC343833 KC344075 KC343349 
D. goulteri BRIP 55657a KJ197289 KJ197252 KJ197270 –
D. helianthi CBS 592.81 KC343115 GQ250308 KC343841 JX197454
D. hongkongensis CBS 115448 KC343119 KC343845 KC344087 KC343361
D. inconspicua CBS 133813 KC343123 KC343849 KC344091 KC343365
D. longicicola GUCC9146 MK398676 MK480611 MK502091 MK502088
D. longicicola CGMCC 3.17091 KF576267 KF576242 KF576291 –
D. macinthoshii BRIP 55064a* KJ197290 KJ197251 KJ197269 –
D. millettia GUCC9167 MK398674 MK480609 MK502089 MK502086
D. oncostoma CBS 589.78 KC343162 KC343888 KC344130 KC343404
D. osmanthusis GUCC9165 MK398675 MK480610 MK502090 MK502087
D. perseae CBS 151.73 KC343173 KC343899 KC344141 KC343415
D. phragmitis CBS 138897 KP004445 – KP004507 –
D. pseudomangiferae CBS 101339 KC343181 KC343907 KC344149 KC343423 
D. pseudophoenicicola CBS 462.69 KC343184 KC343910 KC344152 KC343426
D. rosicola MFLU 17.0646 NR157515 MG829270 MG843877 MG829274
D. saccarata CBS 116311 KC343190 KC343916 KC344158 KC343432
D. stitica CBS 370.54 KC343212 KC343938 KC344180 KC343454
D. vaccinii CBS 160.32 AF317578 GQ250326 KC344196 KC343470
Valsa ambiens CFCC 89894 KR045617 KU710912 KR045658 –

Ex-type isolates were labeled with bold.

http://www.ncbi.nlm.nih.gov/nuccore/KC343007
http://www.ncbi.nlm.nih.gov/nuccore/KC343733
http://www.ncbi.nlm.nih.gov/nuccore/KC343975
http://www.ncbi.nlm.nih.gov/nuccore/KC343249
http://www.ncbi.nlm.nih.gov/nuccore/AF230767
http://www.ncbi.nlm.nih.gov/nuccore/GQ250299
http://www.ncbi.nlm.nih.gov/nuccore/KC343978
http://www.ncbi.nlm.nih.gov/nuccore/KC343252
http://www.ncbi.nlm.nih.gov/nuccore/KC343024
http://www.ncbi.nlm.nih.gov/nuccore/KC343750
http://www.ncbi.nlm.nih.gov/nuccore/KC343992
http://www.ncbi.nlm.nih.gov/nuccore/KC343266
http://www.ncbi.nlm.nih.gov/nuccore/KC343032
http://www.ncbi.nlm.nih.gov/nuccore/KC343758
http://www.ncbi.nlm.nih.gov/nuccore/KC344000
http://www.ncbi.nlm.nih.gov/nuccore/KC343274
http://www.ncbi.nlm.nih.gov/nuccore/KC343034
http://www.ncbi.nlm.nih.gov/nuccore/KC343760
http://www.ncbi.nlm.nih.gov/nuccore/KC344002
http://www.ncbi.nlm.nih.gov/nuccore/KC343276
http://www.ncbi.nlm.nih.gov/nuccore/KJ160565
http://www.ncbi.nlm.nih.gov/nuccore/KJ160597
http://www.ncbi.nlm.nih.gov/nuccore/MF418509
http://www.ncbi.nlm.nih.gov/nuccore/MG281695
http://www.ncbi.nlm.nih.gov/nuccore/JX862529
http://www.ncbi.nlm.nih.gov/nuccore/JX862535
http://www.ncbi.nlm.nih.gov/nuccore/KF170921
http://www.ncbi.nlm.nih.gov/nuccore/KT732951
http://www.ncbi.nlm.nih.gov/nuccore/KT733017
http://www.ncbi.nlm.nih.gov/nuccore/KT733021
http://www.ncbi.nlm.nih.gov/nuccore/KT732998
http://www.ncbi.nlm.nih.gov/nuccore/KC343134
http://www.ncbi.nlm.nih.gov/nuccore/KC343860
http://www.ncbi.nlm.nih.gov/nuccore/KC344102
http://www.ncbi.nlm.nih.gov/nuccore/KC343376
http://www.ncbi.nlm.nih.gov/nuccore/KF576282
http://www.ncbi.nlm.nih.gov/nuccore/KF576257
http://www.ncbi.nlm.nih.gov/nuccore/KF576306
http://www.ncbi.nlm.nih.gov/nuccore/KC343047
http://www.ncbi.nlm.nih.gov/nuccore/KC343773
http://www.ncbi.nlm.nih.gov/nuccore/KC344015
http://www.ncbi.nlm.nih.gov/nuccore/KC343289
http://www.ncbi.nlm.nih.gov/nuccore/MG281017
http://www.ncbi.nlm.nih.gov/nuccore/MG281538
http://www.ncbi.nlm.nih.gov/nuccore/MG281190
http://www.ncbi.nlm.nih.gov/nuccore/MG281712
http://www.ncbi.nlm.nih.gov/nuccore/KJ197288
http://www.ncbi.nlm.nih.gov/nuccore/KJ197250
http://www.ncbi.nlm.nih.gov/nuccore/KJ197268
http://www.ncbi.nlm.nih.gov/nuccore/KC343050
http://www.ncbi.nlm.nih.gov/nuccore/KC343776
http://www.ncbi.nlm.nih.gov/nuccore/KC344018
http://www.ncbi.nlm.nih.gov/nuccore/KC343292
http://www.ncbi.nlm.nih.gov/nuccore/FJ889450
http://www.ncbi.nlm.nih.gov/nuccore/GQ250341
http://www.ncbi.nlm.nih.gov/nuccore/JX275437
http://www.ncbi.nlm.nih.gov/nuccore/JX197429
http://www.ncbi.nlm.nih.gov/nuccore/KC343059
http://www.ncbi.nlm.nih.gov/nuccore/KC343785
http://www.ncbi.nlm.nih.gov/nuccore/KC344027
http://www.ncbi.nlm.nih.gov/nuccore/KC343301
http://www.ncbi.nlm.nih.gov/nuccore/KC343064
http://www.ncbi.nlm.nih.gov/nuccore/KC343790
http://www.ncbi.nlm.nih.gov/nuccore/KC344032
http://www.ncbi.nlm.nih.gov/nuccore/KC343306
http://www.ncbi.nlm.nih.gov/nuccore/KF576270
http://www.ncbi.nlm.nih.gov/nuccore/KF576245
http://www.ncbi.nlm.nih.gov/nuccore/KF576291
http://www.ncbi.nlm.nih.gov/nuccore/KJ210529
http://www.ncbi.nlm.nih.gov/nuccore/KJ210550
http://www.ncbi.nlm.nih.gov/nuccore/KJ420799
http://www.ncbi.nlm.nih.gov/nuccore/KJ434999
http://www.ncbi.nlm.nih.gov/nuccore/KC343107
http://www.ncbi.nlm.nih.gov/nuccore/KC343833
http://www.ncbi.nlm.nih.gov/nuccore/KC344075
http://www.ncbi.nlm.nih.gov/nuccore/KC343349
http://www.ncbi.nlm.nih.gov/nuccore/KJ197289
http://www.ncbi.nlm.nih.gov/nuccore/KJ197252
http://www.ncbi.nlm.nih.gov/nuccore/KJ197270
http://www.ncbi.nlm.nih.gov/nuccore/KC343115
http://www.ncbi.nlm.nih.gov/nuccore/GQ250308
http://www.ncbi.nlm.nih.gov/nuccore/KC343841
http://www.ncbi.nlm.nih.gov/nuccore/JX197454
http://www.ncbi.nlm.nih.gov/nuccore/KC343119
http://www.ncbi.nlm.nih.gov/nuccore/KC343845
http://www.ncbi.nlm.nih.gov/nuccore/KC344087
http://www.ncbi.nlm.nih.gov/nuccore/KC343361
http://www.ncbi.nlm.nih.gov/nuccore/KC343123
http://www.ncbi.nlm.nih.gov/nuccore/KC343849
http://www.ncbi.nlm.nih.gov/nuccore/KC344091
http://www.ncbi.nlm.nih.gov/nuccore/KC343365
http://www.ncbi.nlm.nih.gov/nuccore/MK398676
http://www.ncbi.nlm.nih.gov/nuccore/MK480611
http://www.ncbi.nlm.nih.gov/nuccore/MK502091
http://www.ncbi.nlm.nih.gov/nuccore/MK502088
http://www.ncbi.nlm.nih.gov/nuccore/KF576267
http://www.ncbi.nlm.nih.gov/nuccore/KF576242
http://www.ncbi.nlm.nih.gov/nuccore/KF576291
http://www.ncbi.nlm.nih.gov/nuccore/KJ197290
http://www.ncbi.nlm.nih.gov/nuccore/KJ197251
http://www.ncbi.nlm.nih.gov/nuccore/KJ197269
http://www.ncbi.nlm.nih.gov/nuccore/MK398674
http://www.ncbi.nlm.nih.gov/nuccore/MK480609
http://www.ncbi.nlm.nih.gov/nuccore/MK502089
http://www.ncbi.nlm.nih.gov/nuccore/MK502086
http://www.ncbi.nlm.nih.gov/nuccore/KC343162
http://www.ncbi.nlm.nih.gov/nuccore/KC343888
http://www.ncbi.nlm.nih.gov/nuccore/KC344130
http://www.ncbi.nlm.nih.gov/nuccore/KC343404
http://www.ncbi.nlm.nih.gov/nuccore/MK398675
http://www.ncbi.nlm.nih.gov/nuccore/MK480610
http://www.ncbi.nlm.nih.gov/nuccore/MK502090
http://www.ncbi.nlm.nih.gov/nuccore/MK502087
http://www.ncbi.nlm.nih.gov/nuccore/KC343173
http://www.ncbi.nlm.nih.gov/nuccore/KC343899
http://www.ncbi.nlm.nih.gov/nuccore/KC344141
http://www.ncbi.nlm.nih.gov/nuccore/KC343415
http://www.ncbi.nlm.nih.gov/nuccore/KP004445
http://www.ncbi.nlm.nih.gov/nuccore/KP004507
http://www.ncbi.nlm.nih.gov/nuccore/KC343181
http://www.ncbi.nlm.nih.gov/nuccore/KC343907
http://www.ncbi.nlm.nih.gov/nuccore/KC344149
http://www.ncbi.nlm.nih.gov/nuccore/KC343423
http://www.ncbi.nlm.nih.gov/nuccore/KC343184
http://www.ncbi.nlm.nih.gov/nuccore/KC343910
http://www.ncbi.nlm.nih.gov/nuccore/KC344152
http://www.ncbi.nlm.nih.gov/nuccore/KC343426
http://www.ncbi.nlm.nih.gov/nuccore/NR157515
http://www.ncbi.nlm.nih.gov/nuccore/MG829270
http://www.ncbi.nlm.nih.gov/nuccore/MG843877
http://www.ncbi.nlm.nih.gov/nuccore/MG829274
http://www.ncbi.nlm.nih.gov/nuccore/KC343190
http://www.ncbi.nlm.nih.gov/nuccore/KC343916
http://www.ncbi.nlm.nih.gov/nuccore/KC344158
http://www.ncbi.nlm.nih.gov/nuccore/KC343432
http://www.ncbi.nlm.nih.gov/nuccore/KC343212
http://www.ncbi.nlm.nih.gov/nuccore/KC343938
http://www.ncbi.nlm.nih.gov/nuccore/KC344180
http://www.ncbi.nlm.nih.gov/nuccore/KC343454
http://www.ncbi.nlm.nih.gov/nuccore/AF317578
http://www.ncbi.nlm.nih.gov/nuccore/GQ250326
http://www.ncbi.nlm.nih.gov/nuccore/KC344196
http://www.ncbi.nlm.nih.gov/nuccore/KC343470
http://www.ncbi.nlm.nih.gov/nuccore/KR045617
http://www.ncbi.nlm.nih.gov/nuccore/KU710912
http://www.ncbi.nlm.nih.gov/nuccore/KR045658
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Phylogenetic analyses

DNA sequences from our three strains and reference sequences downloaded from 
GenBank (Dissanayake et al. 2017a, b), Guarnaccia et al. (2018) and Wanasinghe et al. 
(2018) were analysed by maximum parsimony (MP) and maximum likelihood (ML). 
Sequences were optimised manually to allow maximum alignment and maximum se-
quence similarity, as detailed in Manamgoda et al. (2012). MP analyses were performed 
in PAUP v. 4.0b10 (Swofford 2003), using the heuristic search option with 1,000 ran-
dom taxa additions and tree bisection and re-connection (TBR) as the branch swap-
ping algorithm. Maxtrees = 5000 was set to build the phylogenetic tree. The characters 
of the alignment document were ordered according to ITS+tef1+β-tubulin+CAL for 
GUCC9165 and GUCC9167 and tef1+β-tubulin for GUCC9146 with equal weight 
and gaps were treated as missing data. The Tree Length (TL), Consistency Indices (CI), 
Retention Indices (RI), Rescaled Consistency Indices (RC) and Homoplasy Index (HI) 
were calculated for each tree generated. The resulting Phylip file was used to make ML 
and Bayesian trees by the CIPRES Science Gateway (https://www.phylo.org/portal2/
login.action) and RAxML-XSEDE with 1000 bootstrap inferences.

Results

Phylogenetic analyses

Three Diaporthe strains isolated from different plant hosts were sequenced. PCR prod-
ucts of 456–465 bp (ITS), 292–303 bp (tef1), 666–690 bp (β-tubulin) and 336–345 
bp (CAL) were obtained. By alignment with the single gene region and then com-
bination according to the order of ITS, tef1, β-tubulin and CAL with Valsa ambiens 
(CFCC 89894), only 1833 characters were obtained, viz. ITS: 1–492, tef1: 493–801, 
β-tubulin: 802–1469, CAL: 1470–1833, with 500 parsimony-informative characters. 
This procedure yielded eleven parsimonious trees (TL = 2169, CI = 0.58, RI = 0.71, 
RC = 0.41 and HI = 0.42), the first one being shown in Figure 1. All Diaporthe spe-
cies clustered together, although without credible support for bootstrap and BPP val-
ues (Figure 1). Phylogenetic analysis of strains GUCC9165 and GUCC9167, using 
the four gene loci, confirmed them as well-resolved species (Figure 1). Strain GUCC 
9165 formed an independent branch adjacent to D. arecae and D. hongkongensis (MP: 
100%, ML: 94% and BPP: 1). Strain GUCC 9167 grouped with the branch which 
included D. arengae, D. perseae and D. pseudomangiferae (MP: 92%, ML: 98% and 
BPP: 1). Strain GUCC 9146 was aligned to the branch having D. longicicola and D. 
rosicola in the Diaporthe eres species-complex (Figure 2), with high statistical support 
(MP: 84%, ML: 93% and BPP: 1). This strain also showed a close relationship to D. 
eres and D. cotoneastri. In addition, we also compared the DNA base pair differences 
between our strains and related species in different gene regions (Suppl. material 1: 
Table S1). In Diaporthe strain GUCC9165, the four genes had 64 base pair differ-

https://www.phylo.org/portal2/login.action
https://www.phylo.org/portal2/login.action
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Figure 1. Parsimonious tree obtained from a combined analyses of an ITS, β-tubulin, calmoudulin 
and tef1 sequence dataset. MP, ML above 50% and BPP values above 0.90 were placed close to topo-
logical nodes and separated by “/”. The bootstrap values below 50% and BPP values below 0.90 were 
labelled with “-”. The tree is rooted with Valsa ambiens (CFCC89894). The branch of our new Dia-
porthe species is in pink.
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Figure 2. Parsimonious tree obtained from a combined analyses of a β-tubulin and tef1 sequence dataset 
(TL = 265, CI = 0.89, RI = 0.76, RC = 0.68 and HI = 0.11). MP, ML above 50% and BPP values above 
0.90 were placed close to topological nodes and separated by “/”. The bootstrap values below 50% and 
BPP values below 0.90 were labelled with “-”. The tree is rooted with Diaporthe decedens (CBS 109772).

ences with D. arecae and 119 with D. hongkongensis, the main differences being with 
β-tubulin and tef1. Strain GUCC9167 had 52 base pair differences with D. arengae, 
61 with D. perseae and 64 with D. pseudomangiferae, wherein the base distinction was 
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primarily in the β-tubulin and tef1 gene region. The β-tubulin sequences of D. eres 
and D. longicicola were apparently shorter than in strain GUCC 9146. The CAL se-
quences of D. rosicola were shorter than GUCC 9146. The DNA sequence of CAL for 
Diaporthe longicicola was not available (Gao et al. 2015). Integrating available DNA 
information, we discovered that 28 base pair differences were shown between GUCC 
9146 and D. eres, 51 between GUCC 9146 and D. cotoneastri, 26 between GUCC 
9146 and D. rosicola and 22 (only three genes) between GUCC 9146 and D. longici-
cola. Meanwhile, the phylogenetic analysis, based on only tef1 and β-tubulin for the 
D. eres species-complex (Figure 2), also indicated that GUCC 9146 clustered with D. 
longicicola and D. rosicola which obtained support values of MP: 99%, ML: 100% and 
BPP: 1 and maintained a closer relationship with D. longicicola.

Taxonomy

Diaporthe millettiae H. Long, K.D. Hyde & Yong Wang bis, sp. nov.
MycoBank MB 829563
Figure 3

Diagnosis. Characterised by larger J-shaped β-conidia.
Type. China, Guangxi Province, Nanning City, from leaves of Millettia reticulata, 20 

September 2016, Y. Wang, HGUP 9167, holotype, ex-type living culture GUCC 9167.
Description. Colonies on PDA attaining 9 cm diam. after 10 days; coralloid with 

feathery branches at margin, adpressed, with apparent aerial mycelium, with numerous 
irregularly zonate dark stromata, isabelline becoming lighter towards the margin; re-
verse similar to surface, with zonations. Conidiomata pycnidial, multilocular, scattered, 
abundant on PDA after 3 wks, subglobose to irregular, 1.5–1.8 mm diam., ostiolate, 
with up to 1 mm necks when present. Conidiophores formed from the inner layer of 
the locular wall, sometimes reduced to conidiogenous cells, when present 1-septate, 
hyaline to pale yellowish-brown, cylindrical, 10–23 × 1–2.5 μm. Conidiogenous cells 
cylindrical to flexuous, tapered towards apex, hyaline, 8–18 × 1.5–3 μm. Alpha conidia 
abundant, fusiform, narrowed towards apex and base, mostly biguttulate, hyaline, 4.5–
9 × 2–3.5 μm. Beta conidia scarce to abundant, flexuous to J-shaped, hyaline, 17.5–32 
× 1–2 μm. Perithecia not seen.

Habitat and distribution. Isolated from leaves of Millettia reticulata in China
Etymology. Species epithet millettiae, referring to the host, Millettia  reticulata 

from which the strain was isolated.
Notes. Phylogenetic analysis combining four gene loci showed that Diaporthe 

millettiae (strain GUCC 9167) displayed a close relationship with D. arengae, 
D. pseudomangiferae and D. perseae with high bootstrap values (Figure 1). We compared 
the DNA base pair differences of the four gene regions, the main differences being in 
the β-tubulin and tef1 genes, especially tef1. Diaporthe millettiae produced two types of 
conidia (α, β), whereas D. pseudomangiferae only produced alpha conidia and D. perseae 

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=829563
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produced three types of conidia (α, β, γ). The β-conidia of D. arengae were smaller 
(20–25 × 1.5 μm) than those of Diaporthe millettiae (17.5–32 × 1–2 μm). The shape 
of β-conidia was also different. Conidiophores of D. arengae (10–60 μm) with more 
septa (0–6), were longer than those of D. millettiae (10–23 × 1–2.5 μm; 0-1-septate) 
(Gomes et al. 2013).

Diaporthe osmanthi H. Long, K.D. Hyde & Yong Wang bis, sp. nov.
MycoBank MB 829564
Figure 4

Diagnosis. Characterised by size of α-conidia and β-conidia.
Type. China, Guangxi province, Nanning City, from leaves of Osmanthus fragrans, 20 

September, 2016, Y. Wang, HGUP 9165, holotype, ex-type living culture GUCC 9165.
Description. Colonies on PDA attaining 9 cm diam. after 10 days; coralloid with 

feathery branches at margin, adpressed, without aerial mycelium, with numerous ir-
regularly zonated dark stromata, isabelline becoming lighter towards the margin; re-

Figure 3. Diaporthe millettiae (GUCC9167). a–b upper (a) and lower (b) surface of colony on PDA 
c–d conidiomata e–f conidiophores, conidiogenous loci and conidia g β-conidia h α-conidia. Scale bars:  
20 μm (e, f), 10 μm (g, h).

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=829564
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Figure 4. Diaporthe osmanthi (GUCC9165). a–b upper (a) and lower (b) surface of colony on PDA 
c–d conidiomata e conidiophores, conidiogenous loci and conidia f α-conidia g two types of conidia 
h β-conidia. Scale bars: 10 μm (e, f, g, h).

verse similar to the surface with zonations more apparent. Conidiomata pycnidial and 
multilocular, scattered, abundant on PDA after 3 wks, globose, subglobose or irregular, 
up to 1–1.5 mm diam., ostiolate, necks absent or up to 1 mm. Conidiophores formed 
from the inner layer of the locular wall, reduced to conidiogenous cells or 1-septate, 
hyaline to pale yellowish-brown, cylindrical, 20.5–61 × 1–3 μm. Conidiogenous cells cy-
lindrical to flexuous, tapered towards apex, hyaline, 10–15 × 1.5–3 μm. Alpha conidia 
abundant, fusiform, narrowed towards the apex and base, apparently biguttulate, hya-
line, 5.5–8.5 × 2–3 μm. Beta conidia scarce to abundant, flexuous to J-shaped, hyaline, 
20–31.5 × 1–2.5 μm. Perithecia not seen.

Habitat and distribution. Isolated from leaves of Osmanthus fragrans in China.
Etymology. Species epithet osmanthi, referring to the host, Osmanthus fragrans 

from which our strain was isolated.
Notes. Diaporthe osmanthi (strain GUCC9165) formed an independent line-

age, but was also related to D. arecae and D. hongkongensis (Figure 1). The sequenc-
es of β-tubulin and tef1 included about two-three differences between D. osmanthi 
(GUCC9165) and D. arecae (42) and D. hongkongensis (78) and thus they were dif-
ferent species according to the guidelines of Jeewon and Hyde (2016). Additionally, 
Diaporthe hongkongensis produced three types of conidia, but Diaporthe osmanthi did 
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Figure 5. Diaporthe longicicola (GUCC9146). a–b upper (a) and lower (b) surface of colony on PDA 
c–d conidiomata e two types of conidia f conidiophores, conidiogenous loci and conidia g α-conidia 
h β-conidia. Scale bars: 10 μm (e, f, g, h).

not produce γ-conidia. In addition, β-conidia of D. hongkongensis (18–22 μm) were 
shorter than those of Diaporthe osmanthi (Gomes et al. 2013). According to original 
description Srivastava et al. (1962), D. arecae also produced two types of conidia. The 
α-conidia (7.2–9.6 × 2.4 μm) were longer than in Diaporthe osmanthi, but its β-conidia 
(14.4–24 × 1.2 μm) were shorter and their shape also had some differences.

Diaporthe longicicola Y.H. Gao & L. Cai, Fungal Biology 119(5): 303 (2015) 
Figure 5

Description. Colonies on PDA attaining 9 cm diam. in 10 days; coralloid with feathery 
branches at margin, adpressed, without aerial mycelium, without numerous irregularly 
zonated dark stromata, isabelline becoming lighter towards the margin; reverse similar 
to the surface with zonations more apparent. Conidiomata pycnidial and multilocular, 
scattered, abundant on PDA after 20 d, subglobose or irregular, 1.5–1.8 mm diam., 
ostiolate and up to 1 mm long. Conidiophores formed from the inner layer of the 
locular wall, densely aggregated, hyaline to pale yellowish-brown, cylindrical, tapering 
towards the apex, 15–25 × 1.5–2 μm. Alpha conidia abundant, ellipsoid to fusiform, 
apparently biguttulate, hyaline, 6–9 × 2–3 μm. Beta conidia scarce to abundant, flexu-
ous to J-shaped, hyaline, 25.5–35.5 × 1–2.5 μm.

Habitat and distribution. Isolated from leaves of Camellia sinensis in Duyun, 
Guizhou Province, China
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Notes. Phylogenetic analyses (Figures 1, 2) indicated that GUCC 9146 has a close 
relationship with D. longicicola, D. rosicola, D. eres and D. cotoneastri. Morphological 
comparison indicated that this strain was most similar to D. longicicola but not a re-
lated species by the width of alpha conidia and length of beta conidia (Udayanga et al. 
2014; Gao et al. 2015).

Discussion

Phylogenetic analysis and morphology provide evidence for the introduction of Dia-
porthe millettiae and D. osmanthi as new species. In order to support the validity of 
these new species, we followed the guidelines of Jeewon and Hyde (2016) in compar-
ing base pair differences (Suppl. material 1: Table S1). In accordance with Udayanga 
et al. (2014), we also believed that the ITS fragment was problematic for the D. eres 
species-complex. When not considering ITS, integration with morphological compari-
son was helpful and we concluded that GUCC 9146 is D. longicicola. Diaporthe lon-
gicicola was firstly reported on Lithocarpus glabra in Zhejiang Province, but our strain 
(GUCC 9146) was recovered from Camellia sinensis in Guizhou Province. Thus, this is 
the report of a new host and new location in China for D. longicicola.
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